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Genericity and Singularities of Robot Manipulators

Dinesh K. Pai, Member, IEEE, and M. C. Leu, Member, IEEE

Abstract—We study the kinematic singularities of robot manip-
ulators from the point of view of the theory of singularities. We
examine the notion of a “generic” kinematic map, whose singular-
ities form smooth manifolds of prescribed dimension in the joint
space of the manipulator. For three-joint robots, an equivalent
algebraic condition for genericity using J acobian determinants is
derived. This condition lends itself to symbolic computation and
is sufficient for the study of decoupled manipulators. Orientation
and translation singularities of manipulators are studied in detail.
A complete characterization of orientation singularities of robots
with any number of joints is given. The translation singularities
of the eight possible topologies of three-joint robots are studied
and the conditions on the link parameters for nongenericity are
determined.

I. INTRODUCTION

HE kinematics of robot manipulators is important in

almost all areas of robotics, including dynamics, control,
and motion planning. Of particular interest is the differential
kinematic map, commonly known as the manipulator J acobian,
which plays a central role in trajectory planning, velocity
and force control, and the numerical solution to the inverse
kinematics problem (e.g., [5], [29]). Since the Jacobian is
the best linear approximation to the kinematic map at a
configuration, the manipulator’s performance is profoundly
affected by the value of the Jacobian. In particular, if the
Jacobian is singular, the kinematic map may not be invertible.
Further, the singular manipulator cannot impose any velocities
of the end-effector reference frame in certain directions. This
causes local control methods such as resolved rate control [31]
and operational space control [11] to fail at a singularity. The
robot is also able to withstand, in principle, infinite forces
along the same directions. Determining the sets of singular
points of various ranks and the images of these singular points
is thus of importance.

The problems of determining the singularities of robot ma-
nipulators and of coping with them have received considerable
attention such as in [2], (3], [7], [14], [15], [18], [20], [22],
[25], [27], and [30]. The problem of computing the image of
the set of singular points is generally studied under the rubric
of the “manipulator workspace problem” (e.g., [9], [13], [16],
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[24]). Using the techniques discussed in the literature, one
can compute the singular configurations of manipulators. For
example, Sugimoto et al. [25] described a general procedure
for calculating singular configurations using screw theory.
They also presented an important result that characterizes the
instantaneous joint screws in a singular configuration. Gorla
[7] was able to get expressions for the set of singular points
by assuming that link twists were multiples of 7/2. Wang
and Waldron [30], following earlier work {27], derived an
algorithm using screw theory for computing the “singularity
field” of the manipulator, i.e., given numerical values of three
joint angles 2, 03, and 64 of a six-joint manipulator, they
showed how to compute the angle 65 that makes the manipu-
lator singular. Their algorithm can be used to numerically trace
out singular points of a given manipulator geometry. Burdick
[3] presented a detailed analysis of singularities using screw
theory. Burdick also showed the significance of manipulator
singularities in the design of robot manipulators. Shamir [22]
provided an analytic tool to determine if the singularities
are avoidable or unavoidable for three-joint manipulators
operating in two-dimensional space.

In this paper we are concerned with a somewhat different
goal. We would like to study the qualitative properties of
manipulator singularities so as to come to grips with the
following types of questions:

« Given a class of manipulators (e.g., the class of all RRP
regional manipulators or the class of all possible revolute
manipulators used for orientation), what statements can
we make about the singularities of all manipulators of
this class? Can we say anything about almost all manip-
ulators in the class? More specifically, how do we set
about classifying these manipulators by the nature of the
singularities? Such information would be valuable to a
design engineer who has narrowed down the manipulator
design to the given class and needs to know what to
expect.

What are the topological and geometric properties of the
set of singular points? Can they behave badly or do they
form “nice” smooth manifolds? For example, if the set of
singular points has kinks and intersections, it is difficult to
trace it out numerically. Smooth manifolds do not have
such problems.

If the singular points form manifolds, what are the dimen-
sions of these manifolds? This is important because low-
dimension manifolds cannot separate the joint space into
disconnected regions, whereas high-dimension manifolds
(manifolds of codimension 1) can.

How low can the rank of the Jacobian drop? The rank of
the Jacobian is the number of degrees of freedom the end-

1042-296X/92$03.00 © 1992 IEEE
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Fig. 1.

Generic and nongeneric functions.

effector of the manipulator has locally. Hence, the lower
the rank of the Jacobian, the more constrained the motion
of the end-effector. It would be useful to have guarantees
that certain low-rank singularities cannot occur in a class
of manipulator designs.

All these questions can be answered within the framework
of the theory of singularities, first developed in the 1950’s
by Whitney [32]. Recent treatments of these ideas can be
found in [1] and [6]. Our goal in this paper is to examine
the singularities of manipulators from this viewpoint. We do
not address the question of stability in this paper, but we would
like to point out that it is closely related to the other questions
listed above (see [6] for more details).

Our study is briefly as follows. Suppose we are given a class
of manipulators or, more generally, a class (7, K) of smooth
functions from the joint space J to the task space XC. Almost
all functions in (7, K) have well behaved singularities. Such
functions are called “generic.” The remaining functions form
thin sets in (7, K) (see Fig. 1).

We first describe the properties of generic manipulators.
Then we characterize the nongeneric manipulators and sub-
ject them to closer study. In particular, we try to derive
algebraic conditions on the link parameter values for these
nongeneric manipulators. Thus, we achieve a classification of
manipulators according to the behavior of their singularities.

The paper is organized as follows. Section II provides the
definitions of relevant terms used in the paper. We introduce
the notion of genericity in Section IIl and present some
differential-geometric results pertaining to the singularities of
generic manipulators. A generic property is the formalization
of the idea that almost all members of a class have the given
property. Our definition of genericity will apply to the class of
smooth functions from the joint space of the robot to its task
space. A particularly useful characteristic of the singularities of
generic manipulators is that they form a collection of smooth
manifolds in the joint space of the manipulator. Further, the
dimension of each manifold is related to the rank of the
Jacobian at all points in the manifold. For three-joint robots,
we derive an algebraic condition for genericity using Jacobian
determinants (Section IV). This condition is sufficient for
characterizing the singularities of decouplable manipulators,
i.e., manipulators that can be separated into a three-joint
translating part and an orienting part.

Next, we study the orientation and translation singularity
problems separately in detail. The sets of singular points thus
obtained are subsets of the singularities of the manipulator
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used for both translation and rotation simultaneously. In Sec-
tion V, we consider a manipulator used only for orienting the
end-effector. The singular sets can be described completely
in this case, for robots with any number of joints. Then we
consider three-joint regional manipulators, i.e., manipulators
used only for translating the end-effector (Section VI). In the
simpler cases, a complete description of the singularities and
conditions for genericity are given. For the more complicated
cases, the singularities are examined after making certain
assumptions about the link parameters.

II. PRELIMINARIES

This section provides background definitions for the sake
of completeness. The concepts here may be familiar to many,
but we suggest that the reader at least skim this section to
become familiar with the terminology. In the following, a robot
manipulator is taken to be any open linkage, i.e., a sequence
of rigid bodies connected by joints, which are assumed to be
either prismatic (sliding) or revolute (turning). Since we are
only concerned with singularities of the chain, we shall ignore
any joint limits that may be present.

The joint space J of a manipulator is the space of all joint
variables (g1, g2, ..., gn) Of the manipulator. The variables
are defined in the usual sense of Denavit and Hartenberg [4].
If the manipulator has r revolute joints and n — r prismatic
joints, the joint space is actually 7" x R™~", where 7" is
an r-torus, 7" = 8! x --- x S*. Since the distinction is not
important for our purposes, we shall consider J to be R",
the space of n-tuples of real numbers, with the understanding
that, for revolute joints, ¢; + 2km = ¢;. We shall denote by
¢=1(q1q2 -.. g,)T a point in the joint space. The joint space
is a configuration space, i.e., by specifying ¢q, we completely
specify the configuration of the robot. Hence, we will speak
of g as a configuration of the robot.

