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A new set of potential energy surfaces for HCO: Influence of Renner-Teller
coupling on the bound and resonance vibrational states

Steve Alexandre Ndengué,1 Richard Dawes,1,a) and Hua Guo2
1Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131,
USA

(Received 13 May 2016; accepted 1 June 2016; published online 22 June 2016)

It is commonly understood that the Renner-Teller effect can strongly influence the spectroscopy of
molecules through coupling of electronic states. Here we investigate the vibrational bound states
and low-lying resonances of the formyl radical treating the Renner-Teller coupled X̃2A′ and Ã2A′′

states using the MultiConfiguration Time Dependent Hartree (MCTDH) method. The calculations
were performed using the improved relaxation method for the bound states and a recently published
extension to compute resonances. A new set of accurate global potential energy surfaces were
computed at the explicitly correlated multireference configuration interaction (MRCI-F12) level and
yielded remarkably close agreement with experiment in this application and thus enable future studies
including photodissociation and collisional dynamics. The results show the necessity of including
the large contribution from a Davidson correction in the electronic structure calculations in order
to appreciate the relatively small effect of the Renner-Teller coupling on the states considered
here. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954374]

I. INTRODUCTION

The formyl radical (HCO) is an important intermediate
for chemical mechanisms in hydrocarbon combustion1,2 and
atmospheric chemistry.3 The H and CO constituents are
also, respectively, the most abundant atom and second most
abundant molecule in the interstellar medium (ISM). As such
the description of the H–CO interaction is of particular interest
in astrophysics and astrochemistry since the rovibrational state
populations and state-to-state transfer rates following inelastic
collisions of these constituents are very sensitive to the details
of the interaction.

HCO and its isotopologue DCO have been extensively
studied since the early 1960’s both experimentally and
theoretically. There are several aspects to its low-lying PESs
that give rise to interesting and complex, yet somewhat
tractable dynamics. Having only three nuclear degrees of
freedom and 15 electrons makes it accessible to high-level
electronic structure methods. The dissociation energy (D0) to
ground state H + CO fragments is 5083 ± 8 cm−1 according to
the latest ATcT database4 which has overlapping uncertainties
with a recent measurement by Zhang of 5060 ± 20 cm−1.5

Given the light mass of the H-atom, there are only a few bound
states (see Table III). However, due to an avoided crossing
with an excited electronic state, there is a pronounced barrier
in the entrance channel of the adiabatic ground state PES, of
about 1140 cm−1.6,7 One consequence of the barrier is that it
contributes to a considerable number of Feshbach resonance
states. These have been used as a benchmark for several
theoretical methods developed to compute resonances.8–12

The equilibrium geometry on the ground X̃2A′ electronic state

a)dawesr@mst.edu

is bent but becomes degenerate with the low-lying excited
Ã2A′′ state (T0 = 9294 cm−1) at linear geometries, together
forming a Π-state. The two states interact through the Renner-
Teller (RT) coupling mechanism which is strongest near
linearity. Since the equilibrium geometry is linear for the Ã2A′′

state, photodissociation via UV excitation from the ground
state produces highly rotationally excited CO products.13–15

Moreover, likely due to quantum interference effects induced
by the topographies of the coupled PESs, oscillatory structure
is imposed on the inverted product rotational state distribution
envelope. The X̃2A′–Ã2A′′ state degeneracy also occurs for
linear geometries of HOC, but at higher energy, and a hanging
minimum exists for a bent HOC structure on the ground
electronic state. The energy of the HOC minimum is above
the H + CO dissociation limit and even above the Ã2A′′

state minimum. Some harmonic frequencies for HOC have
been published at the coupled-cluster level,16 but in a more
rigorous treatment, they would be seen only as localized
resonance states and also subject to significant effects due to
RT coupling. Scattering of H + CO involves some rather
interesting dynamics and has been the subject of recent
studies (so far neglecting the coupled Ã2A′′ state).7 Since
the CO bond energy is nearly 90 000 cm−1, rather vigorous
collisions will still ultimately only be rovibrationally inelastic,
but not reactive. The barrier in the entrance channel produces
threshold and resonance effects.

Experimentally, several techniques (fluorescence spec-
troscopy in a matrix or the gas phase, photodetachment
spectroscopy, dispersed fluorescence spectroscopy, stimulated
emission pumping, etc.) have been applied to characterize
the bound and resonance states13,17–23 as well as the product
state distributions in various processes14,15,24–26 (unimolecular
dissociation, inelastic scattering, photodissociation) involving
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the radical. On the theory side, several investigations have
been performed to complement and help interpret the
experimental results.27 In particular, more than 20 years ago,
two groups produced sets of Potential Energy Surfaces (PESs)
to describe the spectroscopy and dynamics of several processes
of interest: unimolecular dissociation, photodissociation,
inelastic scattering, etc. For convenience, we will refer in the
following to the BBH28,29 (Bowman, Bittman, and Harding)
and WKS30–32 (Werner, Keller, and Schinke) surfaces as the
set of X̃2A′–Ã2A′′ surfaces produced by the groups instead
of only the ground state PESs that are usually referred to by
those acronyms, although the BBH excited Ã2A′′ state was
built by Goldfield, Gray and Harding.29 The development of
those PESs occurred during a period of intense experimental
study and so those surfaces were refined on several occasions
to better match emerging experimental data. The earlier BBH
ground state (X̃2A′) surface (which was actually a refined
version of the ab initio PES) produced close agreement with
earlier experimental results (see Refs. 20 and 28) but slightly
worse with more recent results (see, for example, Table I).
Experiments and calculations on the formyl radical have
been shaping each other during the past decades and while
qualitative agreement was reached via the earlier BBH surface,
as commented by Werner et al.,30 quantitative agreement is
preferred to assure realistic interpretation of the dynamics.
Recently, Song et al. made a 3D PES at the coupled-cluster
level focusing on the long range interactions on the ground
state.6

