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Use of Hopfield Neural Networks in Optimal
Guidance

A Hopfield neural network architecture is developed to solve
the optimal control problem for homing missile guidance. A linear
quadratic optimal control problem is formulated in the form
of an efficient parallel computing device known as a Hopfield
neural network. Convergence of the Hopfield network is analyzed
from a theoretical perspective, showing that the network, as a
dynamical system, approaches a unique fixed point which is the
solution to the optimal control problem at any instant during the
missile pursuit. Several target-intercept scenarios are provided
to demonstrate the use of the recurrent feedback neural net

formulation.

I. INTRODUCTION

The basic problem addressed here is that of guiding
a missile to pursue and intercept a moving and most
likely accelerating target. Major difficulties in achieving
better performance with a modern control based
homing missile guidance have been due to the problem
of estimating the unknown target acceleration and the
nonlinearity of the dynamics and the process of target
measurement.

The most popular homing missile guidance is
based on a control law called proportional navigation
[1]. The basic notion is that if the line-of-sight rate
is nulled, then the missile (for a nonmaneuvering,
constant velocity target) is on a collision course. If
the target is considered smart or able to maneuver
perpendicular to the line-of-sight, then variations
to the proportional navigation are required for
improved performance. These variations have been
given theoretical basis through formulations as lincar
quadratic Gaussian (LQG) problems [2, 3].
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The LQG formulation allows the design of the
controller and the estimator to be separable. However,
such separation is completely valid only in the case
where the measurement functions are also linear. In
a target-intercept problem, the typical measurements
such as range, range rate, and bearing angles are all
nonlinear functions in a rectangular Cartesian state
space. Consequently, the filter structure is suboptimal
and the separability assumption of the controller and
the estimator is also approximate. Active research
has been in progress in this area for improved results
under such nonlinear conditions [4-6]. An excellent
survey of the available methods that deal with different
aspects of the air-to-air missile guidance technology
can be found in [7]. As compared with the notions
supporting the methods in the available literature, a
new approach has been adopted in this study.

The motivation for the method comes from the
field of artificial neural networks [8-14]. Artificial
neural networks are trainable, highly parallel
computational devices which have been successfully
used in difficult artificial intelligence tasks such
as pattern-recognition, image processing, and
optimization. Development of neural networks for
adaptive control, estimation and the supporting theory
are still emerging [15]. A neural network structure for
the uncertain target-intercept dynamics is developed in
Section II. This involves posing the problem as a linear
quadratic optimal control problem. The feasibility of
using a neural network to solve this optimal control
problem is shown in the following sections.

Il.  ARTIFICIAL NEURAL NETWORK STRUCTURE
FOR CONTROLLER-ESTIMATOR

A. Artificial Neural Network

Artificial neural networks are modeled after the
way the human brain is perceived to function [8]. They
consist of a multilayered network of parallel processing
elements which are interconnected in such a way that
they can modify their behavior in response to their
environment. In many neural network applications
a neural network is trained with sets of inputs so as
to produce a set of known desired outputs (learning
phase). If the networks arc properly designed and
trained, they are insensitive to small variations in
its input functions. Consequently, the noise and the
distortions of the input will not affect the neural
network from producing the proper patterns (response
phase).

The application considered in this study, however,
is different. The target-intercept problem consists of
control of an unknown and unpredictable dynamical
system. In this study, an artificial neural network
is designed to perform the function of an optimal
controller. It does not “learn” specific information
but the massively parallel processing capability of the

network allows it to rapidly adapt to the unpredictable
behavior of the target.

Certain types of artificial neural networks are
structured to function primarily in one of two
modes. In the first mode, such as a feed-forward
network trained with back-propagation [14], all of
the processing and information transfer occurs in a
forward direction from a group of input neurons to
a group of output neurons, and training occurs by
providing the network with correct answers at the
output. In the second approach such as Hopfield nets
[12], there can be feedback paths from any neuron
directly to any other neuron in the network. For
such a network, considered as a stable dynamical
system, the forward and feedback paths will cause
the processing of the network to converge to a stable
fixed point. It is the feature of feedback that makes the
Hopfield nets a feasible approach to solve problems
in the area of optimization. The network structure
is attractive because it uses a massively parallel
computing architecture.

