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Issues on Stability of ADP Feedback
Controllers for Dynamical Systems

S. N. Balakrishnan, Member, IEEE, Jie Ding, and Frank L. Lewis, Fellow, IEEE

(Invited Paper)

Abstract—This paper traces the development of neural-
network (NN)-based feedback controllers that are derived from
the principle of adaptive/approximate dynamic programming
(ADP) and discusses their closed-loop stability. Different versions
of NN structures in the literature, which embed mathematical
mappings related to solutions of the ADP-formulated problems
called “adaptive critics” or “action-critic” networks, are dis-
cussed. Distinction between the two classes of ADP applications
is pointed out. Furthermore, papers in “model-free” development
and model-based neurocontrollers are reviewed in terms of their
contributions to stability issues. Recent literature suggests that
work in ADP-based feedback controllers with assured stability is
growing in diverse forms.

Index Terms—Adaptive/approximate dynamic programming
(ADP), feedback controllers, neural networks (NNs), nonlinear
control, stability.

I. INTRODUCTION

DYNAMICAL systems are ubiquitous in nature and in-
clude naturally occurring systems such as the cell and

more complex biological organisms and man-made systems
such as automobiles, aircraft, missiles, and retail inventories.
von Bertalanffy [10] and Whitehead [54] were among the first
to provide a modern theory of systems at the beginning of the
century. Three components that define a system are its outputs
that can be measured, inputs to it that can be manipulated,
and its internal dynamics. Feedback control develops suitable
control inputs, based on the difference between observed and
desired behaviors, for a dynamical system such that, with time,
the observed behavior reaches a desired behavior prescribed by
the user. All biological systems employ feedback for survival,
with even the simplest of cells using chemical diffusion based
on feedback to create a potential difference across the mem-
brane to maintain its homeostasis, or required equilibrium con-
dition for survival. Volterra was the first to show that feedback is
responsible for the balance of two populations of fish in a pond,
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and Darwin showed that feedback over extended time periods
provides the subtle pressures that cause the evolution of species.

There is a large and well-established body of design and
analysis techniques for feedback control systems, which have
been responsible for successes in the industrial revolution, the
ship and aircraft design, and the space age. Most of these tech-
niques, such as classical design methods, multivariable con-
trol, linear quadratic regulators, robust control, and H-infinity
control, are based on linear systems theory. Nonlinear design
approaches include nonlinear optimal control, adaptive con-
trol, sliding mode control, backstepping control, and others
[24]. Feedback control synthesis is further complicated due
to unknown dynamics, modeling errors, and various sorts of
disturbances, uncertainties, and noise. This, coupled with the
increasing complexity of today’s dynamical systems, creates
a need for advanced control design techniques that overcome
limitations on traditional feedback control techniques.

In recent years, the field of biologically inspired control is
growing where the feedback control systems mimic the func-
tions of living biological systems. Ideas from swarm behavior,
immune systems, and brain functions have found their way to
optimization and control. Theory and applications of nonlinear
neural networks (NNs), which embed brainlike structures in the
field of feedback control, have been well documented [27], [28].
It is generally understood that NNs provide an elegant extension
of adaptive control techniques to nonlinearly parameterized
learning systems.

II. NN FOR FEEDBACK CONTROL

NN literature on feedback control is already large and in-
creasing at a rapid rate. The use of NNs in feedback control
systems was first proposed by Werbos [50]. Since then, NN
control has been studied by many researchers. Recently, NN has
entered the mainstream of control theory as a natural extension
of adaptive control to systems that are nonlinear in the tunable
parameters. The state of NN control is well illustrated by
papers in the Automatica Special Issue on NN control [32].
Overviews of the initial work in NN control are provided by
Miller et al. [30] and the Handbook of Intelligent Control [53],
which highlighted a host of difficulties to be addressed for
closed-loop control applications. Note that NN applications in
closed-loop control are fundamentally different from open-loop
applications such as classification and image processing. The
basic multilayer NN tuning strategy is backpropagation [49].
Basic problems that had to be addressed for closed-loop NN
control [51], [52] included weight initialization for feedback

1083-4419/$25.00 © 2008 IEEE
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stability, determining the gradients needed for backpropagation
tuning, determining what to backpropagate, obviating the need
for preliminary offline tuning, modifying backprop so that it
tunes the weights forward through time, and providing efficient
computer code for implementation.