A robot manipulator’s motion is typically required in terms
of the motion of a reference frame F attached to the manip-
ulator. The task space K of a manipulator is the space of all
required rigid motions of E. For typical tasks, the task space
is the six-dimensional space of rigid translations and rotations,
R3 x SO(3). However, the task space is actually defined
by the application. For example, if one is only interested
in the translation of the end-effector, the task space is R3.
An element of the task space is called a position. Note
that this may have both a translational part belonging to
R3 and a rotational part belonging to SO(3). This is not
standard terminology, since none exists at the present time.
In the literature, positions have also been called locations,
displacements, motions, configurations, transformations, etc.,
which unfortunately convey different meanings to different
readers.

The kinematic map of a manipulator is the map s : 7 — K,
which maps a configuration g of the robot to the position of the
end-effector reference frame F. The map can be considered
to be the Cartesian product of two maps

M)
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where Kk; : J — R and &, : J — SO(3). & will be
called the translation map and &, will be called the rotation,
or orientation, map.

The derivative Dgs of the kinematic map at a configuration
q is a linear map from the tangent space of J at q to the
tangent space of K at k(g). When represented as a matrix
in coordinates, it is commonly known as the manipulator
Jacobian. Methods for computing the Jacobian matrix may
be found in [19], [27], [31].

A manipulator is said to be singular at a configuration q
if Dgk is singular, i.e., if it is not of maximal rank. The
configuration q is then called a singular point and its image
x(q) is called a singular image. Some authors also call a
singular point a critical point and a singular image a critical
value, especially when dealing with real-valued maps. A point
in J is called a regular point if it is not a critical point. A
point in K is called a regular value if it is not the image of
a singular (critical) point.

In this paper, we shall always assume that the dimension of
7 is at least as large as that of K, i.e., we shall deal with
manipulators with at least as many degrees of freedom as
required by the task. Hence, a configuration ¢ is singular if
and only if rank(Dgk) is less than the dimension of K.

III. SINGULARITIES OF GENERIC MAPS

In this section, we introduce the important concept of
genericity of a smooth map and related results from the field
of differential topology, and demonstrate their relevance to
the singularities of kinematic maps. The book by Golubitsky
and Guillemin [6] provides more information for the reader.
Elementary definitions of smooth manifolds, tangent spaces,
etc., can be found in textbooks such as [8].

In general, the types of singular sets that can occur depend
on the actual map. Of particular interest are maps whose
singular points form smooth manifolds in the domain. Smooth
manifolds have several important properties, including the fact
that they can be traced out by local methods. Generic maps
constitute a class of maps whose singular points form smooth
manifolds. Further, the dimension of each singular manifold
is related to the rank of singular points in the manifold by a
simple formula.

Considering that these generic maps have such nice sin-
gularities, one may wonder if such maps are rare. In fact,
the opposite is true and hence the title of “generic.” As a
consequence of the Thom Transversality theorem, it turns out
that these maps are residual in the space of smooth maps (see
[61)-

Let £ be the space of all linear maps from the tangent space
to J at g, denoted T,J, to the tangent space to K at &(q),
denoted Tg()K. Let dim(J) = J and dim(K) = k. With
local coordinates on J and K, £ is isomorphic to the space
of k x j matrices. Note that £ is a vector space under scalar
multiplication and addition of matrices, isomorphic to R7*.

We denote by £, the set of points in £ of rank r. It is well
known that each L, is a manifold with codim(£,) = (j —
r)(k — 7), where codim is the codimension of a submanifold
in its containing manifold. Thus, the £, partition £, i.e., with

[
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Vv =

min{j, k}

LoULU...UL, =L

)
and

L,NLy,=0 for r#s. &)

Further, the limit points of £, not in it are in some Ls,s>T.
Such a set of manifolds is called a “manifold collection.”
Definition 1: Let f : M — N be a smooth map be-
tween manifolds M and N. The map f is transversal to a
submanifold U of AV if and only if for each point z € f (7))

Image(D. f) + Tf(I)L{ = Tf(z)N' €]

Also, f is transversal to a manifold collection (L;} in NV if
and only if f is transversal to each L;.

We write fMU to indicate that f is transversal to U.
Transversality is one of the most important concepts in dif-
ferential topology. We note some of the applications below.

Theorem 1 (Preimage Theorem): Let f, M, N, and U be
as above. Then the preimage f ~1(u) is a submanifold of M
and

codim(f~1(U)) = codim(U). ®)

The Jacobian Dgx is a linear map from T,J to Tx)K.
We can view the collection of Dgxk, for all g € J, as a map
from 7 to the space of linear maps from T¢J to Tk, viz.,
£. We will denote this by Dk : J — L, with Dx(q) = Dgk.
The map Dk is smooth.

Definition 2 [6]: A kinematic map & of a manipulator is
generic' if Dk {L;}. We shall call a manipulator generic if
it has a generic kinematic map.

Proposition 1: Let S, C J be the set of all singular points
of rank r and let & : J — K be generic with dim(7) = j
and dim(K) = k. Then S, is a smooth submanifold of J.
Further, if S, is not empty

codim(S,) = (j — r)(k — ). (6)

Proof: Since & is generic, DxM L., codim(L,) = (j —
r)(k — r). From the preimage theorem, S, = Dr~HL,) is
a smooth manifold of J and codim(S,) = codim(L,) =
(G=r)k—r). [

Thus, Proposition 1 guarantees that, for generic kinematic
maps, the singular points of various ranks form smooth man-
ifolds. Further, it may be used to determine the dimension
of each singular manifold. Observe that one way for k to be
generic is to have no singular points at all. In this case, all S,
for r < k will be empty. The above proposition describes the
dimension of S, when it is not empty.

An important application of Proposition 1 is that it allows
us to preclude the existence of generic singularities of certain
low ranks. If (j — 7)(k — r) > j, then the codimension of S,
is greater than the dimension of the joint space. Hence, a rank
r singular point cannot exist.

We examine three examples of singularities of generic
kinematic maps below.

1 Also called one-generic, to distinguish it from genericity with respect to
higher derivatives.



[

548 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992

Example 1: A three-joint generic manipulator used for
translation only or orientation only. Here, the dimension of
the joint space j is 3 and the dimension of the task space
k is also 3. Hence, if S; is not empty, dim (S;) = 2, and
both S; and Sy have to be empty. Therefore, only the rank 2
singularity is possible.

Example 2: A six-joint generic manipulator used for both
translation and orientation. Here, the dimension of the joint
space is 6 and the dimension of the task space is also 6. Hence,
if singularities of ranks 4 and 5 exist, dim (S;) = 5, dim (Sy)
= 2, and the smaller rank singular sets are empty.

Example 3: An eight-joint generic manipulator used for
both translation and orientation. This robot is redundant and
has two extra degrees of freedom. Here, if the manipulator
can become singular, dim (S5) = 5, dim (S;) = 0 and smaller
rank singularities cannot occur.

IV. A CONDITION FOR GENERICITY

We saw in Section III that generic mappings possess several
desirable properties. However, it is difficult to determine if a
map is generic using only the definition of genericity. In this
section, we derive an algebraic criterion for determining if a
three-joint robot (j = 3) in a three-dimensional task space
(k = 3) is generic. This criterion lends itself well to symbolic
computation and has been implemented in MACSYMA.

