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I. Introduction 

Improved guidance or trajectory design can lead to 
increased missile performance by flying a more 
optimal trajectory. The increased missile 
performance is characterized in terms of its 
mission. It could be the achievement of maximum 
velocity or maximum energy if it is the midcourse 
guidance of a tactical missile; it can be measured 
in terms of the terminal miss distance for an air to 
surface, air to air, or surface to air missiles. 

Most of the short range missiles use pronav to 
guide them in the terminal phase. Even though 
the pronav performs well in several scenarios, its 
performance degrades if the target is highly 
maneuverable or if the boresight angle is large. 
Several modifications have been suggested in the 
literature for improvement/compensation. These 
include a constant bias to the measured line-of- 
sight before calculation of the commanded 
acceleration. For a detailed list of references on 
guidance and control of air-to-air missiles, refer to 
Cloutier at al. [1989]. 

An approximately optimal guidance law which 
minimizes the kinetic energy loss is proposed by 
Glasson and Mealy [1983]. Their strategy uses a 
time-scheduled navigation ratio. Cheng and Gupta 
[ 19861 use singular perturbation theory to develop 
a guidance law which minimizes flight time. In the 
study by Menon and Briggs [1987], the cost 
function minimizes flight time and the specific 
energy at the final time. The singular perturbation 
approach in these studies are based on defining 
slow dynamics (cross range, flight path angle and 
specific energy), medium dynamics (altitude), and 
fast dynamics (pitch angle and yaw angle). Katzir 
et al. [1989] formulated near-optimal guidance to 
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be used for real-time calculations. It is based on 
a neighboring optimal control concept wherein a 
complementary control is calculated to be added 
to the precalculated nominal optimal control. 

Optimization is a primary concern in all these 
studies. Two-point boundary value problem 
(TPBVP) methods provide exact solutions but 
must be solved for each set of initial conditions. 
This requires determining a separate solution for 
each possible initial condition for a given system. 
Dynamic programming is also an exact method of 
determining optimal control for a family of 
conditions. This method of solution, however, 
becomes very difficult to solve for in higher 
dimension and nonlinear systems. Other methods 
of solution also have their advantages and 
disadvantages. Neighboring optimal control is 
beneficial in that the solution of a single TPBVP 
allows an approximate solution over a range of 
initial conditions. The disadvantage is that 
approximation methods such as neighboring 
optimal control can fail at a distance from the 
original TPBVP solution. In this study, we 
present a neural architecture to solve a typical 
optimal homing missile guidance problem. 

There is a multitude of neurocontrollers in the 
published literature [White and Sofge, 19921. 
Almost all of them fall within four categories: 1) 
supervised control, 2) direct inverse control, 3) 
neural adaptive control, and 4) backpropagation 
through time. A fifth and rarely studied class of 
controller has the most interesting structure. It is 
called an Adaptive Critic Architecture. We chose 
this structure for formulating the optimal control 
problems. The reasons are: 1) this structure 
obtains an optimal controller through solving 
dynamic programming equations, and 2) this 
approach has a supervisor (critic) which critiques 
the outputs of the controller network and a 
controller. Therefore, this approach has a built-in 
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fault tolerance, 3) this approach needs NO external 
training as in other forms of neurocontrollers, and 
4) this is not an open loop optimal controller but 
a feedback controller. 

The method discussed in this study determines an 
optimal control law for a system by successively 
adapting two networks - an action and a critic 
network. This method determines the control law 
for an entire range of initial conditions. In 
addition the control law does not need to be 
determined mathematically. This method 
simultaneously determines and adapts the neural 
networks to the optimal control policy for both 
linear and nonlinear systems. In addition, it is 
important to know that the form of control does 
not need to be known in order to use this method. 

II. Problem Formulation 

A. Statement of the General Problem 

In this study, a problem of the form 
tf 

J=@ (x( t,) 1 +St (x(+) , u ( 7 )  ) d7 
0 

k=f ( x ,  U) 

t p g i v e n  x,pgiven 

is being considered. 

The method used in this study has advantages over 
the previous methods in that solutions are found 
over any user specified range of x, and these 
solutions are then available for the entire span of 
x. In addition, the user need not assume any 
predetermined form or function for the control 
law. 

B. Dynamic Programming Background (Exact 
Results) 

We can rewrite Eq. 1 as 
J ( x (  t) =KJ(x(t) ,  u ( x ( t )  ) +<J(X(t+l) > 

(4) 

Here, J(x(t)) is the cost associated with going from 
time t to the final time. U(x(t),u(x(t))) is the 
utility, which is the cost from going from time t to 

time t + 1. Finally, < J(x(t + 1)) > is assumed to be 
the minimum cost associated with going from time 
t + l  to the final time. 

If both sides of the equation are differentiated and 
we define 

then 

From this it can be seen that if <A(x(t+l))>, 
U(x(t),u(t)) and the system model derivatives are 
known then A(x(t)) can be found. 