The electronic structure of the HCO molecule is
surprisingly complex and difficulties with convergence were
reported by Werner et al.30 Our goal here is to construct
an accurate enough set of PESs such that the details of
the quantum mechanical treatment of the nuclear motion

TABLE I. Equilibrium parameters (valence coordinates, bohr, and degrees)
and fundamental frequencies of the ground (X̃2A′) and excited (Ã2A′′) states
of the new HCO potential energy surfaces compared with previous results
without consideration of the Renner-Teller coupling.

This work Exp. WKS BBH

X̃2A′

rCH (a0) 2.113 2.125a 2.110 2.116b

rCO (a0) 2.223 2.221a 2.233 2.259b

γ (deg) 124.34 124.95a 124.5 124.5b

νHC (cm−1) 2440.9 2434.5c 2437.2d 2448b

νCO (cm−1) 1862.4 1868.2c 1865.0d 1885b

νbend (cm−1) 1079.0 1080.8c 1079.3d 1104b

Ã2A′′

rCH (a0) 2.014 2.01 2.007e 2.105f

rCO (a0) 2.234 2.23 2.248e 2.258f

γ (deg) 180.00 180.00 180.0 180.0b

νHC (cm−1) 3309.0 3319 3346e 3432f

νCO (cm−1) 1808.4 1812.2 1801e 1808f

νbend (cm−1) 804 805 808e 871f

aReported by Brown et al. (Ref. 46).
bReported by Bowman et al. (Ref. 28).
cExperimental values of Tobiason et al. (Ref. 23).
dCalculations reported by Keller et al. (Ref. 31).
eReported by Loettgers et al. (Ref. 32).
f Results of Goldfield et al. (Ref. 29).

as well as the effects of Renner-Teller coupling can be
meaningfully compared with experiment. Obtaining close
enough agreement between theory and experiment will lend
credibility to interpretations of the non-adiabatic dynamics
of photodissociation and inelastic scattering. As we will
discuss further in this article, the Renner-Teller effect perturbs
various bound and resonance states to differing degrees but
the improved agreement with experiment due to the RT effect
is only appreciated once the PES is highly converged and a
large Davidson correction is included.33

Section II describes our approach to construct a set of
accurate coupled ab initio surfaces for HCO. The method
of dynamically weighted state-averaged complete active
space self-consistent field (DW-SA-CASSCF) calculations,
overcomes previously noted convergence problems with
this system30 and yields a robust and consistent reference
(with correct degeneracies etc.) for subsequent multireference
configuration interaction (MRCI) calculations. However, some
complications are noted due to internal contraction and
Davidson corrections in the MRCI procedure. Following
Sec. II, we will present the dynamical theory, i.e., the
Hamiltonian, and the MCTDH algorithm for the quantum
dynamics calculation and the improved relaxation method
used to compute the bound and resonant states of the
two coupled surfaces. Discussion, conclusions, and future
directions follow.

II. ELECTRONIC STRUCTURE AND PES

An ab initio based PES constructed at the MRCI level
in 1995 by Werner et al. was described in two papers30,31

and the first paper describes a rather complicated multistep
procedure made necessary by issues with the electronic
structure. Seeking primarily to fit the ground state, due to
strong interactions they also included the two lowest excited
X̃2A′ and B̃2A′ states in three state SA-CASSCF (equal
weights) reference calculations, noting that despite testing
a variety of combinations of active spaces and numbers of
states, it was not possible to find an ansatz yielding good
behavior globally (irregularities and lack of smoothness were
encountered). They settled on a procedure that despite a
reduced active space, and slight symmetry contamination,
was deemed acceptably accurate.

Here, to promote convergence, all 18 doublet states (10
2A′, 8 2A′′) formed by combining ground state H, C, and
O-atoms were included in a generalized dynamic weighting
(GDW-SA-CASSCF) procedure34–39 using the full valence
active space (thus the 18 doublet states are degenerate for
three separate atoms). In contrast to the irregularities noted
by Werner et al. the CASSCF convergence was robust and
consistent throughout the coordinate ranges. In particular
the correct degeneracy was obtained at linear geometries.
However, the HCO system still does present two main
difficulties for internally contracted icMRCI calculations,
those coming from (1) internal contraction and (2) the
Davidson correction that was found necessary for quantitative
accuracy (see Table III). The states of HCO except for linear
geometries can be treated in Cs symmetry separated into
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A′ and A′′ species. Due to internal contraction, when two
icMRCI states are computed for one symmetry species (2A′

for the X̃2A′ and B̃2A′ states) and only one icMRCI state for
the other (2A′′ for the Ã2A′′ state), the two 2A′ states will
be slightly lowered in energy, breaking the degeneracy with
the Ã2A′′ state expected in the limit of linear geometries.
For linear HCO, along the rCH coordinate seam, the 2A′ state
(expected to be degenerate) ranged from 106 cm−1 to 150 cm−1

below the 2A′′ state, not only breaks the degeneracy, but the
variation along the seam is such that a constant shift could not
be applied to precisely correct the behavior. Adding additional
reference symmetries to the calculation does not satisfactorily
solve this issue. For HCO, the “brute force” solution of
computing the three states on an equal footing without using
Cs symmetry (only C1) is effective (precise degeneracies were
obtained) and somewhat affordable since there are only 15
electrons.

