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Fig. 1.  Typical inductor current waveform of a buck converter. 

Self-Tuned Projected Cross Point - An Improved 
Current-Mode Control Technique 
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Abstract—Self-tuned projected cross point control for power 
electronic converters is introduced.  Projected cross point 
control (PCPC) combines the advantages of both analog and 
digital current-mode control techniques.  Despite several 
advantages, accuracy of the PCPC method depends on the 
power stage inductor value.  However, ferromagnetic 
characteristics of the inductor core material make the 
inductor measurement inaccurate.  Furthermore, the 
inductor value is subject to change due to temperature 
variations or other environmental effects.  To overcome the 
dependence of the PCPC method on the inductor value, self-
tuned PCPC approach is introduced in this paper.  Unlike 
the conventional PCPC scheme, self-tuned PCPC method 
has excellent robustness against the variations of the 
inductor value.  Hence, the average inductor current 
accurately follows its reference regardless of aging and 
temperature effects on the power stage inductor.  
Furthermore, the addition of the self-tuning mechanism 
does not interfere with the dynamic performance of the 
conventional PCPC method.  Analytical analysis and 
simulation results show the superior accuracy and transient 
response of the self-tuned projected cross point control 
technique. 

I. INTRODUCTION

Projected cross point control (PCPC) technique has 
been introduced in [1].  It enjoys the advantages of both 
analog and digital current-mode control techniques.  
Unlike traditional analog methods [2-10], it accurately 
controls the average value of the inductor current with no 
need for a current compensator or an external ramp.  In 
addition, while resembling the deadbeat characteristics of 
digital current-mode controllers [11-29], the PCPC 
method does not suffer from computational time delay, 
limit cycling, and quantization and truncation errors. 

Despite its excellent advantages, accuracy of the PCPC 
method depends on the power stage inductor value.  
Inductor value has to be measured and preprogrammed in 
the controller.  However, measurement of inductor value 
may not be accurate enough due to its ferromagnetic 
characteristics.  Furthermore, power stage inductor value 
is subject to change due to temperature, aging, and the dc 
current passing through it.  Therefore, the PCPC approach 
will not be accurate enough if one fails to find or estimate 
the exact value of the inductor.  In this case, there will be 
an offset between the inductor current and its reference.  
In other words, control objective will not be satisfied 
anymore.  An improved PCPC method, named self-tuned 
PCPC technique, is introduced in this paper.  The self-
tuned PCPC method uses the error between inductor 
current and its reference to adjust the inductor value used 
in the controller.  As a result, the control objective is 

satisfied and the improved controller is robust against 
variations of the power stage inductor value.  Self-tuning 
does not interfere with line and load regulations; hence, 
the self-tuned PCPC method has identical regulation 
dynamic as the conventional one. 

In Section II, principles of operation and 
implementation of the PCPC scheme are provided.  Self-
tuned PCPC method is discussed in detail in Section III.  
Simulation results are presented in Section IV.  Finally, 
Section V draws the conclusions and presents an overall 
evaluation of the self-tuned PCPC approach 

II. PROJECTED CROSS POINT CONTROL APPROACH

A. Introduction of the Projected Cross Point Control 
method 

The PCPC method has been introduced in [1].  In this 
paper, without loss of generality, a buck converter is used 
to introduce the principles of operation of the PCPC 
method.  A typical waveform of the inductor current is 
shown in Fig. 1.  In this figure, iref indicates the reference 
current, which is the output signal of the voltage 
compensator.  Without loss of generality and for the ease 
of demonstration in Fig. 1, reference current iref is drawn 
as a straight line.  Desired inductor current in the steady-
state operation is sketched in dashed lines.  Associated 
labels are identified by an ss (steady-state) subscript.  It is 
worth mentioning that, in average current-mode control 
and under steady-state conditions, initial and final values 
of the inductor current are identical and the average value 
of the inductor current follows the reference current.  In 
Fig. 1, perturbed inductor current is sketched in solid 
lines.  Considering average current-mode control, the 
control objective is to make sure that the final value of the 
inductor current returns to its steady-state value no matter 
what the initial value of the inductor current is.  In other 
words 
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Fig. 2.  Block diagram of the PCPC approach. 

Fig. 3  Transients in the output voltage when input voltage Vin

changes from 3 V to 6 V at 0.003 s. 

Where, Ifin,ss is the final value of the inductor current in the 
steady state operation and iL is the steady-state peak-to-
peak ripple of the inductor current.  It is obvious that if the 
control objective is satisfied, in the next switching cycle, 
average value of the inductor current will be identical with 
the reference; therefore, PCPC is an average current-mode 
control approach. 