A. ADP Paradigms

Many papers in the literature have coopted other nonlinear
control concepts such as feedback linearization, backstepping,
and sliding mode control to make the NN-based feedback
controllers more powerful. Artificial-NN literature on solving
optimal control problems with NNs really got an impetus with
Werbos’ [51], [52] work presentation of the notions of “adap-
tive critics” to solve optimal control problems formulated on
an adaptive/approximate dynamic programming (ADP) frame-
work. It is well known that the dynamic programming for-
mulation offers the most comprehensive solution to nonlinear
optimal control; however, a huge amount of computational
and storage requirements are needed to solve the associated
Hamilton–Jacobi–Bellman (HJB) equation (also known as the
Bellman equation) [29]. Werbos [52] proposed a means to get
around this numerical complexity by using “approximate dy-
namic programming” formulations. His methods approximate
the original problem with a discrete formulation. Solution to
the ADP formulation is obtained through the two-NN adap-
tive critic approach. He proposed two basic versions. In one
version called the heuristic dynamic programming (HDP), one
network, which is called the “action network” or the “actor,”
represents the mapping between the state variables of a dynamic
system and control, and the second network, which is called the
“critic,” outputs the cost function or the value function with
the state variables as its inputs. In the second version of the
adaptive critic approach called the dual heuristic programming
(DHP), the action network remains the same, but the second
network, which is called the critic, outputs the costates with
the state variables as its inputs. These ADP processes, through
the nonlinear function approximation capabilities of NNs,
overcome the computational complexity that plagued the dy-
namic programming formulation of optimal control problems.
Werbos [52] further advanced two other versions called “action-
dependent critics,” namely, ADHDP and ADDHP, which add
control also as inputs to the networks. An account of the various
adaptive critic designs is found in [36]. A thorough treatment
of neurodynamic programming is given in the seminal book by
Bertsekas and Tsitsiklis [11].

Adaptive critic formulations attracted two schools of re-
searchers. The first group consists of researchers who used
ADP formulations to mainly solve problems with finite state
spaces with applications to behavioral and computer sciences,
operations research, and robotics (for example, [8], [9], [11],
and [35]). Note that adaptive critics are also reinforcement
learning designs [8], [9]. Many of these formulations essentially
use Markov decision processes, and their problems primarily
employ cost-function-based adaptive critics. A major reason is
the fact that the value function derivatives are not well defined
in a stochastic setting. The second group of researchers uses
system science principles to formulate their problems with
applications to real-time feedback control of dynamic systems
for example (see [41] and [53] for multiple papers).

III. STABILITY ISSUES OF ADP-BASED CONTROLLERS

Howard [22] showed the convergence of an algorithm rely-
ing on the successive policy iteration solution of a nonlinear
Lyapunov equation for the cost (value) and an optimizing equa-
tion for the control (action). This algorithm relies on perfect
knowledge of the system dynamics and is an offline technique.
Later, various online dynamic-programming-based reinforce-
ment learning algorithms emerged and were mainly based on
Werbos’ HDP [52], Sutton’s temporal difference (TD) learn-
ing methods [42], and Q-Learning, which was introduced by
Watkins [48] and Werbos [50]. Critic and action network tuning
was provided by recursive least squares, gradient techniques,
or backpropagation algorithm [49]. Early work on dynamic-
programming-based reinforcement learning focused on discrete
finite state and action spaces. These depended on lookup tables
or linear function approximators. Convergence results were
shown in this case, such as [15].

For applications in finite state spaces, convergence of the
training/learning algorithms for the ADP-based network struc-
ture and boundedness of the cost are the major critical points
with respect to stability. There are several papers in current
literature on this subject, such as [11], [18], and [44].

For continuous state and action spaces, convergence results
are more challenging as adaptive critics require the use of
nonlinear function approximators. More recently, Ferrari and
Stengel [19] provide a proof of convergence of adaptive critic
training on arguments similar to Howard’s. The linear quadratic
regulation (LQR) problem [29] served as a testbed for many of
these studies. Solid convergence results were obtained for var-
ious adaptive critic designs for the LQR problem. We mention
the work of Bradtke et al. [12] where Q-Learning was shown to
converge when using the nonlinear function approximators. An
important persistence of excitation notion was included. Further
work was done by Landelius [26] who studied the four adaptive
critic architectures. He demonstrated convergence results for all
four cases in the LQR case and discussed when the design is
model free. Prokhorov and Feldkamp [37] look at the Lyapunov
stability analysis.