The second issue is that of the Davidson corrections.33

There are several different Davidson corrections implemented
in MOLPRO.40 In our HCO calculations, the fixed reference
Davidson correction was found to diverge wildly (corrections
of more than 10 000 a.u. were common) in many locations
where the CASSCF reference and MRCI data are sensible and
well-behaved. Here the rotated reference correction based on
the rotated reference energy (assigned to the variable energd4
in MOLPRO) was found to be the most consistent, in terms
of smooth sensible behavior. The magnitude of the correction
was found to be significantly smaller than that of the relaxed
reference correction using the non-rotated reference (the
standard default correction assigned to the variable energd)
at many geometries, especially for the excited states. In the
entire data set (of nearly 8000 points), only five points were
found to have divergent rotated Davidson corrections despite
consistent behavior in the underlying MRCI data. They were
simply identified as the locations of large positive disruptions
(≈10 000 cm−1) in the interpolative fit, and thrown out. In
addition, the rotated Davidson corrected energies for about 30
points caused slight interpenetration (reordering) of the states.
For most of the points this was very slight (<10 cm−1), but
since the data set was fairly large and no one point is essential
to constructing the fit, these points were also removed from
the data set.

Benchmark calculations confirmed the importance of
core-correlation41 for the vibrational frequencies as well as
for the dissociation energy and gaps to excited electronic

states. Since the MRCI calculations were done without
symmetry (to overcome the broken degeneracies that can
be caused by internal contraction), and a large data set was
anticipated in order to accurately represent three coupled
electronic states, a medium sized basis was selected to manage
cost. All-electron explicitly correlated (AE)-MRCI(QR)-F12
calculations with the CVQZ-F12 basis set could be closely
matched with the triple-zeta CVTZ-F12 basis by applying a
constant multiplicative scaling factor of 1.32 to the rotated
Davidson correction. Thus the data for the PES were obtained
at the (AE)-MRCI(Q∗R)-F12/CVTZ-F12 level, where (Q∗R)
indicates scaling of the rotated Davidson correction. To
make PESs for the three X̃2A′, Ã2A′′, and B̃2A′ and states
simultaneously, keeping in mind that the topographies are
significantly different for each state, it was decided to create
a generously large data set in advance, rather than iteratively
“grow” the PES as has been done for other systems.42–45

Typically the automatically determined points depend on
features of the surface and these are different for each state.
Also, it is expected that a diabatization procedure between the
derivative coupled X̃2A′ and B̃2A′ states will be performed in
the future and that is best achieved with data for both states at
each geometry using consistent orbitals. Data such as dipole
and transition moments, as well as matrix elements of the
electronic orbital angular momentum useful for describing RT
coupling, were recorded as well. The behavior of the dipole
moment for each state is shown in Figure 1 along the seam for
linear geometries, illustrating the abrupt switch in character
of the X̃2A′ and B̃2A′ states. In addition to a large set of 6000
points, globally distributed according to a Sobol sequence,
additional batches totaling about 2000 points were generated
adding to the density of coverage near linear geometries (HCO
and HOC) as well as around local and global minima. Initially,
the interpolating moving least squares (IMLS) fitting method
was used to describe the coupled X̃2A′ and B̃2A′ adiabatic
states. Once the five wildly divergent data points (mentioned
above) were removed, consistent fits were obtained (shown
in Figure 2). There, the rCO distance was fixed at 1.18 Å and
surface plots were made in Jacobi coordinates showing the
shape of the PESs as a function of RCO–H and theta. The
degeneracy of the fits at linear geometries and behavior for
small angles was already very good since the ab initio data
itself is precisely degenerate as discussed above, the IMLS
fitting is interpolative, and additional data was adding to these
regions. To make it numerically exact, since the RT coupling

FIG. 1. (at left) Cut through the X̃2A′, Ã2A′′, and B̃2A′ states for linear geometries in valence coordinates. The energies are represented as a function of rCH

with the C–O bond distance fixed at rCO = 1.18 Å and γ = 180◦. (middle) Dipole moments (along the same cut as the energies at left) showing the abrupt switch
in character between the X̃2A′ and B̃2A′ states. (at right) Energies of the Renner-Teller coupled X̃2A′ and Ã2A′′ states are shown for small angles near the
minimum of the degeneracy seam.
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FIG. 2. 2D surface plots of the Renner-Teller coupled X̃2A′ and Ã2A′′

states. The surfaces are represented in Jacobi coordinates as a function of
R and γ with the C–O bond distance fixed at rCO = 2.23 bohr. The seams of
degeneracy are seen for linear geometries on the left (HCO) and right (HOC)
sides of the plots.

is most relevant near linearity, a switching function was added
(only turning on significantly in the last one degree before
linearity), switching both PESs towards their average (and
hence perfect degeneracy). Figure 1 plots the fitted X̃2A′ and
Ã2A′′ states for the last five degrees approaching linearity at
the minimum point on the X̃2A′–Ã2A′′ intersection seam.