The restriction to three-joint manipulators does not limit us
in analyzing the singularities of many general spatial manipu-
lators. Almost all current manipulators can be decoupled into
a translational part (a “regional structure”) and an orienting
wrist [12], [17], [21]. This design is widespread since it makes
the inverse kinematic solution in closed form tractable [21].
The translational part corresponds to the large links toward the
base of the manipulator, while the orienting part corresponds
to the small terminal links that constitute a wrist. Our results
will allow us to analyze each part separately. Also, some
manipulator tasks are predominantly either translational tasks
(as in gross motions of the manipulator) or rotating tasks (as
in turning a screw). Our results will allow us to analyze the
suitability of manipulators for such tasks.

Lemma 1: Let A = (a;,,) be an n X n matrix, and A* be
the matrix of cofactors of A. A and A* € L, where £ is the
space of m x n matrices. Let det : £ — R be the determinant
function. Then

D.det = A*. )

Proof: Let a;,, be the [, m element of A. Therefore, the
determinant of A can be written as

det(A) = agyncofactor(a;, ) + terms not involving a;,,,. (8)
Therefore
%[m det(A) = cofactor(agy, ). Q)
Hence

D 4 det = (cofactor(a;m,)) = A*. (10)

When j = k = n, £ is a manifold isomorphic to R, We
have seen that £,_;, the set of all matrices of rank n — 1,
is a submanifold of £ with codimension (n — (n ~ 1))(n —
(n — 1)) = 1. Hence, there is a one-dimensional vector space
normal to the tangent space of £,,_;. With the identification
of £ with ?R"Z, a vector in £ is just another n X n matrix.

Lemma 2: The normal subspace to £,,_; at A € £,,_; is
spanned byD 4 det = A*.

Proof: Since £,,_1 is a singular set, det(A4) = 0. Further,
since A is of rank n — 1, at least one cofactor of A # 0.
Therefore, D 4 det = A* # 0. So 0 is a regular value of the
function det. Hence, locally £, is an (n? — 1)-dimensional
surface and D 4 det # 0 is normal to it.

In the proof of the theorem below, we use the follow-
ing identity that relates derivatives of determinants in £ to
derivatives in J.

Lemma 3:

s} — el
(TmDn)‘q-an* = (8? det Dn)’q 1)

where - is the usual inner product in R
Proof: Let d;,,, be an element of Dk and d,,, be a column.

q:;det (1o et ] .
- ZI: Zn: <5%d,m)cofactor(d/m)‘q

= (£ Dx) lq-an*. (12)

o det [dy ... dy]

]

We now use these facts to show the main result of this
section.

Theorem 2 —Manipulator Genericity: For a three-joint robot,
with a three-dimensional task space, & is generic if and only
if Dgdet(Dk) # 0 for all g for which det(Dgx) = 0.

Proof: By definition, & is generic if and only if DkM
{L;},i=0,1,2,3. Dk is obviously transversal to L3. Now,
codim(Lo) = 9 and codim(£;) = 4, while dim(T,J) = 3.
Therefore, the only way for Dk to be transversal to £y and
L, is to avoid them altogether. Hence

genericity < (a) Only rank 2 singularities can occur
AND
(b) DM L,.

First look at (b). Let ¢ € D&™(Ly). DM Ly & Jv €
T,J such that (DgDk)(v)-Dgk™ # 0. Note that Dgk™ is the
normal to £y at Dgk, from Lemma 2. This is equivalent to

(Zi:l (H%D’“)lq”") ‘Dgr’ # 0
ie.,

3
] (C N R
i=1
i.e., for some 7
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) *
(a—qan) ‘q.an #0
from Lemma 10, for some ¢
- det(D) # 0

Dqdet(Dk) # 0.

Now (a) is equivalent to the condition that Dgr* # 0 for
all ¢ € J. This is because each 2 x 2 submatrix of Dgk is an
element of an*; if they are all zero, Dgx has rank less than
2. Clearly, Dgr* # 0 when the robot is nonsingular. When the
robot is singular, i.e., when det(Dgx) = 0, if Dg det(Dk) #
0, there exists an i such that ((8/9,, )Dn)‘q~DqK.* # 0. Hence,
Dqu* -‘,é 0.

Corollary 1: For three-joint robots, genericity implies that
the set of singular points is either empty or a regular level
surface of dimension 2.

The genericity condition of Theorem 2 has many applica-
tions, including the classification of singularities for separable
manipulators. For example, using this result it is easy to
show (Section VI) that a general SCARA-type manipulator? is
nongeneric if and only if the axes of joints 2 and 3 intersect.

V. ORIENTATION SINGULARITY

This section discusses the singularities of orientation of a
manipulator. We are concerned with the singularities of the
restricted map &;.

The Jacobian of an m-joint orienting manipulator corre-
sponds to (see Appendix A for notation)

Dqﬁr (U()Z(] Om—-12m—1 ) (13)

-]

The prismatic joints do not contribute to Dgx, and can be
held fixed. If n of the joints in the manipulator are revolute,
it is equivalent to a revolute manipulator with n-joints, and

where

0,
L

if joint 7 + 1 is prismatic
if joint 7 + 1 is revolute.

th‘.,- = (ZQ 4l Zn—1 ) (14)
Henceforth, we shall assume that all the joints of the manip-
ulator are revolute.

The following lemma indicates the geometric meaning of
orientation singularity.

Lemma 4 [3], [10]: The manipulator is singular if and only
if all the joint axes are parallel to a plane.

Now we observe some facts about the influence of the link
twists «; on singularities.

Lemma 5: If the number of a; # 0 (mod =) is less than
2, the robot is always singular. Hence, rank(Dgky) > 2 unless
the robot is always singular.

2 A manipulator with two revolute joints followed by a terminal prismatic
joint. In addition, the first two revolute joints are parallel.
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Proof: By definition, z;—y - 2; = COS ;. Therefore, if

a; =0 (mod 7),then z; 1 = *z:. Therefore, the number of
a; 20 (mod ) is less than 2 = the number of independent
2; < 3 = the robot is always singular. If some cosa; # 0
there are at least two independent columns of DgK,. Hence,
rank(Dgk,) > 2. ]

We shall first consider the case when the robot manipulator
has no adjacent joints parallel, i.e., no link twists, a; = 0
(mod =). The results are generalized to arbitrary manipulators
in Theorem 4. In the following, we shall consider the joint
space J to be R™ with the understanding that 6; + 2km = 6;.

Theorem 3: The set of all singular points of the manipulator
with 70 link twists a; = 0 (mod 7) is exactly the set of all
2-planes, parallel to the 9,—8,, plane, with s,...,0,.1 = 0
(mod ).

Proof: First we show that the 2-planes described above

consist of only singular points.

Any 3 successive joint axes z;-1, Zi, and z; 1 lie in a plane
if and only if 2;_1 - 2i X Zit1 = 0.

Now, in the coordinate frame of link ¢ we can write 2;_1, 2;,
and z;41 as

0
z=10 (15)
1
sin ;41 sin i1
zig1 = | —cosbiyisinaiyy (16)
COS (41
0
zi1 = | sina; 17)
COs (¢

Therefore, z;_1 - 2; X Zi+1 = Sin ;41 sin g sin oy Since
sina; # 0 and sinojt1 # 0, 2i—1 - 2i X Zig1 = 0 if and only
if ;41 = 0 (mod 7).

Therefore, for points with f,...,0n,-1 =0 (mod ), we
conclude that all z; lie in a plane. From Lemma 4, we conclude
that these points are singular.

