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ONLINE IDENTIFICATION AND CONTROL OF AEROSPACE 
VEHICLES USING RECURRENT NETWORKS 

Zhenning Hut S. N. Balakrishnan’ 

Department of Aerospace and Mechanical Engineering 
and Engineering Mechanics 
University of Missouri-Rolla 

Rolla, MO 65409 

ABSTRACT 
Methods for estimating the aerospace system 

parameters and controlling them through two neural 
networks are presented in this study. We equate the energy 
function of Hopfield neural network to integral square of 
errors in the system dynamics and extract the parameters of 
a system. Parameter convergence is proved. For control, we 
equate the equilibrium status of a ‘modified’ Hopfield 
neural network to the steady state Ricatti solution with the 
system parameters as inputs. Through these two networks, 
we present the online identification and control of an 
aircraft using its nonlinear dynamics. 

1 INTRODUCTION 
Recently, a lot of interest has been shown in the 

research of tailless aircraft, aircraft flying at high angles of 
attack and high speed vehicles flying at high mach 
numbers. Since the configurations are novel and the 
operating regimes are unexplored, force and moment 
derivatives are difficult to estimate with good fidelity by 
known codes. Due to the uncertainties associated with the 
modeling of the dynamics, control of these vehicles has 
become a difficult and interesting problem. In this study, 
we solve this problem by using a set of two recurrent 
networks. The first network can estimate or identify the 
parameters of linear and nonlinear systems online and is 
used to identify the stability derivatives of an aircraft. The 
input to the network is the states of the aircraft or a system. 
The second network calculates the time varying gain of an 
optimal controller; the inputs to the second network consist 
of the parameters of the system or the aircraft. These gains 
are used in the feedback control of the aircraft. 

2 TWO RECURRENT NEURAL NETWORKS 
2.1 HOPFIELD NETWORK 

Consider the dynamical model of a Hopfield network. 
The synaptic weights wl 1, wlz , - - - , wl,, , * * *, w, represent 
conductance, and the respective outputs 
v, (t), vZ ( t ) , .  - , v,, (t) represent potentials; n is the 
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number of inputs and outputs. So, for some nodej, define 
the dynamics of the network by the following system of 
first order differential equations 

As C =  diug(c,,c,,.-.,c,,),G = diug(g,,g,,..-,g,,) 9 rewrite 
this equation in a vectorized form as 

d U  
C - = - G U + W V t I  dt 
Assume that the nonlinear function f(.) relating the 
output v j ( t )  of neuron j to its activation potential u j ( t )  

is a continuous function and therefore differentiable and 
that u j ( t )  = fj;’(vj(t)) exists. According to Hopfield’s 
work [5]-[7], the energy function of the recurrent network is 
defined by 

Then differentiate E with respect to time t. For log sigmoid, 
tangent sigmoid and linear activation function the inverse 
output-input relation fil (v ) is a monotonically 

increasing function of the output v j ( t ) .  It can be shown 

that 

(4) 

Thus, we can say the model is stable in accordance with 
Lyapunov’s theorem. 

2.2 MODIFIED HOPFIELD NETWORK 
The modified Hopfield network [l] is a variant of the 

classical Hopfield network. Its dynamical model is shown 
in Figure 1. Compared with classical Hopfield network, this 
modified version give us more variables in different 
locations, thus have more power to handle more complex 
problems. Since it is derived from Hopfield network, the 
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modified Hopfield neural network keeps the characteristic 
of the former. The right side of the modified Hopfield 
neural networks is characterized by outputs 
(bl(t),(b2(t),... ,(b,,,(t) that are transformed by nonlinear 

function f from their states u,(t),u,(t),...,u,(t) ; m is 
the number of outputs of neurons in the right part. 
Conductance wii connects the output of the jth neuron in 
the left part to the input of the ith neuron in the right part, 
which is shown in Figure 1. The superscript r indicates the 
location of weights wji in the right part of the network; n is 
the number of outputs of neurons in the left part. So, by 
Kirchoffs law, 

j =  1,2;**,n 
This is based on the assumption that their inverse exist 

j = 1,2,***m 
(6) 

U,@) = f;’($b,jt)) 

x, ( t )  = gi’(v,(t)) j =  1,2,*.*n 

network’s weights and biases. Convergence of the system 
parameters to their true values is proved. 