A. Model-Based Systems

It should be noted that for the use of ADP-based neu-
rocontrollers for dynamic systems, treatment of stability is-
sues depends on the needs of the system/plant. Consider a
model-based ADP controller. Many system models can be
derived from first principles or constitutive relations under-
lying the physics of the problem. If the need is to design a
feedback controller for a deterministic model-based system,
a controller resulting from a typical adaptive critic technique
assures stability. This is because an ADP-based controller is
basically an optimal controller. Optimal control guarantees
stability with the nonexistence of conjugate points [13]. Model-
based synthesis of adaptive-critic-based controllers presented
by Balakrishnan and Biega [7], Prokhorov and Wunsch [36],
and Venayagamoorthy et al. [45], for systems driven by or-
dinary differential equations, and by Padhi and Balakrishnan
[33], for distributed parameter systems, demonstrates instances
where the ADP-based controllers were shown to stabilize the
plants quite successfully. Convergence of the training algo-
rithm is the major issue in these cases as regards stability.
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A convergent action network output guarantees closed-loop
stability.

B. Model-Free and Uncertain Systems

Closed-loop stability for the ADP-based controllers for
model-free and uncertain systems, however, is different. Model
noise and exploration noise are discussed in [20] where adap-
tive critic is viewed as a stochastic approximation technique.
Anderson et al. [4] showed convergence and stability for a
reinforcement learning scheme. These results were done for the
discrete-time case.

Q-Learning is not well posed when sampling times become
small, and thus, it is not useful for extension to continuous-
time systems. Continuous-time dynamic-programming-based
reinforcement learning was reformulated by using the so-called
advantage learning by Baird [6], who defines a differential
increment from the optimal solution and explicitly takes into
account the sampling interval ∆t. Doya [16] derived results for
online updating of the critic using techniques from continuous-
time nonlinear optimal control. The advantage function fol-
lows naturally from this approach and, in fact, coincides with
the continuous-time Hamiltonian function. Doya gave rela-
tions with the TD (0) and TD (λ) techniques of Sutton [42].
Murray et al. [31] proved the convergence of an algorithm that
uses system state measurements to find the cost to go. An array
of initial conditions is needed. Unknown plant dynamics in
the linear case is confronted by estimating a matrix of state
derivatives. The cost functional is shown to be a Lyapunov
function and approximated by using either quadratic functions
or a radial basis function NN. Saridis and Lee [39] showed the
convergence of an offline algorithm relying on the successive
iteration solution of a nonlinear Lyapunov equation for the
cost (value) and an optimizing equation for the control (ac-
tion). This is the continuous-time equivalent of Howard’s [22]
work. Applications of adaptive critics in the continuous-time
domain were mainly done through the discretization and
through the application of the well-established discrete-time
results (e.g., [43]). Various continuous-time nondynamic rein-
forcement learnings were discussed by Campos and Lewis [14]
and Rovithakis [38], who approximated a Lyapunov function
derivative. In [58], the HJB equation of dynamic program-
ming is approximated by a Riccati equation, and a suboptimal
controller-based on NN feedback linearization is implemented
with full stability and convergence proofs.

Anderson et al. [4], [5] investigated the stability of the ADP-
based control combining ideas from reinforcement learning and
robust control. Typical “robust control” techniques consider
a range of uncertainties, and the resulting design is guaran-
teed to be stable to the predefined disturbance boundaries.
Anderson et al. [5] use reinforcement learning with the integral
quadratic constraints in developing neurocontrollers. By adding
an adaptive reinforcement signal, conservatism with a typical
robust control is mitigated. They provide some simple examples
to demonstrate their concepts [5] and implement them in an
HVAC system [5].

C. ADP-Based Techniques for Model-Free Systems

There has been great interest recently in “universal model-
free controllers” that do not need a mathematical model of the

controlled plant but mimic the functions of biological processes
to learn about the systems that they are controlling online, so
that performance improves automatically. Advantage of such
controllers is the fact that the controller is portable between
derivatives of similar plants. This is a huge factor in areas such
as high-performance aircraft or missile where the controller
redesign time and, therefore, the cost for different versions of
the plants can be reduced dramatically. Enns and Si [17] present
a lucid article on model-free approach to helicopter control.
Recent works by Lewis et al. and Jagannathan et al. have been
quite rigorous in theory and useful in practical applications.
Jagannathan [40] has extended stability proofs for systems with
observers in the feedback loop. Al-Tamimi et al. [1] use the
HDP and the DHP structures to solve problems formulated with
game theoretic notions. Their formulation leads to a forward-
in-time reinforcement learning algorithm that converges to the
Nash equilibrium of the corresponding zero-sum game. They
have provided performance comparisons with an F-16 autopi-
lot problem. Convergence proof of the algorithms has been
given. While this paper requires a model, Al-Tamirni et al.
[2], [3] extend these results to a model-free environment for
linear systems [2] for the control of a power system generator.
In this paper, they present online model-free adaptive critic
schemes based on ADP to solve optimal control problems in
both discrete- and continuous-time domains for linear systems
with unknown dynamics. In the discrete-time case, the solution
process leads to solving the underlying game algebraic Riccati
equation (GARE) of the corresponding optimal control problem
or zero-sum game. In the continuous-time domain, their ADP
scheme solves the underlying ARE of the optimal control
problem. They show that their continuous-time ADP scheme
is nothing but a quasi-Newton method to solve the ARE. In
both time domains, the adaptive critic algorithms are easy to
initialize considering that initial policies are not required to be
stabilizing. As with the model-based paper, the authors have
proved the convergence of the presented algorithm.