The reverse implication follows by reversing the proof. B

The above theorem shows that, for manipulators with no
successive parallel joints, the set of singular points form 2-
planes in the joint space parallel to the 6,-6, plane. This
implies that if n. > 3, the set of all nonsingular configura-
tions is path-connected. A robot can go from a nonsingular
configuration to another without going through a singularity.
This is an argument for using four-joint wrists instead of the
usual three-joint wrists.

If the manipulator has parallel joints also, the singular points
continue to form planes, but of higher dimension, as shown in
Theorem 4. We first partition the joints of the robot into p sets
of adjacent parallel joints by requiring z; and z;4; to belong
to the same set if and only if they are parallel. Let

jea set

Theorem 4: The set of all singular points is exactly the set
of planes with 85,...,0,-1 =0 (mod ).
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Fig. 2. Singular points of three-joint wrist.

Proof: The manipulator is equivalent to a p-joint manip-
ulator with joint angles @;, since rotating a joint in a set %
does not change the relative orientations of the joint axes unit
vectors as long as g; is constant.

Therefore, from Theorem 3, the singularities, which depend
only on the relative orientations of the joint axes unit vectors,
are given by

b,...,0,_1 =0 (mod 7). (18)

]

Corollary: The dimension of the singular surfaces = 2+
the number of pairs of successive parallel joints.

Theorem 4 gives us a complete description of orienta-
tion singularities in the joint space of the manipulator. For
illustration, we examine these singularities in two specific
examples: a three-joint orienting wrist and the PUMA-560
robot manipulator used for orienting.

Example 1: Three-joint wrist with no adjacent parallel
joints. The singular sets are 2-planes at §; = 0 (mod =)
in the joint space (see Fig. 2).

Example 2: The PUMA-560 manipulator used for orienta-
tion. This manipulator has one pair of parallel joints (joints 2
and 3). Hence, the singular points form 3-planes with #; and
g arbitrary, 2463 =0 (mod 7) and 84,65 =0 (mod 7).
Most of these positions lie within the workspace of the PUMA
robot.

We now consider the genericity of orientation singularities.
From Section III, if an n-joint (n > 3) orienting robot is
generic, then dim (S2) = n — (n — 2) = 2, and lower rank
singularities do not exist. By the corollary to Theorem 4, this
is not true for a manipulator with some pair of adjacent joints
parallel. Hence, such robots are nongeneric. Robots with no
adjacent joints parallel have singular sets of the appropriate
dimension for genericity. We show below that they are indeed
generic.

In the following, let A be a 3 X n matrix, n > 3 and let a;
denote the ith column of A. Let A; be the 3 x 3 submatrix
of A given by

A1 = [ai ai41 ai+2]. (19)

Further, no adjacent pair of columns is linearly dependent.
Hence, each A; and A is of at least rank 2.

Lemma 6: Let A be defined as above. A has rank 2 if and
only if each A; has rank 2.

Proof: That each A; has rank 2 if A has rank 2 is
immediate. We need to show the reverse implication.

By hypothesis, the columns of A; span a two-dimensional
linear space, say Z, and ap and a3 span this space. Since
As =[ay a3 aq]alsohasrank 2, a4 € Z, and since a3 and
a4 are linearly independent, they span Z as well. Proceeding

in this manner, all a; lie in £ and A has rank 2. [
Let f : £ — R"~2 be defined as
det Al
f(4) = (20
det An—2

Using f instead of the simple determinant, we can use the
methods of Section IV to show that the robot with no adjacent
joints parallel is generic.

Since A has the property that no adjacent joints are parallel,
by continuity there exists an open set &/ in £, containing A,
with this property. Hence, by Lemma 6

LoNU = f u_l(()). 1)

Now

DAfZZDAdetALZ[O A: 0] (22)

These are clearly linearly independent and so, locally, £ is
the zero set of f and the normal space to Lo at A is spanned
by the D Afi~

Dk, has only rank 2 singularities, so we only need to
show that Dk,M Lo, ie., for each ¢ € Dk, *(Ly), and
for each Dpk, fi, there exists a v € T,J such that

DgDk,(v)-Dp,k, fi # 0. This means that for some j

(0w )| 10 -+ gl - 020 @)

ie.,
(Z1Ds.1) J1Pareli #0 (24)

ie.,
2 det([Dr.]i) # 0. 25)

From (15)~(17), det([Dk,];) is given by

det([Dk,]i) = 2;-ziq1 X 2i42 = sinf; 1 sina; sina, 4.
(26)
Hence

ae?ﬁ det([Dk,|;) = cosfipisina;sina; 11 #0  (27)
when the robot is singular.
We state the above considerations as the following theorem.
Theorem 5: An n-joint orienting manipulator is generic if
and only if no adjacent joints are parallel.
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VI. TRANSLATION SINGULARITY

This section discusses the singularities of translation of three
link manipulators. We are concerned with the singularities of
the restricted map &;.

The translation part of the Jacobian of an n-joint manipu-
lator corresponds to (see Appendix A for notation)

Dgr; =(d020 X Po + G020

e On—12n—1 X Ppn_1 +C7n412n_1) (28)
where
0, if joint ¢ + 1 is prismatic
a; = P . .
1, if joint ¢ 4+ 1 is revolute
5= 0, ifo; =1
v 1, if g; = 0.

If the Jacobian is singular, it has rank less than 3. It is easy
to see that if ant has rank = 0 at any configuration, then
it has rank = O at all configurations and has no prismatic
joints. Therefore, only singularities of rank = 1 or 2 occur in
nontrivial robots. The following theorem gives us a geometric
consideration for a translation singularity to occur. Its corollary
describes the situation for rank = 1.

Theorem 6 [23], [25], [27]: A manipulator configuration is
singular if and only if each revolute joint axis is parallel to
or intersects a line through the end-effector point, and each
prismatic joint is orthogonal to the line. Further, the direction
of the line is a singular direction.

Corollary: A manipulator has a singularity of rank = 1 if
and only if each revolute joint axis either passes through the
end-effector point or lies in a plane of singular directions, and
all prismatic joint axes are orthogonal to the plane.

We now proceed to examine the singularities of three-link
robots used for translation of the end-effector. The technique
used is similar to that of Gorla [7] in that we use the
determinant of the Jacobian to obtain an expression for the
singular surfaces in joint space. However, unlike [7], we
do not assume that all link twists are multiples of 7/2. In
many cases we are able to simplify the expressions for the
singular manifolds and exhibit the nongeneric cases without
any assumptions. For the cases that were not amenable to direct
simplification, we examine possible simplifications that can be
achieved by making various assumptions on the link param-
eters. The investigation was carried out using the symbolic
algebra system MACSYMA.

By computing the determinant and simplifying, we obtain
an expression for the determinant, which we analyze. The
determinant may be used to plot the singularities for various
values of link parameters. While this is useful for studying
specific robots, it is difficult to make more general statements
about the effect of link parameters on the singularities. There
are as many as seven independent kinematic parameters, so
the parameter space is rather large.

For each robot geometry, we attempt to determine condi-
tions on the Denavit-Hartenberg parameters that will make
the manipulator nongeneric, and we describe the singularities
for the nongeneric manipulators. For the simpler manipulators,

LA
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we can give a complete characterization of nongeneric manip-
ulators. For the more complicated cases, the set of all possible
nongeneric robots does not have a simple characterization. We
shall then examine the situation when one or two kinematic
parameters are assigned specific values. These represent com-
mon design situations as well as those that make the symbolic
computations tractable.

Determination of nongenericity is achieved using the solu-
tions of Problems P1, P2, and P3 described in Appendix B.
We shall frequently be able to factor the determinant of the
Jacobian, in which case we examine each of the factors. We
use the fact that a necessary condition for the zero set of such
a factor f to fail to be a manifold® is that

3¢ such that f =0 and Dgf = 0. 29)

The techniques of Appendix B can be used for this as well.