We present results below for versions of the PESs with
and without the Davidson correction and RT coupling effects.
Here we briefly note, to summarize some of the features of the
PESs, that results obtained using the best version of the PESs
(including the rotated Davidson correction and the effects of
RT coupling) are very close to experimental values and the
best previous calculations. For example, using the ZPE we
obtain for HCO (2795.3 cm−1 obtained in our calculations) and
the ZPE of CO (1081.6 cm−1) and the value of De evaluated
at 15 bohrs on the PES (De = 6873 cm−1) we obtain a value
for the dissociation energy of D0 = 5159 cm−1 which slightly
exceeds the current ATcT database value of 5083 ± 8 cm−1.
The gap between the lowest vibrational levels on the X̃2A′

and Ã2A′′ states is 9280 cm−1 which is remarkably close to
the experimental value of T0 = 9297 cm−1.46 The minimum
of the Ã2A′′ state potential (relative to the minimum on the
X̃2A′ state) is at 8606 cm−1. This puts the minimum of the
degeneracy seam with the coupled Ã2A′′ state 1733 cm−1

above the asymptote. Due to the X̃2A′– Ã2A′′ degeneracy,
this value also represents the barrier to linearity, which is very
close to the value to 1747 cm−1 reported by Song et al.6 As will
be discussed further below, having an accurate UV excitation
energy in addition to realistic vibrational states on the Ã2A′′

state provides confidence in calculated photodissociation
dynamics. As seen in Table I, the geometric parameters for
both electronic states are very close to experiments and the
best previous calculations. The gap from the minimum on the
X̃2A′ state to the Franck-Condon point above is 17 038 cm−1

although the excitation energy will be less due to ZPE effects.
Finally, the barrier in the entrance channel is found to be
1140 cm−1 which is very close to the value of 1138 cm−1

obtained by Song et al.6 in their careful study of the long
range interaction region of this system.

III. QUANTUM NUCLEAR DYNAMICS

A. Hamiltonian

Vibrational calculations for triatomic molecules including
the influence of the Renner-Teller effect have been reported by
several authors (see Refs. 29, 32, and 47–52 to mention few).

Jacobi coordinates are usually the coordinates of choice for
these applications using either the so-called R-embedding or
r-embedding where the z-axis is described by the H–CO
or C–O vectors, respectively. Using the MCTDH algorithm,
previous studies of nuclear dynamics and vibrational state
calculations for coupled Renner-Teller electronic states
made use of Valence coordinates51,53,54 and also Jacobi
coordinates.48 Here we used Jacobi coordinates in the r-
embedding representation to compute the bound vibrational
states and resonances of the system. To construct the
Hamiltonian, we follow the derivation given by Petrongolo55

and used recently for a study of NH2 by Zhou et al.,47

for example. The total (electronic + nuclear) Hamiltonian
representing the system is expressed in atomic units as

Ĥ = − 1
2µR

∂2

∂R2 −
1

2µr

∂2

∂r2 + T̂rot + Ĥel, (1)

where the R and r coordinates represent the H–CO and C–O
distances, respectively, with µR and µr their corresponding
reduced masses. T̂rot is given by

T̂rot = T̂ ′rot +

(
B + b

sin2γ
− B

)
(L̂2

z − 2 Ĵz L̂z), (2)

with γ the angle between the two Jacobi vectors and the
rotational constants B and b are

b =
1

2µrr2 , B =
1

2µRR2 . (3)

The T̂ ′rot operator has the usual form

T̂ ′rot = (B + b) ĵ2 + B( Ĵ2 − 2 Ĵ2
z − Ĵ+ ĵ− − Ĵ− ĵ+), (4)

with

ĵ2 = − 1
sin γ

∂

∂γ
sin γ

∂

∂γ
+

Ĵ2
z

sin2 γ
(5)

and

ĵ± = −cot γ Ĵz ±
∂

∂γ
, (6)

Ĵ2, Ĵz, and Ĵ± are the squared total angular momentum,
projection of J onto the BF z-axis, and the raising/lowering
operators. L̂z is the electronic angular momentum operator
along the BF z-axis: the x and y components are usually
neglected in the derivation of the equation,29 since the coupling
is only significant near linearity. For the J = 0 case, the
Hamiltonian reduces to the simpler form

Ĥ = − 1
2µR

∂2

∂R2 −
1

2µr

∂2

∂r2 + (B + b) ĵ2

+

(
B + b

sin2 γ
− b

)
L̂2
z + V (R,r, γ), (7)

where ĵ2 and L̂2
z hold the same definitions as earlier and L̂2

z is
replaced by 1 in the calculation since Lz = ±1.

An alternative expression for the Hamiltonian may be
obtained by replacing Ĵz by N̂z in Equations (5) and (6). The
resulting Hamiltonian is then

Ĥ = − 1
2µR

∂2

∂R2 −
1

2µr

∂2

∂r2 + (B + b) ĵ2 − bL̂2
z + V (R,r, γ).

(8)
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However, while for the Hamiltonian written according to
Equation (7) an appropriate basis for the angular coordinate
are Legendre polynomials (associated Legendre polynomials
with m = 0), for the Hamiltonian of Equation (8), associated
Legendre polynomials with m = 1 should be used since for
J = 0, N̂2

z = L̂2
z = 1.

B. The MCTDH algorithm

The Multiconfiguration Time Dependent Hartree56–58

(MCTDH) is an algorithm to solve the time dependent
Schrödinger equation which can be considered as a sort
of time-dependent version of the MultiConfigurational Self-
Consistent Field (MCSCF) method applied to the nuclei.
Within this method the wavefunction Ψ(Q, t) of the system
is written as a sum of products of single-particle functions
(SPFs), forming a time-dependent orthonormal basis set.