3.1 DYNAMIC SYSTEM DESCRIPTION AND 
LINEARIZARION 
Consider a general nonlinear dynamic system that can 

be described in state space form as 

where x is an nxl vector, U is a pxl control input, and 
F(A,x) is a certain kind of nonlinear function that can be 
described as the following forms, 

i =  F ( A , x ) t  Bu (8) 

F(A,x)=  Tf,[a, ,h,(x)] ,  i =  1,2;..,n 
j=1  

(9) 

B = [4]] (11) 
( n x P )  

In F(A, x), each row can have different number of term, 
like q , m , ; - - , m , .  One can pick the longest row, which 

has mk terms. Make other rows also have mk terms by 
adding zeros at the back of each row. Here for simplicity 
but without losing generality, we suppose they all have 
equal number (m) of terms. To identify A and B, which are 
matrices of parameters associated with the system, the key 
point is to get the parameters out of every term. In order to 
realize this transformation, we use a linearization. 

We can linearize the nonlinear expression F(A, x )  about 
an equilibrium point X* as [ 111 

Matrix C will be defined as before, and Eq. ( 5 )  can be 
rewritten as 

(7) C-= - A -  G X -  W L f ( W R g ( x ) -  B )  

It is easy to shown that this modified Hopfield neural 
network is also stable [ 13. 

3 DYNAMIC SYSTEM PARAMETER 

dX 
dt 

IDENTIFICATION 
This section describes a general nonlinear dynamic 

system and a linearization method for its nonlinearity. We 
use it and Hopfield neural network theory to compute the 

j=l 

Here prime denotes differentiation with respect to quantities 
within parenthesis evaluated at X* . 

Each row in F(A, x )  is now a sum of linear terms in x .  
Note, that all the unknown parameters appear as 
coefficients of the terms in F(A, x). Now, we will relate 
F(A,x) to the energy function and weights of the neural 
networks. 

Figure 1 Modified Hopfield Neural Network 
3.2 COMPUTATION OF WEIGHTS AM) BIASES 

The error dynamics between the plant and the model 
with unknown parameters are given by 

(13) 
The subscript “s” denotes the system containing estimated 
parameters. The energy function of the neural network is 
defined as 

e (A ,B ,x )  = x- F, (A,x) -  B,u 

where Tis time period during which data are collected. 
The equilibrium point for the energy function occurs 

when the partial derivatives GEIJA,, GE/c;S, are zero. The 
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derivatives of the energy function E with respect to 
parameters av and bv are given by 

............... (15) 

k = l  

................. (16) 

(17) 

And Gj = [gjl,gj2,.-*,gjm]T (18) 
Note that in terms of Gj, the linearized model 

Define V as [2-41 

v = [a1 ,,'" a,,,., *,a,, ,. -am,bI1,*~ *b,p,-.  .b" ,,..'bJ 

representation becomes 
xi = ATG, + B;u 
where Ai , Bi represent the transpose of ith row of A and B 
respectively. 
We can write the parameter identification formulation as 
-- d E - W V t l  
dV 
where W (weight) and I (bias) are set as following, 

(G,G:) o ... o @,U') o ... 0 
o (G,G:) ... 0 0 (Cp') ... 0 

0 ... (uGT) 0 0 ... (uu') : I  
............. (21) 

I = -?lo [(ilG:) (i&) ... (XoGT) (X,u') (%U') ... (x$)rdt 

(22) 
Now, we will relate this formulation to the dynamics of a 
Hopfield neural network. The network dynamics can be 
written in the following form [8] 

1 '  

............ 