The equation for the determinant of the Jacobian is free of
the joint variable g;. This means that if the robot is singular
for one value of g, it is singular for all values of ¢;. Hence,
we only need to examine the singular sets in the g»—gs3
space, with the understanding that the complete set of singular
points are cylinders over these sets, in the g; direction. In the
following, we shall consider the go—g3 space to be a plane,
with the understanding that, for revolute joints, g; is to be
taken modulo 2m.

Also, a3 and d; (if the joint variable is §;) or 6 (if the joint
variable is d1) do not appear in the equation. This is because,
for a three-link manipulator, these parameters can be arbitrarily
set without affecting the geometry of the manipulator. We
simplify our computations by setting 61, d;, and a3 to zero,
leaving seven independent kinematic parameters and two
variables.

In the remainder of this section, we examine the singularities
of the eight pessible three-joint manipulator topologies.

A. PPP Manipulator Singularities

This is a manipulator with all three prismatic joints. The
joint variables are di, do, and d3. The expression for the
determinant simplifies to

det Dg#; = sin o sin az sin 83. (30)

The manipulator is either always singular or never singular. If
the manipulator is never singular, it is also generic. Likewise,
the manipulator that is always singular is nongeneric.

B. PPR Manipulator Singularities

This manipulator has two prismatic joints followed by a
terminal revolute joint. The joint variables are dp, d3, and 3.
The expression for the determinant of the Jacobian simplifies
to

det Dgk; = azsin 1 (cos B sin 03 + cos ap sin 62 cos 03).
(31)
The factor ag indicates that if a3 = 0, the end-effector
point lies on the axis of revolution of joint 3. Joint 3 can-
not contribute any translational velocity to the end-effector

3This follows from the preimage theorem.



[

552 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992

in this case. Also, sina; = 0 makes the two prismatic
joints parallel. The only interesting factor is cosfysinf3 +
cos avp sin B cos 3.

Unless it is identically zero, the zero sets of (31) are singular
lines in the dy—#3 plane, at 63 = tan~!(— cosay tanfs),
separated in @3 by 7. These are generic since

0
Dg det Dk, = 0 #0
cos 0 cos B3 — cos ag sin B sin f3
(32)

when (31) is 0. Hence, all nontrivial singularities are generic.

C. RPP Manipulator Singularities
The RPP manipulator has a revolute joint at its base
followed by two prismatic joints. The joint variables in this
case are 01, do, and ds. The Jacobian determinant is
det Dgk; = sin ap(a3 sin oy sin ag cos f sin 03
— a3 Ccos a oS g 8in f3
+ a7 cos ay sin B
+ sin a1 cos g cos Badz
+ cos ay sin agds

+ sin o cos f2ds).

(33)

Note that, in general, if joint ¢ is prismatic, the location of
the joint axis is not defined, but only the direction is defined.
Therefore, we can set a; to 0 in such a case to simplify the
expressions. Henceforth, we shall do this for all cases that
involve prismatic joints. With a; = a3 = 0, the determinant
expression becomes

det Dgk, =sin aa(ay cos a; sin 0y
+ sin @1 cos ag cos fxds
+ cos oy sin aods

+ sin @ cos f2ds). (34)

This has the form

det ant =u+ vdy + wds (35)

where u, v, and w are constants depending on the link param-
eters. Therefore

0
DgdetDe= | v
w

(36)

and from the genericity condition, the robot is nongeneric if
and only if v« = v = w = 0. This makes the robot always
singular. Therefore, the only nontrivial singularities are generic
and form a straight line in the da—d3 plane.

D. PRP Manipulator Singularities
Since the first and the last joints are prismatic, we set
a1 = az = 0. The Jacobian determinant of this manipulator is
det(Dgk:) =az sin o cos az sin
— sin a1 €os aip Sin aiad3 cos B

— cos a; sin? aads. (37

If a5 = 0, the determinant can be factored as

det(Dgk:) = — sin aads
(sin a; cos a2 cos B2 + cos ag sinaz).  (38)

The factor sin ao indicates that if this is zero, the end-effector
point always lies on the axis of the revolute joint, making
it singular. The next factor always produces a singular line
at d3 = 0. If |tan a2/ tana;| < 1, the last factor produces
a pair of lines at #; = cos™! —(tanay/tana;). Since the
singular lines intersect, the manipulator is nongeneric, from
the manipulator genericity theorem.

We now proceed to show that this is the only possible
nontrivial, nongeneric robot. The expression for det(Dgk:)
has the form asinfy + bcosfs + ¢, where

a = a9 Sin g COS Qg 39)
b = — sin oy cos a sin aods (40)
¢ = — cos o sin’ aads. 41)

Hence, by the solution of Problem P2, there are only two cases
to consider for the manipulator to become nongeneric.

Casel: a=b=c=0anda?+b?—c? > 0. If this holds
independent of d3, then the robot is always singular. Hence, b
or ¢ should not be identically zero for nontrivial robots. Note
that d3 = 0 is always a solution for b = ¢ = 0. Consider
a = 0. If ay = 0, then

2 @1 cos®

g — cos? oy sin? ap) sin? .

42)
If sinag = 0, b and ¢ are identically zero and the robot is
trivial. If sinas # 0, the robot is nongeneric if and only if

sin? a; cos? as — cos? ag sin® as > 0, ie., |tan o/ tan o | <
1.

a? + b2 - ¢? = (sin

If a # O, then either sina; = 0 or cosay = 0. If
sina; = 0, then a’2 + b2 — ¢’2 = —sin® 5. Therefore, for a
solution to exist, sin as = 0, which makes b and ¢ identically
zero. Similarly, if cosas = 0, we require that cosa; = 0,
which also makes b and c identically zero.

Case 2: ¢# 0and a®+b%—c? =0and aa’ +bb —cc’ = 0.
By computation
2 = gy? sin? o cos® ay
2

a2 b2 —¢

+ sin® a; cos? as sin? as ds?
— cos? ay sin? apds? 43)
/ / ! ain2 2 .2
aa’ + bb" — cc’ =sin® a; cos” ag sin® asds
— cos? o sin® asds. 44)
Hence, for these equations to be satisfied
az?sin? o cos® ap = 0 45)
sin? oy cos® s — cos® ay sin® ap = 0. (46)

But this is almost identical to Case 1 and yields no new
nongeneric robots. Therefore, the only possible nontrivial,
nongeneric PRP robot has a; = 0.



PAI AND LEU: GENERICITY AND SINGULARITIES OF ROBOT MANIPULATORS

E. RRP Manipulator Singularities

This is a manipulator with two revolute joints followed by
a terminal prismatic joint. The joint variables are 01,0-, and
ds. The determinant of the Jacobian simplifies to

det(Dgk:) =sinaz sin arp sin B dsz>
+ sin @] cos ag sin aadads sin By
+ ayas cos a1 cos ag sin O
— a1 COS (7 COS a2 Sin aadg cos B2
+ a9 sin a1 d3z cos 8
+ ag sin oy cos agds cos by

+ aq sin o sin? aods. 47

Case I: a; = 0. The first two revolute joints intersect in
this case. This is an extremely common design, since the
joint 2 actuator can be placed along the axis of joint 1,
reducing the dynamic load on the joint 1 actuator. Examples of
manipulators with this geometry are the Stanford manipulator
and the Unimation Unimate. The determinant can be factored
as

det(Dgky) = sinay(ds + cos aods)
(sin aadz sin 2 + aa cosfz).  (48)

The first factor indicates that if sin a;; = 0, the first two joints
coincide. The factor (ds + cos aads) produces a singular line
in the 65-ds plane at d3 = — cos azdz. Physically, this is due
to the line from the end-effector to the point of intersection of
the first two axes being normal to the axis of joint 3.