In order to satisfy the control objective, PCPC method 
needs to find the cross point of lines iL and i - (the inductor 
current in the negative slope area), which is indicated as 
point ‘a’ in Fig. 1.  The equation for i – is 

t
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In order to find ton, the cross point of iL and i – will have to 
be identified; therefore 
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By combining (2) and (3), one obtains 
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Equation (4) can be simplified as 

(a) (b) (c) (d) (e)

onosoLonrefonLreal tvTvittittiL ]2/)()([* (5)

The PCPC scheme solves (5) for ton in real time as 
shown in the block diagram in Fig. 2.  Different 
expressions in (5) that are labeled (a) through (e) are 
found as follows (a) inductor current iL is measured, (b) 
reference current iref is the output of the voltage 
compensator, (c) iL is the steady-state peak-to-peak 
ripple of the inductor current (details of finding iL in real 
time is described in [1]), and (d) and (e) are simply found 
by integration as depicted in Fig. 2. 

Having the voltage loop closed, waveform of the output 
voltage when there is a step change in input voltage Vin is 
shown in Fig. 3(a).  For the sake of comparison, the output 
voltage waveforms of the same converter with the same 
voltage compensator controlled with the peak current-
mode approach with three different values for the external 
ramp are also depicted in Figs. 3(b) through 3(d).  In Fig. 
3(b), the external ramp is slightly smaller than the 
negative slope of the inductor current (-Vo/L = -10*10-6), 
which is -8*10-6.  Another output voltage waveform of the  

peak current-mode control method with a smaller external 
ramp (-6*10-6) is shown in Fig. 3(c).  Output voltage 
waveform of peak current-mode control with external 
ramp equal to the negative slope of the inductor current is 
shown in Fig. 3(d).  As in can be observed from Fig. 3(c), 
the transient response of the peak current-mode controller 
can get as good as that of the PCPC method; however, 
sub-harmonic oscillations appear.  In order to eliminate 
the sub-harmonic oscillations, the external ramp needs to 
be increased which yields a higher output voltage 
overshoot (see Fig. 3(d)).  Fig. 3 confirms that PCPC 
method has a superior transient performance for line 
regulation and steady state stability when compared with 
the peak current-mode control method.  The inductor 
current and its reference for the PCPC and peak current-
mode (with an external ramp of -8*10-6) control methods 
when there is a step change in input voltage Vin are shown 
in Fig. 4.  Simulation results prove that by using the PCPC 
method, the perturbation of the inductor current will 
disappear at the end of the first cycle guaranteeing inner 
loop stability and simultaneously providing the fastest 
possible transient response. 

(a) PCPC approach 

(b) Peak current-mode control 
(external ramp = -8*10-6)

(c) Peak current-mode control 
(external ramp = -6*10-6)

(d) Peak current-mode control 
(external ramp = -10*10-6)
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B. Sensitivity of the PCPC method to the power stage 
inductor variations 

As it can be observed from (5), the PCPC method 
depends on power stage inductor value Lreal.  This method 
is not accurate if the precise value of Lreal is not available.  
During the design process, the designer measures the 
value of the inductor used in the power stage and 
programs the controller based on that (Lasmd).  This 
measurement may not be accurate enough; furthermore, in 
practical cases, value of the inductor is subject to change 
due to temperature variations or other environmental 
effects.  In addition, inductor is a nonlinear component 
and it is hard to estimate its exact value at the operating 
point, which is variable itself.  The effect of inaccuracies 
in the programmed value for the inductor in the PCPC 
method is depicted in Fig. 5.  In this figure, using (5), 
reference current iref and the inductor current are sketched 
for three different cases. 

Lreal is the real value of the inductor and Lasmd is the 
value that has been used in the controller (see Fig. 2).  It 
can be observed from Fig. 5 that when Lreal > Lasmd, the 
average value of inductor current is greater than iref (<iL>
> iref).  On the other hand, when Lreal < Lasmd, the average 
value of inductor current is less than iref (<iL> < iref).  The 
control objective (<iL> = iref) is only satisfied if Lreal=Lasmd;
otherwise, there is an offset between <iL> and iref.  By 
observing these results, one would devise a self tuning 
approach to adjust Lasmd based on this offset. 