The Hopfield network used here is composed of
n neurons where the jth neuron has a calculated net
input value u; and output activation value x’ at time ¢
given by the discrete time difference equations

uptAt = "W xl + Vi
j=1 )

x1{+AI = f(u£'+At)

where W;; is the strength or weight of the connection
from neuron j to neuron i, and V; is an external
input to the neuron, and the function f is a nonlinear
(usually monotonically increasing and bounded)
activation function. Each neuron essentially sums
weighted inputs from other neurons to calculate

its new internal activation u;, applies an activation
function to this value, and broadcasts this value

along the connections to other neurons. If the
interconnection weights are chosen carefully, this
Hopfield network is stable and converges to neuron
activation values u* which minimize the quadratic form

E=_%Zzurm,u;—§mu:- 0)

i=1 j=1

B. Optimal Control Problem

The synthesis of an optimal controller using a
Hopfield neural network is presented to illustrate the
feasibility of using a neural network for the missile
guidance problem. This involves posing the missile
pursuit as an LQG control problem and manipulating
it into the Hopfield network form of (2). Consider
minimizing the functional

r
J =Sk Sk, +7 / uluadt 3)
ty
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with the differential equations of motion of the relative
dynamics of the target and the missile given by

Sg =Vr
. @
VR =AT—AM =Ar—u
where
Sr = [X1 — Xy, Yr— Yy|T -
Vi = [Xr — Xu, Yr — Yu]"
and
Ar =[Ar, AR, Ay =[Am,An). ©)

In these equations, 7 is the weight penalty on
the control, Xr, Y7 are components of the target
positions, X, Yy are components of the missile
positions, Ar,, A1,, Aym,, Ay, are components of the
accelerations of the target and the missile in x and y
directions, respectively, and (-) denotes differentiations
with respect to time. The first term of (3) forces the
range distance Sg to be zero at the final time which
gives the intercept. The second term minimizes the
missile acceleration which is directly related to the
amount of propellant expended.

The final time z; is computed as

IR|
where R is the relative range and R is the range rate at
time £.

C. Hopfield Network for Optimal Control

In order to solve this optimal control problem using
the Hopfield neural network, the performance index
J must be formulated as a Hopfield energy function
Jy in the form of (2) so that the network will converge
to a fixed point. This fixed point represents the value
of optimal control. In this section, the necessary
derivation of such a form called the energy function
for the Hopfield network will be carried out.

We can write the final distance, Sg, as

ot
SR, = SR, + VR, (ty —t0) — / / [u(r)— Ar(r)]dr dr.
to Jio

®
The following quantities are now defined:
At = (t; —to)/N
Ua = U(to + aAr), a=01,..,N )
aq = Ar(to + at), a=01,...,N

where N is a positive integer greater than zero.

CORRESPONDENCE

With the assumptions that the Riemann integrals in
J exist, we rewrite Sg, as

N i
Sg, = - lim 37 (e — aa)(Ar)* + Sg, + Vr,NAt.

i=1a=1
(10)
As a result, the product S;/ SR, is

N i ]
Sk e, = Jim STt - aa) (up ~ ag)AD)*

ij=la=1p=1

N i
— Jim (Sk, + VAN D "N " (ua — aa)(B1)

i=1 a=1

N i
i 2
— Jlim 3" > (1a — aa) (A1)’ (Sg, + Ve, AIN)
i=1 a=1
+ (Sky + VryAtN) (SR, + VR, ALN).

(11

Similarly, we can rewrite the integral term in the
performance index as

ty N
T : T
u udt = lim Uglig At
7/:0 N“°°7p§:1: pUp

N

: T
= ngnoo "/At %:1 ualaﬁuﬁ
a,B=

(12)

where
if a#p

0
Inp =
g {szz if a<if<j

_
2><2'—O 1-

We also define
. 0 if a>1i V B8>]
T;’[,={ ' . ﬁ. I
if a<i <]

With the use of these equations, we can define a
performance index Jy as

(13)

(14)
bLyo

N
Iv = (A0 > ullapup
a,f=1

N
+@Aant Y WlThup - aiTsup — ugTypap)]

i,j,a,0=1
N
— (A1YX(Sg, + Vr,AtN)T Z T ua
a=1

N
— (AN Y ul T (Sg, + VR, ALN).

i,a=1

(15)

Note that the terms independent of u have not been
included. In order to place Jx in a final energy
function form that can be used with Hopfield neural
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network optimization, we define Wap and V. These
are

N
Wap = =27(A0)lap —2(A0)* " T2

ij=1

(16)
and

N
Vo = (A1) 2 [ang;{X +T,)a5]
i,j,8=1

N
+ (A1)’ (S, + VR, AtN)T S T2,

i=1
N .
+ (A0)* Y T (Sr, + VR, ALN). (17)
i=1

With these variables, the performance index can be
cast in a Hopfield form as

N N
1
Iy = _Ea%; ul Wopups — §Vaua. (18)

Now the optimal control problem is to find u}, for
each ¢, to minimize Jy.