The next factor (sin aad3 sin 62 +ay cos §2) generally forms
a 1-manifold in the #;—d3 plane with two components. We use
the solution of Problem P1 to determine when it can fail to
be a manifold. Now

a = sin ag sin fy (49)
b= aycosty (50)
a' = sinas cos b (51)
b = —agsinfy. (52)

Hence, a = b=d = b = 0 only if a2 = 0 and sinaz = 0.
This makes the robot always singular. Similarly, a = b =0
and @’ # 0 only if ap = 0 and sin a2 # 0. In this case, the two
components of the singular manifold merge to produce lines
atdz =0 and f, =0 (mod ). This is clearly nongeneric.
Case 2: a; = 0. The first two revolute joints are parallel.
Examples are the Adept robot and many other SCARA-type
manipulators. The determinant can be simplified to

det(Dgk) = a1 cos az(azsinfz — sin asds cosfa).  (53)

The factor (ag sin 2 — sin aad3 cos 6>) can be analyzed using
Problem P2. Here

a=as 54)
b= —sinaqds (55)
c=0 (56)
a=0 (C))
b = —sinas (58)
d=0. (59)

! [
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Since ¢ = 0, the manipulator is nongeneric if and only if
as = 0. The singularities then form lines at d3 = 0 and
9, = ©/2 (mod =). These lines clearly intersect.

Case 3: ap = 0. The last two joints intersect in this case.
Note that since joint 3 is prismatic, a3 has been taken to be
zero, i.e., the axis of joint 3 also passes through the end-
effector point. An example of a manipulator with this geometry
is the Stanford manipulator. The determinant simplifies to

det(Dgk;) =sin aad3(sin ajdssin fy

+ sin @ cos aada sin 62

— a1 €os o €OS (g €08 B

+ a4 sin o sin ag). (60)
If sinas = 0, the robot is always singular. The factor ds
contributes a singular line at d3 = 0, since this value makes
the end-effector point lie on the axis of joint 2. The last
factor generally forms a 1-manifold in the §o—d3 plane. The
exceptions can be derived using the solution of Problem P2.
Here

a = sin a1 (ds + cos aads) (61)
b = —aj cosay COs g (62)
¢ = ay sin o sin g (63)
a =siney (64)
=0 65)
d=0. (66)

The case a; = 0 has already been considered, so we exclude
it here. Hence, if @ = b = ¢ = 0, then sino; = 0 and
cos as = 0, which makes the robot always singular.

Similarly, if ¢ # 0, then sin a1 # 0. For a solution to exist,
it is required that

a? + b2 — & = sin? a1 (d3 + cos aads)?
+ af"(cos2 oy cos? ag
2 (67)

(69)

—sina;sinfag) =0

ad' +bb — e’ = sin? a1(da + cos agdz) = 0.

This is possible if and only if ay = 7/2 £ a2 (mod 7). In
this case the two components of the singular manifold intersect
(see Fig. 3).

Case 4: a3 = 0. The last two joints are parallel. The Adept
robot and SCARA-type manipulators are examples of this
geometry as well. Note that, in general, if a; = 0, the common
normal between the the two parallel joints is not uniquely
defined. We can set either d; or d;4; arbitrarily, without loss
of generality. In this case, we set ds to zero. The determinant
reduces to

det(Dgk:) = az(a1 cos o1 sin f5 + sinaids cosfa).  (69)
This equation is similar to that of Case 2 and has similar

singularities. The singularities fail to be generic if and only
if a;cosay; = 0.
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Fig. 3. Zero sets of Case 3 RRP manipulator for a; = 1, d» = 2, and
ap = az =7 /4.

F. RPR Manipulator Singularities

This manipulator has two revolute joints with an intermedi-
ate prismatic joint. The joint variables are 6, d, and 03. The
determinant of the Jacobian is

det(Dgk;) =a3(as sin o) sin a sin B, sin® 85
— a3 sin o) cos? as sin as cos 02 cos 63 sin 63
+ a3 cos a1 COS (rg oS B3 sin 3
— a3 cos ap cos B3 sin 03
+ sin @y cos aads sin @ sin 03
+ sin a; ds sin 65 sin 63
— a3 cos ay cos B sin A3
— @1 COS (17 COS (g Sin By cos 3
— sin o cos® aads cos B2 cos 03
— sin @ cos azds cos 8, cos O3

— COS @1 €OS (v Sin rpd3 cos 63). (70)

Note that a3 # 0 for a nontrivial robot. Henceforth, we shall
consider only the remaining factor.

Case 1: oy = /2. In this case, the determinant can be
factored as

det(Dgk:) = (a3 sin ag sin 03 + cos aads + da)

(sinfy sin 63 — cos az cos by cosf3).  (71)
The first factor, (assinassinfs + cosasds + dy), always
forms a manifold since its derivative with respect to do
is not zero. Similarly, the second factor, (sinfysinfy —
cos arp cos f cos f3), describes a manifold, unless it is iden-
tically zero.

Case 2: ap = 0. The last two joints are parallel in this
case. Hence, we also set d3 = 0 to simplify computations.
The determinant simplifies to

det(Dgk:) = sin a1 dp sin 0, sin 5
— a1 cos g cos 5 sin f3

— aj cos a; sin @ cos 03

— sin a1 ds cos B5 cos 83. (72)
This can be analyzed with Problem P2. Here
a = sin aydy sin fy
— a1 cos a1 cos b
b= —a; cosa; sinfy
— sin a1 ds cos By
c=0. (73)

Since ¢ is identically zero, a> + b2 — ¢2 > 0, and the
manipulator becomes nongeneric if and only if ¢ = b = 0.
Computing the resultant of a and b, considered as polynomials
in da, we get the resultant [26] to be a; cos o sin ;. The
term sinco; merely makes the leading coefficients of the
polynomials vanish. The manipulator becomes nongeneric
only if ajcosa; = 0. This turns out to be sufficient for
nongenericity as well. The determinant can then be factored
as — sin ada cos(62 + 63), which results in intersecting lines.
Case 3: oy = m/2. The determinant can be factored as

det(Dgk;) =sin 3(as sin oy sin 2 sin f3
— a3 cos a cos b3

+ sin ads sin 6,

— a1 cosa cosby). 74
The determinant has the form
det(Dgk;) = sinf3 f. (75)
Therefore, the gradient of det(Dgk;) has the form
% det(Dgk;) = sin c; sin f sin 65 (76)
% det(Dgk;) = sin 033%% + cos B3 f. 77

If f =0 and sinf3 = 0, the above equations clearly have a
solution and the robot is nongeneric. Now

= (£a3 cos a; — a; cos a; cos b;)
sinf3=0

+sina; sinfady  (78)

which can always be made zero unless sina;sinf, = O.
Hence, the only possible generic manipulators have sin a; = 0
or sinfy = 0. From (78), if sina; = 0, a3 = %a; cosbs is
sufficient for nongenericity. Similarly, if sinfy = 0, a3 = a3
is sufficient.

By making the substitutions sin; = 0 or sinfy = 0 and
using Problem P3 on the resulting trigonometric polynomials,
we see that these conditions are necessary as well.

It is interesting to note that, for the nongeneric cases
when sin a; sinf; = 0, the singular points continue to form
manifolds.
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G. PRR Manipulator Singularities

This is a manipulator with an initial prismatic joint followed
by two revolute joints. The joint variables are dy, 62, and fs.
The determinant of the Jacobian simplifies to

det(Dgk:) =a3(as sin a; €os ag sin @ €O8 62 cos f3 sin f3
4+ azcosay sin? ay cos 3 sin 03
+ ag cos ay sinf3
+ a3 sin a; sin ay sin B, cos® 03
+ a2 sin o sin ag sin B cos 03
— sin o sin? aads cos 02 cos 03

4 cos a oS g Sin aads cos 63). (79)

Here, a3 # O for a nontrivial robot. As before, we shall
consider only the remaining factor.