Next, the optimality equation is defined as 

Dynamic programming uses these equation to aid 
in solving an infinite horizon policy or to 
determine the control policy for a finite horizon 
problem. 

C. Training Methods (Approximation 
Techniques) 

As mentioned earlier, this study uses Eq. 7 in 
order to determine the optimal control policy. 
The basic training takes place in two stages, the 
training of the action network (the network 
modeling u(x(t)) and the training of the critic 
network (the network modeling, or approximating 
A(x(t)). Both networks are assumed to be 
feedforward multiple layer perceptron networks. 

To train the action network for time step t, first 
x(t) is randomized and the action network outputs 
u(t). The system model is then used to find 
x(t + 1) and (6x(t + 1))/(6u(t)). Next, the critic 
from t f l  is used to find A(x(t+l)). This 
information is used to update the action network. 
This process is continued until a predetermined 
level of convergence is reached. 
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To train the critic network for the time step t, x(t) 
is randomized and the output of the critic A(x(t)) 
is found. The action network from step t 
calculates u(t) and (du(t))/(dx(t)). The model is 
then used to find (dx(t+l)) / (dx(t)) ,  
(6x(t + l))/(du(t)) and x(t + 1). The critic from step 
t + 1 is then used to find A(x(t+ 1)). After this, Eq. 
6 is used to find A*(x(t)), the target value for the 
critic. This process is continued until a 
predetermined level of convergence is reached. 

D. Homing Missile Guidance 

- - 

The equations of motion of a target-intercept 
model (Figure 1) and an appropriate cost function 
are presented in this section. The equations of 
relative motion between a constant-velocity target 
and a missile in two dimensions are: 

0 0 1 0  0 0  

o o o l ~ + o o ~ ~  0 0 0 0  1 o u  (8) 

0 0 0 0  0 1  

( t+l)  
( t+l)  
( t+l)  

' (t+l)  

The cost function which seeks to minimize the 
terminal miss-distance and the control effort is 
given by 

1 

- 0 
0 
0 

+ [uTud t  
to 

2 

In these equations, x,y are the relative positions 
and x and y are the relative velocities;% and 9 
are the missile controls in x and y directions, 
respectively. 

The first step of this problem is to discretize the 
system. A time step of 0.4 seconds was chosen. 

+lo.. O 

0 

this results in the following 

with the discretized cost function 

Next, a neural network is designed and the initial 
weights are randomized. After randomization, the 
appropriate utility functions are specified. A(t + 1) 
is set equal to zero. With these definitions it is 
then possible to determine the control law for the 
final time step using a gradient descent algorithm. 
Next, a neural network is randomized to function 
as the critic for the final time step. Using the 
same definitions for A(t + 1) and the utility function 
as the final control law allows the use of Eq. 6 to 
detennine the final critic mapping. After the critic 
for the final time step has converged, the action 
network for the previous time step can be 
determined. (Note that A(t + 1) is determined from 
the critic network for the final time step. This, 
with the utility function, allows the action network 
to be trained for the optimal control law for the 
previous time step.) 

After the action network has converged, the next 
to the last step critic network can be determined 
using this new action network and the previous 
critic network. This information, along with Eq. 6, 
provides the information to determine the new 
critic network. This backward sweep methodology 
is continued to determine the action and critic 
networks for each time step. This process 
continues until the control has been determined 
for the desired interval of time. 

III. Discussion of Numerical Results 

The homing missile problem was solved for a 
gamma of 10". The desired final time was 
assumed to be 5.2 seconds. Figure (2) shows 
values for x and y for both the neural network 
determined trajectories and the 
trajectories determined by LQR methodology. 
Note that both trajectories are nearly identical. 
Figure (3) shows the same trajectories for the 
velocity in the x and y directions. Once again, 
notice that these trajectories are nearly identical. 
It is important to note that the initial conditions 
for this problem can be generated randomly. To 
show the feedback capabilities of this technique, 
we generated random initial conditions for the 
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positions and velocities and ran the trajectories 
with control provided by the neural networks. The 
states, as well as the control, are presented in 
Figures (4-9). It can be observed that in & these 
cases, the resulting trajectories and control are 
almost identical with pointwise solutions of LQR 
results. Another feature of this technology is to 
provide optimal control at any given time-to-go. 
(Here it is provided by stage N). From Figures 
(10) and (1 l), we can observe that at any given 
time-to-go and same initial conditions, the neural 
networks provide control for nearly optimal 
trajectories. This method determined the control 
law not only for a specific starting point, but also 
for any point within the training range. 

Plaiit lnpurs 

Missile acceleratioii. ux, uy 

x. Y. i. Y 
Missile 

IV. Conclusions 

. . .  

We have presented a new neural architecture 
which imbeds dynamic programming solutions to 
solve optimal target-intercept problems. They 
provide feedback guidance solutions, which are 
optimal with any initial conditions and time-to-go, 
for a two dimensional scenario. 
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