In order to find the expression for p, we choose tangent 
sigmoid as our nonlinear activation function, as 

(24) 
and rewrite Eq. (4) to get 

(25) 

vi = f ( U l )  = p(1- e-"l"l)/(l+ e-"l"') 

dvj/dt = - &(p2 - vf)/(2pj).dE/dvj 

pj = &(P* - v j z ) / ( 2 ~ j )  (26) 
Comparing E@. (23) with Eq. (25), we observe that 

and p = dag[/*, & .-. P,,,,,+"~ 1 . 
3.3 CONVERGENCE ANALYSIS FOR TIME- 

INVARIANT PARAMETERS 

Let us define identification error between true values 
and identified ones as 

where subscripts A and B denote correspondence with A 
and B matrices and p and s show correspondence with plant 
and 'estimated' values. We define a cost function as 

1 T  
J = -lo .,'ep dt = J ,  t J ,  

2T 
where 

(30) 

T is the sampling period. Then the derivatives of the cost 
function with respect with time, 

1 
J B  = -l,'('Bp 2T - vBs)T(vBp - ' B J )  dt 

dJAi= l I T ( V A i p  - VA$ 

- = -/'(v,@ - VJ 

(31) dt T 0 

.[ $~:[(G~G:).(V~~ - VAip)+ (Gid)*(VBk - VBiP)kr] dr 

Similarly for B matrix, 

dt T 0 (32) 

.{ ~ ~ : [ ( u G ~ ) . ( V A i S  - VAip) t (uuT):(VBk - VBiP))r} dr 

And the combined row cost function thus is 

dt dt dt 

T 

--- - &Ai +dl, 
(33) 

= --Jor(Mt 1 N t  P t  Q) dt 

Note, M, N, P and Q are all scalars. Each is expressed as 
M =  (VAb-VAk) ~ ~ ~ o T ( G i G ~ ) ~ ( V A i p - V A ; s )  P dt (34) 

P =  (VAb - VAi,)T.yjT(GiuT).(VBb T O  - VBk) dt (36) 

Q =  (V~ip-V~~)r."""?.~'(~G~).(VAi,-VAk) T o  dt (37) 

Before the steps continue on, let us do some algebraic 
operations. 
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Then, = lPl= (39) 

(40) 

Since it is well known that M t N - 2 m  1 0 ,  then 

From Eq.(33), it is clear 
M t  N t  P t Q 2  M t  N - ( l d t l d ) > O  

dJi/dt I 0 (41) 

Thus #/dt = dli /dt  I 0 (42) 
n 

i=l  

This means that the energy function of Hopfield neural 
networks for time-invariant identification acts like a 
Lyapunov function. Its dynamics will drive the 
identification error to zero. A =  

B =  

4 SYSTEM PARAMETER ESTIMATION 
Most of the time, all states are not available as the 

measurements are noisy. Let us consider a 9-variable 
nonlinear dynamic system [9-lo]. Due to its nonlinearity 
and its over one hundred parameters, it is very difficult to 
estimate its parameters correctly. 

(43) x( t )  = Ax t But F ( x )  t w(t )  

--0.0090 05301 -0.2283 -9.8 -0.4638 -0.0946 -0.1397 
-0.0010 -0.6928 1.0138 0 0.1236 0.0388 0.0051 
0.0002 2.6757 -05180 0 0.0088 0.0062 0.0302 
0 0 0 0 0 0 0  

-0.0010 0.6743 0.4375 0.1502 -0.6925 0.0853 -0.1575 
O.ooOo2 1.1017 0.0427 0.0065 -26 -4.8231 05438 
O.ooOo1 -1.6894 0.0984 0.0099 7.4 -0.0366 -0.8061 
0 0 0 0 0 0 0 
0 0 0 0 0  0 0 

0.0950 0.0921 0.0448 -0.0454 -0.0692 -0.1286 
-02821 -02806 -0.0078 -0.0073 0.0060 0 

-24.9978 -25.0001 -05885 -05919 35045 0 
0 0 0 0 0 0 

0.0174 -0.0155 -0.3607 0.3591 0.0871 -0.0493 
-0.2369 0.2402 -9.7762 9.7819 0.2656 -0.3714 
0.3814 -0.3798 0.1904 -0.1905 05202 -4.6001 

0 0 0 0 0 0 
0 0 0 0 0 0 

F ( x )  = 

0 
- p cos a tan fl-  r sin a tan f l  

qcosg)- rsing) 
ps ina-  rcosa 

C 3 1 P  t c 3 2 ( r 2  - P 2 )  

'61qP '62qr  

' 7 1 w  - ' 7 2 q r  

q tan Bsin g) t r tan BcosQ 

q cos-' Bsin g) t r cos-' ecos 4 
In order to make the problem more realistic, we use the 
estimated states based on measurements. 