Case 1: o, = 0. The first two joints are parallel in this
case. The determinant simplifies to

det(Dgk:) =a3 sin? oy cos B3 sin 83
+ apsinfs
+ cos oy sin aad3 cos 3. (80)
The above expression is free of f2. Hence, the singular points
are parallel lines at the roots of the above equation.
Case 2: a9 = 0. The last two joint axes are parallel. The
determinant simplifies a great deal to

(81)

The singularities of such manipulators are lines in the 6,03
plane at 3 = 0 (mod =), and the nontrivial manipulators
are clearly generic.

det(Dgk) =az cosai sin f3.

H. RRR Manipulator Singularities

This is the most difficult and yet common three-joint manip-
ulator. The joint variables are 61, 82, and 63. The determinant
of the Jacobian simplifies to the following expression:

det(Dgk:) =a3(aza3 sin a; cos az sin f2 sin® 03
— asda sin oy cos @ sin ag sin B cos 93 sin 03
+ aya3 cos o COS (g Sin g €os B cos B3 sin 03
— asas3 sin a; cos B cos 03 sin 03
—ajassina sin® ap cos B3 sin 03
— asds sin o sin g sin @ sin 63

—_ 0422

sin ary cos B sin 83

— ajaosina sinfs

+ aja3 €OS ) Sin ag sin by cos? 03
+ asds sin a1 sin o cos 2 cos? 63
+ dadz sinay sin? ao sin B cos 63
+ ayas cos a1 sin g sin §3 cos 03
— a1dscos oy sin? a cos B cos 63
+ agd, sin a; sin ag cos f3 cos 03

— ayd3 sin o cos g sin o cos f3). (82)

R [
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F

ig. 4. Zero sets of (cos arg sin f sin 63 — cos §2 cos B3 —dz sinoz sin 82
—as cos by) for ap = 1.2, d3 = 0.8, and a2 = 0.1.

Note that a3 is a factor. Therefore, any manipulator with
as = 0 will be singular. Since a3 # 0 for a nontrivial
manipulator, we may scale all length parameters by as to
obtain an expression for the determinant in nondimensional
terms. For the rest of this subsection, we shall assume that all
length parameters are scaled by as.

Case 1: a; = 0. This is a manipulator in which the first
two joint axes intersect. Examples of robots possessing this
characteristic are Unimation PUMA, Cincinnati-Milacron T3,
Microbot TeachMover, and GE P50. The expression for the
determinant can be simplified and factored as

det(Dgk:) =sin ai(agsinfs — da sin ag cos f3)
(cos ag sin Bz sin B3 — cos 5 cos O3

— d3sinagsin @y — aa cos 02). (83)

The expression for det(Dg#;) has three factors. The first
factor, sin a1, indicates that, for a nontrivial manipulator, both
a; and ay cannot be simultaneously zero, since this would
make the first two joints coincide. The zero sets of the second
factor (ag sinf3 — da sin az cos 63) will always form straight
lines in the §,—f3 plane, with two singular lines per 27 rad
of 5. The zero set of the third factor, (cos g sin B2 sin 05 —
cos 0 cos 03 — d3 sin ap sin 2 — a9 cos 6), defines a smooth
manifold for almost all parameter values. These are shown as
a pair of curved lines in Fig. 4.

An exception occurs if a2 + ds? tan? oy = 1, when these
lines intersect to yield an additional straight line as shown in
Fig. 5.

The other exception is when cos ap = 0,d3 = 0 and las| <
1. Then the factor can be decomposed as cos f2(cos 03 + a2),
producing an additional pair of lines at 3 = cos™! ag. Note
that in this case there can be as many as six distinct singular
lines in the configuration space (see Fig. 6).
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Fig. 5. Zero sets of (cos ag sin 83 sin 3 — cos 6 cos 03 — d3 sin a3 sin #2
—ay cosBy) foras = 1,d3 =1, and ay = 0.
@
3
6
5
4
3
2
1
L
1 2 3 4 5 6 2
Fig. 6. Zero sets of det(Dk¢) foras = 0.1,dp = 0,d3 = 0, and ag = 7 /2.

Case 2: oy = 0. This is a manipulator with the first two
joints parallel. The determinant of the Jacobian is
det(Dgk¢) =a1 sin ag cos 03
(cos ap cos B sin B3 + sin O cos 3

+ agsinfy — d3sin as cos bs). (84)

The singular sets are very similar to those of Case 1, since
they are both caused by the same fact, i.e., the first two axes
are coplanar. First, a; is a factor, as in Case 1, since a; = 0

]
1 2 3 4 5 3 2

Fig. 7. Zero sets of (sin 82 sinf3 — cos ¥y cosf3 — az cos o — ay) for

a; =1and ap = 1.

indicates that the first two joints coincide. Second, sin ap is a
factor since if it is also 0, all three joints would be parallel.
Third, the factor cos 63 results in singular lines which occur at
f3 = 7/2 (mod ~). Finally, the factor (cos as cos 8 sin 63+
sin @5 cos 3 + ag sin fy — d3 sin @ cos f2) results in singular
sets similar to those of Figs. 4 and 5, except that they are
shifted in 62 by /2 rad.

Case 3: as = 0. This is a manipulator with the last two
joints parallel. This characteristic also exists in the Unimation
PUMA, the Cincinnati-Milacron T3, the Microbot Teach-
Mover, and the GE P50. The determinant of the Jacobian
is

det(Dgk;) = azsin o sin §3(sin 02 sin 03

—cosfycosfz —azcosby —ay). (85)

In this case, ay is a factor, since if both as and sin «s are
zero, the last two joint axes are identical. The term sina;
is a factor since sin; being 0 would make all three joint
axes parallel. The factor sinf3 produces singular lines at
63 = 0 (mod 7). This is caused by the last two links being
completely extended or completely folded. Finally, the factor
(sin @3 sin O3 — cos 63 cos 03 — ag cos f2 —ay ) results in singular
curves as shown in Fig. 7.

The different limbs of the singular curves touch each other
if £ay £a; = 1 at the points § = 0 (mod 7) and f3 =
0 (mod 7) (see Fig. 8).

VII. CONCLUSIONS

Some results from differential topology were applied to the
manipulator singularity problem. We showed that, for the class
of generic robots, important information could be obtained
about the ranks of the possible singularities and the differential
topology of the set of singular points. We saw that, for
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a
1 2 3 4 5 6 2

Fig. 8. Zero sets of (sinf2 sin @3 — cos B cos B3 — az cos B — ay) for

1; = 0.5 and ag = 0.5.

generic robots, the set of singular points of rank r are smooth
manifolds in joint space of codimension (j —)(k — ), where
j is the dimension of joint space and k is the dimension of
task space. This result also allows us to automatically exclude
certain low-rank singularities from occurring in generic robots.
Hence, by designing a robot to be generic, we can eliminate
singularities of low rank.

Since generic singularities are so well behaved, the question
naturally arises: What types of robots are generic? Genericity
was originally defined in terms of transversality of the map Dk
to a manifold collection in the space £ of all k£ x j matrices.
This definition is not well suited for determining the values
of the kinematic parameters that cause the manipulator to
be generic. An equivalent condition for genericity of three-
joint manipulators in a three-dimensional task space was
derived (Theorem 2). The condition uses the determinant of
the Jacobian and its derivatives, and is amenable to symbolic
computation. It is directly applicable to the common class
of robots that can be decoupled into a translating part and
an orienting part. All six-joint manipulators with a so-called
“spherical wrist” are of this class. The condition for gener-
icity can be used to analyze the singularities of such robot
manipulators.