Since the target maneuvers a, are unknown a
priori, current best-guess estimates are continuously
determined and used for these values. The optimal
control problem is solved at each time instant during
the actual pursuit, with time ¢ varying from the current
time £ to the current estimate for the intercept time ty
and with the initial parameters, range Sgo and range
rate Vg set to the current values of the target and
missile. Herein lies the advantage of formulating the
optimal control problem as a Hopfield network. In
order to continuously solve and update the control
problem in real time during the pursuit and intercept
a very fast computational device is required. Tank
and Hopfield {13] have shown that analog circuits can
be constructed which perform a “massively parallel”
implementation of a minimization of Jy. In addition,
other hardware is available which implement Hopfield
type networks at the speeds required.

D. Convergence of Hopfield Network

It is important to ensure the convergence of the
network at all times during any scenario. The network
weights are shown to be bounded, and if the time
step is chosen small enough, then by the use of a
contraction mapping theorem from point set topology,
the network is shown to converge to a stable fixed
point (16, 17].

THEOREM For a fully connected recurrent network
composed of n artificial neurons with activation
dynamics

WA = Z Wiif () + Vi
j=1

290

(19)

where f is a bounded, continuous, differentiable, and
real-valued function on the real line with bounded
derivative; if

L1
Fnaxllwij] < €7 < (20)

for all i,j then the network converges to a unique fixed
point for any initial conditions.

PROOF. Let & map R” to R" such that

2(w) = {yi}ia
- ey
Yi=Y Wiif(u))+Vi.
j=1
Then the network of (19) can be written as u/t4! =

®(u'). The product space R" is complete with the
topology of the metric

dix,y)=) lxi-yl, %yE€R.. (22
i=1

The idea here is to show that & is a contraction
mapping so that there exists a unique fixed point by
the use of contraction mapping theorem [18].

For arbitrary choices of x, z in R"

n

d(@(x),®(2)) =)

i=1

S Wiif(u) + Vi

j=1

=N Wif(z) - Vi

j=1

DN U faal Wil — 2l (23)

i=1 j=1

by using the Lemma below. If the condition of (20)
holds then

d(@(x),®(z)) < (Z c*) DIk -zl < Cd(xjyz))

i=1 j=t
24

where

n
C=>C<1 (25)
i=1
By the contraction mapping theorem, the network
mapping ® has a single fixed point x* such that u* =

o).

LEMMA  For any bounded, continuous, differentiable
and real valued function f on the real line, with
bounded derivative:

F &) = O < fmaxllx =y, forall x,y€R.

26)
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PROOF. This is a direct result of the Law of the Mean
[19]. Let x, y belong to R. Then by the law of the
mean, there exists a z in [x,y] such that

ey = LF)—FO)
@)= =y 27)
That is,
IfF @) = FOIF @E =D < famullx =yl (28)

where
fmax = limsup|f’(x)|.

PROOF OF CONVERGENCE OF HOPFIELD NETWORK.
In order to prove that the Hopfield network yields

a converged solution at each point, note that the
Hopfield network dynamics are governed by the
equation

N
Ua =Y Wapf(up) +Va
p=1

where f is the sigmoid activation function. The weights
of the Hopfield network are given by (16) as

N

29)

Wap = —27(AD)ap —2A1)* S T (30)
i,j=1
By using (13) and (14), we can show that
~Wap < 27(A) Ly + 2 AN hya.  (31)
If
. 1/2 1/2 /4
A
'< "‘“‘{ 212N’ (2N2f,:m(2N))
(32)
then,
1/2 1/2
~Wap < AaxZNIZX2 + f,;,,,(ZN)IzXZ' (33)
That is,
1
—Wap < mbx% (34)

Since there are 2N neurons in the network, the
magnitude of each scalar weight which is a component
of Wyg is strictly bounded above by

1
fnax2N

then by the theorem above, the Hopfield network
converges to a stable fixed point.

(35)

lll.  NUMERICAL EXPERIMENTS

Numerical results from using the Hopfield
formulation for optimal control are presented in this
section. The numerical results from a simple example

CORRESPONDENCE
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Fig. 1. Trajectories of missile and target. (AAY = 60°, BAY =0°,

range = 7000 ft.)
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Fig. 2. Trajectories of missile and target. (AAY =60°, BAY =0°,
range = 3000 ft.)

are presented in Table 1. The initial conditions for the
target have been assumed (in a normalized way) as
0.1 and 0.1 for positions and 1 and 0 for velocities,
respectively. The target is assumed nonmaneuvering,
The initial missile positions and velocities are zero.
The output in Table I shows the time histories of the
components of the relative range between the target
and the missile. It can be observed that the missile
intercepts the target. Engagement histories for various
launch geometry of the target and the missile are

also considered. The constraint velocity target and
the missile are both assumed to have an initial Mach
number of 0.9 at an altitude of 10000 ft. For initial
ranges of 3000 ft and 7000 ft for different velocity
directions, the missile and the target trajectories are
presented in Figs. 1-5. It can be observed that the
missile intercepts the target in all the cases considered.
For more realistic cases, however, constraints on

the capabilities of the missile have to be included.
However, this should not present a problem in the
utilization of the Hopfield neural network for use in
guidance problems.