We use an extended Kalman filter that contains a zero mean 
process noise w(r) .with an associated power spectral 
density. Both of these two noise sources are represented by 
gaussian noise w(t) and v(t) respectively have 0 mean and 
their magnitudes are 5% of the state x and magnitude of 
measurement z' respectively. Following Kalman filter 
theory, it is easy to compute that 

z(r)=x(r) + v(r) (44) 

X = i  

F ( i ( t ) , t )  = (45) 

And H(i ( t ) , t )  = ZgX9 (46) 
A stochastic noise is used as input to stimulate the network. 
Because of the nonlinear structures, a batch method is also 
used, which means if the parameters do not converge after 
one iteration, the final values are picked up as the initial 

values for the next iteration. All parameters converge to 
their true values after 1 to 3 batches. The estimated A, B and 
C final values are provided below. Most of the errors 
between true values and the estimated ones are around 5%. 
Two parameters showed less than lo%, and five more than 
10% errors. A deterministic case showed less than 3% error 
in all parameters. These exceptional are due to the noised 

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

0 0 1.0774 0 0 0.0224 -0.7122 0 0 ' 
0 0 0.0136 0 0 -1.4403 0.0312 0 0 1 c= [ 

5 OPTIMAL CONTROL USING RECURRENT 
NEURAL NETWORK 
The second major and important component of this 

study is the control of this aircraft with the parameters 
identified online. This section will show how a modified 
Hopfield neural network can be programmed to suit the 
optimal control and. its weights and biases of recurrent 
network are determined. 

5.1 CONTROL THEORY FORMULATION 
Consider a class of infinite-horizon nonlinear regulator 

problem of the form. Minimize 

(47) 
1 -  

J = -1 (x'Q(x)xt u'R(x)u)dt 
2 '0  

with respect to the state x and control U subject to the 
nonlinear differential constraint 
i = f(x) t g(x)u (48) 
where X E  R", U E  R", f ( x ) ~ C ' ,  g(x)E Ck, Q(x)E C k ,  
R ( X )  E c' , Q(x) = C(X)~C(X) 0 and R(x)>O for all x. It is 
well-known that the nonlinear dynamics Eq.(48) can be 
represented by the following linear structure having state- 
dependent coefficient: 
k = A(x)x t B(x)u (49) 
where 
f<x> = A(x)x  B ( x )  = g(x) (50) 
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The SDRE approach [l] for obtaining a sub-optimal 
solution of Eq.(47) , (48) is: 
1. Use direct parameterization to bring the nonlinear 

dynamics to the form in Eq.(49). 
2. Solve the state-dependent Ricatti equation 

A'(x)St SA(X)- SB(x)R-'BT(x)S+ Q(x) = 0 (51) 
to obtain s s 0 .  Note that S is a function of x. 
Construct the nonlinear feedback controller via 3. 

Let the plant to be controlled be described by the linear 
equation with performance index defined in the time 
interval [i, NI. This procedure will finally lead to the control 

where the Kalman gain K, is given by 

U = -R-'(x)B*(x)S(X)x (52) 

U, = - K,x,, k < N (53) 

(54) 
In terms of the Ricatti variable S, , now 

(55) 
In the application where the control interval is finite, s, 
will be given. By alternative use of Eq.(54) and ( 5 3 ,  we 
will get a series of Kk . The gain matrix K, will generally 
be time-varying even when the matrices Ak , B k ,  Q, and 
Rk are all constants. 