Two problems concerning manipulator singularities were
considered in detail: orientation singularity, when the robot
is used only for orienting the end-effector; and translation
singularity, when the robot is used only for translating the
end-effector. The results can be used for analyzing decoupled
manipulators.

Orientation singularities were completely characterized for
manipulators with an arbitrary number of joints. It was shown
that the number of adjacent parallel joints was critical; the
robot is generic if and only if no adjacent joints are parallel.
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Further, the singular points of generic manipulators form
two-dimensional planes in joint space, parallel to the 0,-6,
plane, with the intermediate joint angles taking on values
of 0 (mod 7). Nongeneric manipulators were analyzed by
grouping adjacent parallel joints into sets and reducing the
manipulator to a generic one. It was shown that the singular
points now form planes of higher dimension.

Translation singularities proved to be much more complex.
The singularities of the eight possible topologies of three-
joint manipulators were studied. Since the singular sets of
generic manipulators form manifolds, they can be reliably
computed for a given robot. We concentrate our effort on
determining the values of the kinematic parameters that make a
robot nongeneric and describe the singular sets for nongeneric
robots. The manipulator genericity condition produces three
nonlinear (trigonometric) equations in two joint variables and
as many as seven kinematic parameters, which have to be
simultaneously satisfied for the robot to become nongeneric.
The joint variables were eliminated from the three equations to
determine the values of the kinematic parameters that make the
robot nongeneric. Using this procedure, the PPP, PPR, RPP,
and PRP manipulators were analyzed, necessary and sufficient
conditions on the kinematic parameter values for nongenericity
were determined, and the nongeneric singularities described.
Such a complete characterization proved to be difficult for
RRP, RPR, PRR, and RRR manipulators. For these manipu-
lators, the singularities were examined after assigning values
to certain kinematic parameters.

Besides providing insight into the nature of the set of
singular points, the results will aid in the kinematic design
of robot manipulators. Designers can determine the types of
singularities that will occur early in the design cycle. For
example, the designer of a PRP manipulator for translation will
know that if he or she makes the last two joint axes intersect
(ag = 0), the robot will be nongeneric and will have singular
points as described in Section VI. Further, by choosing the link
twists judiciously (e.g. a1 = 0, g = 3), certain singularities
can be eliminated. The designer can also choose joint limits
that exclude the singularities from the range of joint motions
(C.g., d3 > O).

APPENDIX A
KINEMATIC PARAMETER CONVENTION

The convention used for the kinematic parameters of robot
manipulators is that of Paul [19] and is based on the work of
Denavit and Hartenberg [4].

Each joint is assigned an axis. For a revolute joint, the axis
is uniquely defined as the axis of revolution of the joint. In
the case of prismatic joints, only the direction of the axis is
uniquely defined, and the axis is taken to pass throuzh any
convenient point. The links are numbered starting from 0 for
the base (fixed) link. The joints are numbered starting from 1
for the first joint.

a; The length of link i, defined as the shortest distance

between the axis of joint 4 and the axis of joint ¢ + 1.

«; The twist of link i, defined as the angle between the axis

of joint ¢ and the axis of joint ¢ + 1.
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d; The offset of link ¢, defined as the distance along the
axis of joint 7, between the foot of the common normal
to joint 4 — 1 and the foot of the common normal to
joint ¢ + 1.

6; The angle of joint i, defined as the angle between the
common normal to joint ¢ — 1 and the common normal
to joint ¢ + 1.

It is also customary to associate a coordinate frame with
each link. Reference [19] describes the specification of the
link coordinate frames. For our purposes, the most important
feature of the coordinate frame of link ¢ is that the unit vector
2; is aligned with the axis of joint ¢+1. If joint 4+ 1 is revolute,
a right-hand rotation about z; corresponds to a positive rotation
of 6;,1; if the joint is prismatic, a displacement along z;
corresponds to increasing d;;;. Also, p; is the vector from
a point on the axis of joint 7+ 1 (usually taken to be the origin
of link i’s coordinate frame) to the origin of the end-effector
coordinate frame.

APPENDIX B
DETERMINING NONGENERICITY

In this appendix, we derive techniques for determining the
conditions on the kinematic parameters of the manipulator,
which result in nongenericity. The basic idea follows from
manipulator genericity theorem for three-joint robots:

nongeneric < Jg such that
det Dgk = 0 and Dgdet D& =0. (BI)

One way a manipulator can be nongeneric is if it is always
singular and (B1) is satisfied for all g. Similarly, a manipulator
that is never singular is generic. These are the trivial cases. In
general, (B1) represents three equations in two joint variables
and as many as seven kinematic parameters. This is because
the first joint variable g; does not appear in the expression for
det(Dx), since changing ¢; does not change the relative posi-
tions of the joint axes. Hence, (8/8q:)(det Dk) is identically
0.

We determine the conditions on the parameters such that
(B1) has a solution. This can be done by eliminating g2 and g3
from the equations. For revolute joints, however, trigonometric
functions of g; appear in the equations, and it is difficult to
eliminate these in a systematic fashion. We shall next examine
three subproblems in determining the link parameters such that
(B1) can be satisfied.

The first two problems are of a specific nature and are dis-
cussed because they arise in our application and because they
can be given necessary and sufficient conditions for having a
solution. Problem P3 is applicable to the determination of satis-
fiability of any system of trigonometric polynomials. However,
we can only get necessary but not sufficient conditions. The
details of these problems can be found in [18].

Problem P1

Determine necessary and sufficient conditions on a,b,a’,b’
such that the following system has a solution:

az+b=0 (B2)

a=0
dz+b =0.

(B3)
(B4

Such equations arise when det Dgk has the form a(gs)gz +

b(gs)-
Equations (B2), (B3), and (B4) have a common root if and

only if

a=b=ad=0=0 (B5)
and any z is a solution, or
a=b=0 and a #0 (B6)
and x = —b'/a’ is the solution.

Problem P2

Determine necessary and sufficient conditions on a, b, ¢, o/,
b, ¢ such that the following system has a solution:

asint +bcost+¢c=0 (B7)
acost —bsint =0 (B8)
o' sint 4+ b cost + ¢ = 0. (B9)

Such equations arise when det Dgs has the form
a(gs) sin gz + b(gs) cos g2 + c(qa)-

Equations (B7), (B8), and (B9) have a common root if and
only if

a=b=c=0 and a?+b%*-c?>0 (B10)
or
c#0 and a?4+b2—-c*=0 and ad +0bb' —cc =0.
(B11)
Problem P3

Determine necessary conditions on the coefficients of a
system of trigonometric polynomials, i.e., polynomials with
indeterminates sin ¢ and cost¢ such that they have a common
solution.

It is clear that any such system can be written in the
following canonical form:

po = (@g,0 + -+ + Go,n, COS™ t)
+sint(bg,o + -+ - + bo,mo cOS™ 1) = 0

pr = (@r0 +++ + Gpp, cOS"" t)

+sint{brg+ -+ bpm, cos™ t) =0. (B12)

In this case, we can still use elimination theory [26],
[28] with suitable modifications to deal with trigonometric
polynomials. The details are provided in [18], where the
following theorem is given.

Theorem 7: We can construct a system of polynomials
Ds,...,Dy, in the coefficients of a system of trigonometric

polynomials (see (B12)) such that
D;=0,...,D,=0 (B13)

is necessary for the system to have a solution.
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