IV. CONCLUSIONS

A Hopfield neural network formulation of an
optimal guidance problem is presented. The numerical

291




10 Y Coordinate (ft) (Thousands)

s
6 wl‘w‘ w‘
4 - ww
L™
2 Ly*] aal
ww‘

0 05 1 16 2 25 3 35 4 45 § 55
X Coordinate (ft) (Thousands)

6 85 7

—— target trajectory

Fig. 3. Trajectories of missile and target. (AAY = 0°, BAY =40°,
range = 7000 ft.)

~¥— missile trajectory

Y Goordi

(1) (Th ds)

¢ 1 2 3 4 5 6 7 8
X Coordinate (ft) (Thousands)

— target trajectory —*— missile trajectory

Fig. 4. Trajectories of missile and target. (AAY = 60°, BAY =40°,
range = 7000 ft.)

10 Y Coordinate (ft) (Thousands)

M"“"‘M

[+] 0.5 1 15 2 2.5 3 3.5 4 4.6 5
X GCoordinate (ft) (Thousands)

~=— target trajectory = —* missile trajectory

Fig. 5. Trajectories of missile and target. (AAY = 150°,
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results indicate that this method is promising. It should
be noted that in the Cartesian coordinate system,

a conventional LQG formulation gives an explicit
control law. However, many studies have brought
out the superiority of the polar coordinates where
measurements are linear functions of states. In such
formulations, if the nonlinear equations of motion
are used, the control law will not be explicit and

will involve iterative computations. In such cases,
Hopfield nets can be a good alternative. Since the
neural networks involve parallel computing, effective

TABLE 1

Histories of Relative Range Components with Time

Initial Target Position (.1,.1) Vel (.1,.0)

Target Acceleration = (.0,.0)

Initial Missile Position (.0,.0) Vel (.0,0)

HOPFIELD

TIME XRANGE YRANGE
0.05 0.09956 0.10402
0.10 0.09872 0.10714
0.15 0.09754 0.10944
0.20 0.09605 0.11102
0.25 0.09430 0.11192
0.30 0.09233 0.11224
0.35 0.09017 0.11202
0.40 0.08784 0.11133
0.45 0.08539 0.11022
0.50 0.08283 0.10875
0.55 0.08018 0.10696
0.60 0.07747 0.10489
0.65 0.07472 0.10259
0.70 0.07194 0.10008
0.75 0.06915 0.09742
0.80 0.06637 0.09461
0.85 0.06360 0.09170
0.90 0.06085 0.08871
0.95 0.05814 0.08565
1.00 0.05547 0.08256
1.05 0.05283 0.07942
1.10 0.05024 0.07625
1.15 0.04769 0.07305
1.20 0.04516 0.06981
1.25 0.04268 0.06654
1.30 0.04022 0.06324
1.35 0.03779 0.05991
1.40 0.03539 0.05656
1.45 0.03302 0.05318
1.50 0.03066 0.04978
1.55 0.02833 0.04636
1.60 0.02602 0.04292
1.65 0.02373 0.03946
1.70 0.02145 0.03599
1.75 0.01918 0.03251
1.80 0.01692 0.02902
1.85 0.01466 0.02553
1.90 0.01241 0.02204
1.95 0.01015 0.01855
2.00 0.00789 0.01505
2.05 0.00564 0.01156
2.10 0.00338 0.00807
2.15 0.00112 0.00458
2.20 -0.00113 0.00109

use of computer time is an additional incentive in its
implementation.
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Errata “A Series Representation of the Spherical
Error Probability Integral”

The following changes should be made to
correct errors in [1]. The author apologizes for these
inaccuracies.

In Eq. 5 and the immediately following equation,
change (z —z71/2i)? to ((z — z~1)/2i)%.

In Eqgs. 16 and 17, change (4m +2n +1/2) to
(4m +2n+1)/2.

In Eq. 19 delete the = to get the product of the
constant term and the series

e m o ,6" 00 51

Between Eqgs. 21 and 22 change a™ to ™.

In Eq. 24 change eq,€p,e¢ 10 €4,€5,€¢ TESPECtively.

In the equation for dF/dz following Eq. 28,
change (R? — z% — y?/02) to (R? - z% — y?)/02 in the
exponential. Make the same change in the exponential
in the inequality following the equation for dF/dz.

In the 7y, equation following Eq. 29, change the
product 4./ to a fourth root to get

S 40,0y
min 903
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