The ansatz of the MCTDH wavefunction reads

Ψ(Q1, . . . ,Q f , t) =
n1
m1

· · ·
np
mp

Am1, ...,mp(t)Π f
κ=1ϕ

(κ)
mκ(Qκ, t),

=

M

AMΦM, (9)

where f denotes the number of degrees of freedom of the
system, the AM ≡ Am1, ...,mp denote the MCTDH expansion
coefficients and the configuration or Hartree products ΦM

are products of the SPFs defined in relation (9). The SPFs
are finally represented by linear combinations of time-
independent primitive basis functions

ϕ
(κ)
jκ
(Qκ, t) =

N1,κ
l1=1

· · ·
N1,κ
l1=1

c(κ)
jκl1...ld

(t)χ(κ)
l1
(Q1,κ) · · · χ(κ)

ld
(Qd,κ),

(10)

usually within a discrete variable representation (DVR),59,60

here χ
(κ)
li
(Qi, κ), with the time dependent coefficients cjκl1...ld.

C. The improved relaxation and calculation
of resonances

The improved relaxation method implemented in the
Heidelberg MCTDH package is an MCSCF-like approach
where the SPFs are optimized by relaxation (propagation
in negative imaginary time)61and the coefficients vector
(A-vector) are determined by the diagonalization of the
Hamiltonian matrix evaluated in the set of SPFs. For bound
states calculations, the block improved relaxation version62

is usually used since it is more efficient when computing
multiple eigenstates. The working equations of the improved
relaxation have been presented before58,63,64 and thus are not
repeated here. We recently demonstrated (on the HCO system
using the WKS PES)8 how the improved relaxation method
can be extended to compute resonances and also applied
it to compute some resonances of ozone.65 In short, the
Hamiltonian is simply augmented with a Complex Absorbing
Potential (CAP) and the relaxation no longer occurs in negative
imaginary time but in the complex (1,−1)/√2 direction while

the real part of the propagation is added to ensure that the
wave-packet moves towards the CAP.

D. Details of numerical calculations

The calculation of bound and resonance vibrational states
of HCO (J = 0) was performed as stated earlier in Jacobi
coordinates using the r-embedding. Some calculations using
the R-embedding were also done to check the consistency of
the results. We obtain as expected that except for a tiny overall
shift of the zero point energy for each of the embeddings, the
vibrational energies were identical for the two calculations
(the R-embedding Hamiltonian is obtained by swapping R
and r in Equation (7) or (8)). The X̃ and Ã states potential
energy surfaces were refitted with the Potfit algorithm66,67

implemented in the MCTDH package to obtain the sum-of-
product form convenient for MCTDH calculations. The RMS
error of the fit is small: less than 0.32 cm−1 and 0.16 cm−1

for the X̃ and Ã states, respectively, for all point of energy
less than 4 eV which belong to the range specified in Table II.
In our tests, the Hamiltonians of Equations (7) and (8) were
found to converge numerically to the same results. However,
for vibrational states with amplitude near linearity (which
is the case for most of the states computed for the Ã
electronic state), the singularity introduced by the 1/sin2γ
term in Equation (7) makes that form of the Hamiltonian more
difficult to converge. Equation (8) removes the singularity and
is therefore more convenient for those states. Thus in our
calculations, while the bound and resonance states on the X̃
state were obtained using Equation (7), Equation (8) was used
to obtain results for the Ã state (each using the appropriate
angular basis).

As it was done in our previous paper on HCO resonances8

the SPF basis was increased with increasing energy to better
accommodate the nodal structure of higher vibrational states.
The calculation of resonances proceeds in two steps at it was
described before. First we perform a short time “bound” states
calculation using a real artificial wall to identify states that
are likely to be resonances. Then, for each of those states,
individual CAP-added relaxations were performed and the
positions and lifetimes were obtained for the resonances after
a sufficiently long propagation time (usually several hundreds
of fs). The form of the real repulsive wall, the CAP, and
the optimization procedure that was used for the calculation
was described before8 and a similar procedure was used here.
The results of our calculations are reported and discussed in
Sec. IV.

TABLE II. Parameters of the primitive basis used for the vibrational bound
and resonance states of HCO. Sine-DVR denotes Sine DVR. Leg-DVR are
associated Legendre DVR with m = 0 or 1 for the Hamiltonians represented
as Equations (7) and (8), respectively. The units are bohr and Radians.

R r γ

Primitive basis Sine-DVR Sine-DVR Leg-DVR
Number of points 196 128 128
Range 1.5–10.0 1.5–3.5 0-2π
Size of SPF basis 15–30 10–20 15–45
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IV. RESULTS AND DISCUSSION

In Table III three sets of results for the vibrational bound
states of HCO in the ground electronic state are reported
illustrating the effects of the Davidson correction and RT
coupling: without the Davidson correction (2nd column), with
the Davidson correction (3rd column as described in Section
II), and with the Davidson correction plus the Renner-Teller
coupling (4th column). The values are compared with previous
computations done on the WKS potential31 (5th column)
and experimental results23 (last column). The last two lines
show, respectively, the Mean Absolute Deviation (MAD) and
Root Mean Square Error (RMSE) of the calculations with
respect to experimental values. This table clearly shows the
importance of the Davidson correction to the vibrational state
calculations as the MAD and RMSE are reduced by an order
of magnitude by its inclusion. The subsequent addition of
the Renner-Teller coupling to the calculation for the ground
electronic state improves only slightly the accuracy on average
but more significantly the states with bending mode excitation
(ν2 mode). This behavior is expected since the equilibrium
geometry on the ground state is bent and the wavefunction
only explores towards linearity (where the RT coupling effect
is significant) when there are multiple quanta in the bending
mode.