III. SELF-TUNED PROJECTED CROSS POINT CONTROL 
APPROACH

Self-tuned PCPC is proposed to overcome the 
dependency of the control algorithm on the inductor value.  
The block diagram of the self-tuning module is depicted in 
Fig. 6.  This block replaces the grey block in Fig. 2 (Lasmd).
In Fig. 5, Ladjs refers to the adjusted inductor value which 
will be used in (5).  The self-tuning mechanism can be 
described by 

dtiikLL Lrefasmdadjs )( . (6)

As discussed in section II, there will be an offset 
between the average value of the inductor current (<iL>) 
and the reference current when the inductor value is not 
accurately measured and programmed.  This offset is 
integrated and then enlarged by gain k.  Then it is 
subtracted from Lasmd to adjust the inductor value used in 
(5).  As a result of this, the inductor value in (5) can track 
the exact value of the power stage inductor and the 
average value of the inductor current can follow the 
reference current.  Gain value k determines how fast the 
self-tuning will converge on the real value of the inductor.  
The larger the value of k is; the faster self-tuning will get. 

IV. SIMULATION RESULTS 

In order to observe the performance of the self-tuned 
method, the conventional and self-tuned PCPC methods 
are simulated and compared.  Figs. 7 and 8 show that the 
average value of the inductor current cannot follow the 
reference current when the inductor value is not accurately 
programmed in the conventional PCPC method.  The 
average value of iL is 1 Amp. 

Fig. 4.  Inductor current and its reference when Vin changes from 3 V to 
6 V at 0.003 s. 

iref

ireal

Lreal=Lasmd

iref

ireal

Lreal>Lasmd

irefLreal<Lasmd

ireal

Fig. 5.  Reference current and inductor current of the conventional 
PCPC method when the inductor value is not accurately measured. 

+

-

+

-

Lasmd

iref

iL

Ladjs

k

Fig. 6.  Self-tuning module for the inductor value estimation. 

Fig. 7.  Inductor current and reference current when Lreal < Lasmd using 
the conventional PCPC method. 

Fig. 8.  Inductor current and reference current when Lreal > Lasmd using 
conventional PCPC method. 

PCPC approach 

Peak current-mode control (ramp = -8*10-6)
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Fig. 9.  Assumed inductor value and reference current of the self-tuned 
PCPC method when Lasmd changes from 20 μH to 15 μH at 0.01 s. 

Fig. 11.  Lreal, Lasmd, and Ladjs when Lasmd changes from 20 μH to 15 μH at 
0.01 s. 

Fig. 13.  Output voltage waveforms for PCPC and self-tuned PCPC 
methods when input voltage changes from 3V to 6V at 0.005 s. 

Fig. 10.  Assumed inductor value and reference current of the self-tuned
PCPC method when Lasmd changes from 20 μH to 25 μH at 0.01 s.  

Fig. 12.  Lreal, Lasmd, and Ladjs when Lasmd changes from 20 μH to 25 μH at 
0.01 s. 

Fig. 14.  Output voltage waveforms for PCPC and self-tuned PCPC 
methods when load changes from 2  to 3  at 0.01 s. 

Fig. 9 depicts the reference current of the self-tuned 
PCPC method when Lasmd abruptly changes from 20 μH 
down to 15 μH at 0.01 s.  Fig. 10 shows the reference 
current of the self-tuned PCPC method when Lasmd has an 
abrupt step-up change from 20 μH to 25 μH at 0.01 s.  It 
can be observed from Figs. 9 and 10 that unlike the 
conventional PCPC method, the reference current of the 
self-tuned approach returns back to its normal value after 
a short transient. 

Figs. 11 and 12 depict how the self-tuning module 
corrects the inductor value that is used in the control 
algorithm (Ladjs). Ladjs tries to follow the real value of the 
inductor (Lreal) no matter what the assumed value is (see 
Fig. 6).  In Figs. 11 and 12, Lasmd abruptly changes at 0.01 
s.

In order to study the effect of self-tuning on line and 
load regulation of the PCPC method, output voltage 
waveforms for both PCPC and improved PCPC methods 
when input voltage changes from 3 V to 6 V and load 

changes from 2  to 3  are shown in Figs. 12 and 13, 
respectively.  Here, Lasmd and Lreal have the same value.  
From Figs. 13 and 14, it can be seen that dynamic 
performance of the self-tuned and conventional PCPC 
methods are identical.  By comparing the line and load 
regulation dynamic response of the self-tuned and 
conventional PCPC methods, one can observe that the 
addition of self-tuning does not interfere with the 
regulation characteristics of the conventional PCPC 
method. 

V. CONCLUSION

Projected cross point control (PCPC) method using 
self-tuning is presented in this paper.  The improved 
method has all of the advantages of the PCPC method 
while having an excellent robustness against the variations 
of the power stage inductor value.  Simulation results 
prove its superior performance. 

Lasmd

iref

Lasmd

iref

Lreal

Ladjs
Lasmd

Lreal

Ladjs

Lasmd

Self-tuned PCPC method 

Conventional PCPC method 

Self-tuned PCPC method 

Conventional PCPC method 
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