' k  = (8: 'k+IBk ' Rk)-lBlsk+lAk 
4 = A;Skt1(4 - BkKk)+ Q, 

0 
- x6 cos xz tan x, - x7 sin x2 tan x5 

c31x6x7 c32 (x; - 
xg cos x8 - xl sin x8 

f =  Axt But xa sin x, - x, cosx, 
c61x3x6 ' c62x3x7 

c71x3x6- c12x3x1 

x3 tan x4 sin x, t x7 tan x, cos x, 

x~(cosx.,)-~ sinx, t x,(cosx4)-1cosx8 

5.2 MODIFIED HOPFIELD CONTROLLER GAIN 
IMPLEMENTATION 
In order to get closed form expression for the 

converged values of the networks, we assume small signals 
and that work in the linear region of the amplifiers. These 
assumptions are reasonable because neural network signals 
are usually normalized. For those big signals log sigmoid 
and tangent sigmoid will limit their output magnitude and 
their effects are localized and will not be propagated. 

Assume the nonlinear activation functions f and g 
uniformly take the form of a tangent sigmoid. Then, the 
equilibrium points are given by 

(58) 

A'(x) = 

a 2 1  

a 3 1  

a 4 1  

a51 

a 7 1  

a 8 1  

a 9 1  

a61 

a22 

'32 

lL42 

'52 

'62 

'72 

a92 

'23 

a33  

a43 t cosx, 

a53 

'63 "6Ix6 ' c62x7 

a73 ' '7Ix6 - c72x7 

aE3 t tan x4 sin x, 
sin x, 

a 9 3  + - cos x4 

a24 

a 3 4  

a44 

as4 

a64 

a 7 4  

a84 

a94 

'25 

a 3 5  

a 4 5  

as5 

'65 

a 7 5  

'SS 

a95 

(56) 

v = k , x  = [WLWR t G/~,~,]'(wLB- ~ p , )  (57) 

The modified Hopfield networks contain both invariant 
and variable parameters. Invariant parameters are fixed in 
the neuron-computing model, while variable parameters can 
be modified. By comparing Eq.(54) and (55) with the stable 
output of the network Eq.(57), if we set w L =  B ; S , + ~ ,  
W R  = Bk , - G/k,k, = R,,  B = A, and A=O, the network 
will give us the Kalman sequence. As we know, it is not 
difficult for the circuits to achieve the multiplication of two 
signals. 

The advantage of modified Hopfield neural network 
when it is applied to control problems, is that system 
parameters can be represented as inputs to the network. So, 
for nonlinear system, once we can find the system 
decomposition, which is similar to linear system, then the 
modified Hopfield neural network also can be used in 
implementing nonlinear optimal control. 

this equation into a 'linear' form as 
k = A'(x)x t Bu 
where 

'16 

ax - cosx, tanx, 

'36 ' '3Ix7 - c32x6 

a46 

a,, t sin x2 

a66 

'76 

a86 

a, 

a17 

a27 - sin x2 tan xs 

u47 - sinx, 

a,, - cosx2 

'37 ' c32x7 

'67 

a 7 7  

as, t tan x4 cosx, 
cosx, 

a 9 7  + - cos x, 

(59) 

a18 

'28 

'38 

'48 

'SS 

'68 

'78 

'98 

'19 

a29 

a 3 9  

a 4 9  

a59  

a69 

a 7 9  

a99 
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The matrices elements of A, B and C have all been 
identified. We assume 

Its control and state trajectories are plotted in Figure 2 and 
Figure 3 separately. 

Q =  I,, R =  I , .  [31 

Control lnpul 141 

0 5  

04  

0 3  

02  

0 1  

0 

-0 1 

-02 

-0 3 

-0 4 

-0 5 

I I 
Time (-) 

Figure 2 History of control with time 
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States 
3 

2 

1 

0 

-1 

-2 

10 12 
3 

Time ( m d )  

Figure 3 State trajectories with time 

6 CONCLUSIONS 
Our study shows that recurrent networks can be used 

successfully for online identification and control of 
complex nonlinear systems. Due to the parallelism of 
neural networks, our method may be attractive for 
implementation. 
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