The HCO(Ã2A′′) is linear at equilibrium, and thus J
= 0,K = 0 vibrational state calculations without the inclusion
of the Renner-Teller coupling gives a progression of states
with “even” bending quanta only, consistent with a linear
molecule vibrational Hamiltonian. When the Renner-Teller
coupling is included, due to its contribution of angular
momentum, we instead observe the “odd” bending mode
progression in the vibrational spectrum. (Consistent with the
linear molecule Hamiltonian, these states are obtained in
J = 1,K = 1 calculations without the RT terms.) In this study,

TABLE III. Comparison of calculated bound vibrational states of
HCO(X̃2A′) with previous calculations31 on the WKS surface and experi-
ments,23 exploring the effects of the Davidson correction and Renner-Teller
coupling. The vibrational modes (ν1, ν2, and ν3) in the first column are,
respectively, the CO-stretch, bend, and CH-stretch.

(ν1, ν2, ν3) No Dav Davidson Dav + RT WKS Expt.

0,0,0 0 0 0 0 0
0,1,0 1106.5 1079.0 1081.4 1079.3 1080.8
0,0,1 1920.0 1862.4 1862.3 1865 1868.2
0,2,0 2167.5 2139.5 2144.7 2139 2142
1,0,0 2548.5 2440.9 2439.2 2437.2 2434.5
0,1,1 3021.2 2937.6 2939.8 2939 2942
0,3,0 3209.2 3178.2 3187.3 3177 3171
1,1,0 3642.7 3477.3 3477.8 3478 3476
0,0,2 3811.5 3701.5 3701.4 3706 3709
0,2,1 4085.8 3993.5 3998.5 3994 3997
0,4,0 4254.2 4188.9 4203.6 4191 4209
1,0,1 4478.3 4306.3 4304.4 4298 4302
1,2,0 4651.9 4479.4 4481.3 4475 4501
1,0,0 4788.3 4572.7 4570.2 4558 4570
0,1,2 4905.9 4773.9 4776.0 4775 4783

MAD 93.7 6.5 5.2 6.4
RMSE 112.4 9.0 7.6 9.4

TABLE IV. Comparison of vibrational states of HCO(Ã2A′′) with the David-
son correction, but with and without the Renner-Teller contribution. The
vibrational modes (ν1, ν2, and ν3) in the first column are, respectively, the
CO-stretch, bend, and CH-stretch. The vibrational states without Renner-
Teller coupling are the origins of states computed for J = 1,K = 1 to permit
comparison with Renner-Teller J = 0,K = 0 calculations (see text).

(ν1, ν2, ν3) Dav Dav + RT (ν1, ν2, ν3) Dav Dav + RT

0,1,0 831.7 803.7 0,11,0 8 561.4 8 532.8
0,3,0 2447.2 2418.8 1,7,0 8 732.3 8 703.7
0,1,1 2636.7 2608.4 0,9,1 8 826.2 8 797.6
0,5,0 4008.7 3980.3 2,3,0 8 853.8 8 825.3
1,1,0 4117.0 4088.5 1,5,1 8 995.9 8 967.3
0,3,1 4238.4 4210.0 0,7,2 9 070.7 9 042.2
0,1,2 4421.1 4392.8 2,1,1 9 096.4 9 067.9
0,7,0 5551.8 5523.3 1,3,2 9 233.8 9 205.3
1,3,0 5695.5 5667.1 0,5,3 9 292.5 9 264.1
0,5,1 5786.9 5758.4 1,1,3 9 432.2 9 403.7
1,1,1 5907.5 5879.0 0,3,4 9 502.0 9 473.6
0,3,2 6009.2 5980.8 0,1,5 9 676.7 9 648.2
0,1,3 6190.5 6162.1 0,13,0 10 029.7 10 001.1
0,9,0 7069.0 7040.5 1,9,0 10 211.4 10 182.9
1,5,0 7226.5 7198.0 0,11,1 10 312.6 10 284.1
0,7,1 7319.0 7290.5 2,5,0 10 349.0 10 320.6
2,1,0 7319.8 7291.4 3,1,0 10 421.7 10 393.2
1,3,1 7475.2 7446.8 1,7,1 10 489.5 10 461.1
0,5,2 7548.3 7519.8 0,9,2 10 566.2 10 537.7
1,1,2 7679.4 7650.9 2,3,1 10 622.1 10 593.6
0,3,3 7764.4 7735.9 1,5,2 10 743.0 10 714.5
0,1,4 7943.5 7915.0 0,7,3 10 804.8 10 776.4

for our calculations on the Ã2A′′ electronic state including the
effects of RT-coupling, we focus on J = 0,K = 0 calculations,
thus obtaining the “odd” progression which is compared with
experiment in Table V. The calculations with RT-coupling

TABLE V. Comparison of J = 0,K = 0 vibrational states of HCO(Ã2A′′) (in
cm−1) computed with inclusion of the Renner-Teller contribution with pre-
vious calculations32 and experiments.13 The values correspond to excitation
from the (0,0,0) vibrational state of the X̃2A′ electronic state. The vibrational
modes (ν1, ν2 and ν3) in the first column are, respectively, the CO-stretch,
bend and CH-stretch. The number in parentheses are the differences from the
experimental values of the 4th column.

(ν1, ν2, ν3) This work Loettgers et al. Expt.