Vrabie et al. [46] proposed a new policy iteration technique
to solve online the continuous-time LQR problem for a partially
model-free system (internal dynamics unknown). They present
an online adaptive critic algorithm in which the actor performs
continuous-time control, whereas the critic’s correction of the
actor’s behavior is discrete in time until best performance is ob-
tained. The critic evaluates the actor performance over a period
of time and formulates it in a parameterized form. Policy update
is a function of the critic’s evaluation of the actor. Convergence
of the proposed algorithm is established by proving equivalence
with an established algorithm [25]. Numerical results using the
short period dynamics of an F-16 aircraft are presented. In
[47], the authors illustrate the same ideas in a power system
application.

Shih et al. [40] formulated a novel reinforcement-learning-
based output-adaptive NN controller to track a desired trajec-
tory for a class of complex nonlinear discrete-time systems in
the presence of bounded and unknown disturbances. The con-
troller structure includes an observer for estimating states and
the outputs, critic, and two action NNs for generating virtual
and actual control inputs. The NN weights are adapted online
to minimize a performance index. A Lyapunov function proves
the uniformly ultimate boundedness (UUB) of the closed-loop
tracking error, network weights, and observer estimation error.



916 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

Performance of this controller is evaluated on a spark ignition
engine operating with high exhaust gas recirculation levels,
and good experimental results are reported. Javaherian et al.
[23] also reported good model approximation and performance
results with DHP for an engine application.

Zheng and Jagannathan [57] investigated the use of NNs
toward obtaining nearly optimal solutions to the control of
nonlinear discrete-time systems. The method is based on least
squares successive approximation solution of the generalized
HJB (GHJB) equation. An NN is used to approximate the
GHJB solution, and the authors show through examples, which
include a planar two-link robot, that the control laws are optimal
for linear systems and suboptimal for nonlinear systems.

Yang and Jagannathan [56] applied an adaptive-critic-based
controller to an atomic force microscope-based force con-
troller to push nanoparticles on the substrates. A block phase
correlation-based algorithm is embedded into the controller for
the compensation of the thermal drift which is considered as
the main external uncertainty during nanomanipulation. They
prove the convergence of the states and NN weight estimates.
He and Jagannathan [21] presented a reinforcement learning
scheme in discrete time for the NN controller, where the action
generating NN learning is performed based on a critic-supplied
performance measure. By using the Lyapunov approach and
with novel weight updates, the UUB of the closed-loop tracking
error and the weight estimates are shown. The adaptive critic
NN does not require an offline learning phase, and the weights
can be initialized at zero or randomly. It is shown via simulation
that taking magnitude constraints on the input helps reduce
transients. Simulation results justify the theoretical analysis.

Recently, an improvement and modification to the two-
network ac architecture, which is called the “single network
adaptive critic (SNAC),” has been presented [33]–[55]. This
approach eliminates the action network. As a consequence,
the SNAC architecture offers three potential advantages: a
simpler architecture, lesser computational load (about half of
the dual network ac algorithms), and no approximation error
due to the eliminated network. The SNAC approach is applica-
ble to a wide class of nonlinear systems where the optimal
control (stationary) equation can be explicitly expressed in
terms of the state and the costate variables. Most of the prob-
lems in aerospace, automobile, robotics, and other engineering
disciplines can be characterized by nonlinear control-affine
equations that yield such a relation. SNAC-based controllers
yield excellent tracking results in applications to microelectro-
mechanical systems, chemical reactor, and high-speed reentry
problems. Padhi et al. [34] have proved that for linear systems
(where the mapping between the costate at stage k + 1 and the
state at stage k is linear), the SNAC structure on convergence
converges to the discrete Riccati equation.

IV. CONCLUSION

New and exciting results in the ADP-based controllers for
systems with increased complexity are continually emerging.
The breadth of applications is truly amazing. As systems get
large, diverse, and complex, uncertainties in modeling go hand
in hand. Hence, it is crucial that new ideas and formulations
of closed-loop stability are generated. Guarantees on closed-
loop stability will be the enabling piece that transforms the

ADP-based controllers from simulations into implementations
in various applications.
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