0,1,0 10 089 10 289
0,3,0 11 704 (43) 11 883 (222) 11 661
0,5,0 13 266 (44) 13 445 (223) 13 222
0,7,0 14 809 (50) 14 981 (222) 14 759
0,9,0 16 326 (52) 16 493 (219) 16 274
0,11,0 17 818 (57) 17 983 (222) 17 761
1,7,0 17 989 (54) 18 262 (327) 17 935
0,13,0 19 286 (59) 19 451 (224) 19 227
1,9,0 19 468 (63) 19 689 (384) 19 405
0,11,1 19 570 (56) 19 744 (230) 19 514
0,15,0 20 733 (65) 20 896 (228) 20 668
1,11,0 20 919 (67) 21 138 (286) 20 852
0,13,1 21 030 (64) 21 239 (273) 20 966
1,13,0 22 344 (73) 22 600 (329) 22 271
0,15,1 22 469 (72) 22 698 (301) 22 397
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for J = 0,K = 0 only require a single electronic state as
the RT-coupling term in Equation (7) or (8) for this case
amounts to a potential-like term only (no mixing with the
ground state). Thus the J = 0,K = 0 vibrational states on the
Ã2A′′ electronic state are bound states with infinite lifetimes.
The vibronic states and resonances for K > 0 (involving
the two electronic states) are relevant to photodissociation
processes and will be presented in a forthcoming publication.
Here, for the Ã2A′′ state, in order to show the impact
of the Renner-Teller effect on the vibrational states, we
compare the vibrational band origins of J = 1 calculations
without the RT-coupling terms (thus obtaining the odd bend

progression), with those obtained with the RT-coupling terms
for J = 0,K = 0. Table IV presents those results and highlights
the effect of the Renner-Teller coupling on the bending mode
progression.

Table V shows the vibrational states computed with
J = 0,K = 0 with the RT contribution included. The results
are compared with the previous calculations from Loettgers
et al.32 and with the experimental values of Loison et al.13

The absolute excitation energies from the ground vibrational
state of X̃2A′ differ from the experimental values by at
most 73 cm−1 and the spectrum is even better since all
the values are systematically on average about 60 cm−1

TABLE VI. Resonance positions and widths of HCO computed with MCTDH compared to previously reported calculationsa and experiments.b The resonance
positions are given relative to the ZPE of each surface. Note that the level notations follow those of Table III and differ from those of Ref. 8.

Resonance positions (cm−1) Resonance widths (cm−1)

N ν1,ν2,ν3 No RTc With RTd WKSa Experimentsb This workc This workd WKSa Experimentsb

1 0,3,1 5026.4 5035.3 5025.6 5032 2.60 × 10−7 2.58 × 10−7 4.00 × 10−8 <3.00 × 10−1

2 0,5,0 5171.0 5194.2 5177.9 5204 4.18 × 10−7 3.00 × 10−7 2.38 × 10−6

3 1,1,1 5330.6 5330.4 5313.6 5324 1.11 × 10−6 1.41 × 10−6 1.01 × 10−3 <3.10 × 10−1

4 1,3,0 5448.5 5451.6 5439.8 1.83 × 10−4 2.06 × 10−4 1.26 × 10−2

5 0,0,3 5517.2 5517.0 5522.7 5530 7.36 × 10−7 5.88 × 10−7 3.37 × 10−6 <2.30 × 10−1

6 2,1,0 5562.2 5564.2 5560.3 1.45 × 10−3 9.99 × 10−4 5.65 × 10−2

7 0,2,2 5824.8 5829.6 5824.0 5834 6.86 × 10−5 5.60 × 10−4 7.61 × 10−4 6.30 × 10−1

8 0,4,1 6032.2 6046.2 6032.3 6038 2.92 × 10−3 7.79 × 10−3 7.34 × 10−1

9 0,6,0 6118.8 6157.3 6134.9 2.83 × 10−1 1.31 × 10−1 4.35 × 10−2

10 1,0,2 6167.0 6163.6 6150.6 6156 4.52 × 100 4.01 × 100 3.26 × 100 3.50 × 100

11 1,2,1 6317.3 6319.1 6386.9 1.13 × 100 1.20 × 100 2.31 × 100

12 2,0,1 6480.1 6478.4 6477.5 2.91 × 100 3.37 × 100 1.07 × 101

13 1,4,0 6531.9 6539.4 6531.2 2.73 × 100 2.56 × 100 1.59 × 101

14 0,1,3 6586.9 6588.7 6587.4 6598 4.28 × 10−3 4.15 × 10−3 9.84 × 10−2 4.60 × 10−1

15 0,5,1 7008.9 7030.3 7004.2 8.30 × 10−1 1.03 × 100 5.04 × 100

16 0,7,0 7028.2 7097.0 7059.6 2.49 × 10−1 6.06 × 10−1 8.06 × 10−1

17 1,1,2 7170.8 7170.6 7159.1 7166 3.06 × 100 3.29 × 100 7.37 × 100 7.50 × 100

18 2,3,0 7223.7 7231.5 7178.1 2.60 × 101 2.87 × 101 6.75 × 101

19 0,0,4 7309.0 7308.7 7315.0 7323 2.56 × 10−2 2.27 × 10−2 7.83 × 10−2 2.40 × 10−1

20 1,3,1 7328.3 7335.8 7336.4 6.40 × 100 8.33 × 100 1.72 × 101

21 2,1,1 7436.2 7447.3 7439.1 1.43 × 101 9.22 × 100 2.24 × 101

22 1,5,0 7474.9 7487.7 7492.3 5.28 × 101 5.84 × 101 5.79 × 101

23 0,2,3 7633.0 7637.5 7631.6 7643 1.44 × 10−1 1.46 × 10−1 2.39 × 10−1 2.80 × 10−1

24 0,4,2 7853.2 7866.6 7848.5 7854 5.01 × 10−1 6.52 × 10−1 4.72 × 100

25 1,0,3 7966.0 7963.4 7926.6 1.96 × 100 2.19 × 100 1.98 × 101

26 0,6,1 7946.2 7976.9 7963.4 7957 1.04 × 101 2.14 × 101 1.00 × 101 8.80 × 100

27 1,2,2 8167.5 8168.4 8141.3 8156 1.37 × 101 1.34 × 101 2.31 × 101 1.80 × 101

28 1,4,1 8258.7 8273.6 8272.6 1.50 × 101 1.71 × 101 2.38 × 101

29 0,1,4 8368.0 8364.6 8363.4 8390 7.39 × 100 1.07 × 101 1.01 × 101 1.70 × 100

30 0,3,3 8655.3 8663.3 8652.5 8666 2.07 × 10−1 2.20 × 10−1 7.28 × 10−1 3.90 × 10−1

31 0,7,1 8848.1 8893.1 8812.2 4.76 × 101 1.24 × 102 1.07 × 101

32 1,1,3 8993.3 8993.0 8984.5 8988 9.33 × 100 9.40 × 100 1.71 × 101 1.65 × 101

33 0,0,5 9076.7 9076.3 9082.7 9092 4.08 × 10−2 3.85 × 10−2 5.44 × 10−2 1.80 × 10−1

34 1,3,2 9108.9 9113.6 9202.5 4.60 × 101 4.24 × 101 3.24 × 101

35 0,2,4 9419.5 9423.5 9419.7 9431 9.60 × 10−1 8.49 × 10−1 6.03 × 100 1.20 × 100

36 0,4,3 9652.7 9665.2 9644.5 9663 9.49 × 10−1 1.01 × 100 5.26 × 100 1.50 × 100

37 1,0,4 9765.1 9762.6 9749.8 9759 2.18 × 100 2.31 × 100 9.29 × 100 5.00 × 100

38 0,6,2 9759.5 9797.7 9772.8 8.66 × 100 8.66 × 100 6.18 × 101

39 1,2,3 9954.5 9976.3 9992 2.31 × 101 3.59 × 101 4.50 × 101

aCalculations reported in Ref. 8 which compares with results of Refs. 9, 10, 31, and 68.
bExperimental results of Tobiason et al. (Ref. 23).
cCalculations done in this work without including the Renner-Teller coupling.
dCalculations done in this work with inclusion of the Renner-Teller contribution.
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FIG. 3. Probability densities for the bend excited vibrational level (0,4,0)
of the X̃2A′ electronic state showing the effect of Renner-Teller coupling.
The top and middle panels are without and with the RT-coupling, respec-
tively. The bottom panel is the density difference which shows that the
RT-coupling potential-like term, pushes density away from linearity (left side
of plot). The energy is raised into better agreement with experiment see
Table III.

too high. The states span an energy range of 12 500 cm−1

making the level of agreement quite remarkable. In the
previous results by Loettgers et al.,32 the errors are typically
around 225 cm−1 for the (0,ν2,0) progression and around
350 cm−1 for the (1,ν2,0) progression. Thus the results
obtained here with this new potential are substantially more
accurate than those corresponding to the surface used for
the Loettgers et al.32 work. Reproducing both the absolute
excitation energies as well as the spectrum of states places
future studies of photodissociation dynamics on very firm
ground.

We present in Table VI the (J = 0) resonances computed
on the X̃2A′ state. The calculations were done with and
without the inclusion of the Renner-Teller effect. Results
are compared with previous calculations (which compared
well with other calculations)8 done on the WKS surface
and with experimental values from Tobiason et al.23 The
effect of the RT-coupling is most pronounced for states with
many quanta in the bending mode. An effect of RT-coupling
is that probability density is pushed away from the linear
configuration, usually pushing up the energy level of that state.
This is illustrated in Figure 3. Unfortunately experimental
data are lacking for many of the most highly bend-excited
states.

V. CONCLUSION

We present a new set of ab initio Potential Energy
Surfaces for the Renner-Teller coupled ground X̃2A′ and
excited Ã2A′′ states of HCO. The electronic structure
calculations are described for the coupled states and
vibrational bound states are computed for both states. We
also report resonance calculations beyond dissociation on
the ground state surface with and without the consideration
of the Renner-Teller effect in the 5000-10 000 cm−1 energy
range above the ZPE. The calculations yield remarkably close
agreement with experiments, including the absolute energies
(above the X̃2A′ state ZPE) of the spectrum of vibrational
levels on the Ã2A′′ state. The results point to the importance
of the Davidson correction and the need for more robust
and better behaved corrections of this type. Consideration of
the Renner-Teller effect is important to obtain quantitative
agreement with experiment. Features of the ground X̃2A′

are very similar to those recently reported by Song et al.6

The electronic structure is well-enough converged to yield
dynamical results of spectroscopic quality without iterative
adjustment of empirical parameters.

A number of future directions are motivated by past
experimental studies now that a quantitatively accurate PES
for the coupled electronic states is in hand. Photodissociation
and inelastic scattering calculations using the coupled surfaces
to study the rovibrational product distribution are already
underway and will be presented in the near future. Resonances
calculations on the excited Ã2A′′ state using the MCTDH
algorithm are also an interesting avenue as they require
consideration of the coupled surface at relatively high
energies: a problem that is challenging to treat with the
improved relaxation method due to high state densities.
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