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ABSTRACT. Geographical object-based image analysis (GEOBIA) usually starts defining coarse geometric 

space elements, i.e. image-objects, by grouping near pixels based on (a, b)-connected graphs as 

neighbourhood definitions. In such an approach, however, topological axioms needed to ensure a correct 

representation of connectedness relationships can not be satisfied. Thus, conventional image-object 

boundaries definition presents ambiguities because one-dimensional contours are represented by two-

dimensional pixels. In this paper, segmentation is conducted using a novel approach based on axiomatic 

locally finite spaces (provided by Cartesian complexes) and their linked oriented matroids. For the test, the 
ALFS-based image segments were classified using the support vector machine (SVM) algorithm using 

directional filter response as an additional channel. The proposed approach uses a multi-scale approach for the 

segmentation, which includes multi-scale texture and spectral affinity analysis in boundary definition. The 

proposed approach was evaluated comparatively with conventional pixel representation on a small subset of 

GEOBIA2016 benchmark dataset. Results show that classification accuracy is increased in comparison to a 

conventional pixel segmentation. 

Keywords: GEOBIA, inter-pixel element, finite spaces, oriented matroid, SVM classification 

 

RESUMEN. El análisis de imagenes basado en objetos geográficos (GEOBIA por su sigla en inglés) 

comienza generalmente definiendo elementos más gruesos del espacio geométrico u objetos de imagen, 

agrupando píxeles cercanos con base en grafos (a, b)-conectados como definiciones de vecindario. En este 

enfoque, sin embargo, pueden no cumplirse algunos axiomas topológicos requeridos para garantizar una 
correcta representación de las relaciones de conexión. Por lo tanto, la definición convencional de límites de 

objetos de imagen, presenta ambigüedades debido a que los contornos unidimensionales están representados 

por píxeles bidimensionales. En este trabajo, la segmentación se lleva a cabo mediante un nuevo enfoque 

basado en espacios axiomáticos localmente finitos (proporcionados por complejos cartesianos) y sus 

matroides orientados asociados. Para probar el enfoque propuesto, los segmentos de la imagen basada en 

ALFS fueron clasificados usando el algoritmo de máquina de soporte vectorial (SVM por su sigla en inglés) 

usando la respuesta a filtros direccionales como un canal adicional. El enfoque propuesto utiliza un enfoque 
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multiescala para la segmentación, que incluye análisis de textura y de afinidad espectral en la definición de 

límite. La propuesta se evaluó comparativamente con la representación de píxeles convencionales en un 

pequeño subconjunto del conjunto de datos de referencia GEOBIA2016. Los resultados muestran que la 

exactitud de la clasificación se incrementa en comparación con la segmentación convencional de pixeles.  

Palabras clave: GEOBIA, elemento inter-pixel, espacios finitos, matroide orientado, clasificación SVM. 
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1. Introduction  

GEOBIA based image classification usually uses a given nearby pixel grouping scheme 

(Grady, 2012; Brun et al.,2003) to form elements of coarser grain (image-objects) which 

are then used as spatial units to apply a classification model. In this first segmentation stage, 

a common strategy is to group near pixels based on (a, b)-connected graphs to represent 

neighbourhood relationships. However, some ambiguities appear using such representation 

as topological requirements are not respected (Kovalevsky, 2008). Specifically, digital 

image segmentation is heavily dependent on appropriate boundary definitions, also known 

as T0, which are very hard to obtain in a 2D space from 2D-elements as (a, b)-connected 

graphs (Kovalevsky, 1989). For such a purpose, Kovalevsky (1984); (2001); (2005); (2006), 

proposes the use of Axiomatic Locally Finite Space (ALFS) provided by Cartesian 

complexes which rely on Abstract Cell Complexes (ACC). The ALFS digital space meets 

the T0 separation property by defining properly the boundary of higher dimension space 

elements by connecting lower dimension elements. 

Valero et al., (2017) proposed a computational framework based on Cartesian 

complexes as well as a codification of topological and geometrical features using oriented 

matroids (Whitney, 1935; Oxley, 2006) linked with the hyperplane central arrangement 

(Fukuda, 2004) defined by Standard Separating Forms (SSFs) (Kovalevsky, 2008) 

available in the Cartesian complex (CC) geometric space. However, such framework does 

not include neither the spectral affinity analysis (Arbeláez et al., 2011) nor the multi-scale 

criteria when using oriented gradient for producing image-objects. 

This paper assesses a novel segmentation approach based on the image segmentation 

procedure stablished by Arbeláez et al., (2011), but using a multispectral image represented 

as a CC. Proposed segmentation approach starts with a grey scale image conversion based 

on the covariance matrix. Then, filter and gradient kernels are built from SSFs defined on 

each outermost 1-cell. It is followed by the affinity analysis using the decimating procedure 

introduced in Pont-Pont-Tuset et al., (2015), but using inter-pixel 1-cells. For the affinity 

analysis, multi-scale gradients on each multispectral band and texture layer are used. Later, 

support vector machines algorithm (SVM) (Tso and Mather, 2009) classify the produced 

image-objects. 

This paper is organized as follows. Section 2 describes the dataset used. Section 3 

explains the proposed method. Results and discussion are presented in Section 4 and 

conclusions are drawn in Section 5. 

2. Data 

A subset of the airborne image dataset provided by International Society for 

Photogrammetry and Remote Sensing (ISPRS) for the 2D Semantic Labelling contest was 

used in this study. The dataset consists of high resolution true orthophoto (TOP) tiles over 

Potsdam, a historic city in Germany. The TOP tiles are 8-bit TIFF files with four bands: 

RGBIR (R-G-B-IR). Images cover urban scenes that have been classified manually into six 
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land cover classes: Building, Low vegetation, Tree, Car, Impervious surfaces, and 

Clutter/background. In this study, tile 4010 was selected for classification. Two non-

overlapping 1000×1000 pixel windows were subset, one from (5001, 1) to (6000, 1000) for 

training (Figure 1(a)) and the other one from (2501, 5001) to (3500, 6000) for validation 

(Figure 1(b)). 

   

                        (a)      (b) 

FIGURE 1: Orthophoto´s true colour composition: (a) training, (b) test windows 

3. Methods 

The main purpose of the present work is to evaluate if the representation of an image in 

terms of Cartesian complexes (Kovalevsky, 2008) allows a good segmentation and if the 1-

dimensional interpixel element based directional filter response inclusion allows to improve 

SVM classification having an additional variable.  

 Therefore, the proposed approach comprised two stages: (i) image-object production 

(i.e. image segmentation) and (ii) segment-based SVM classification. The workflow for 

multispectral image segmentation and subsequent classification is shown in figure 2. To 

compare the additional variable inclusion (directional filter response) two classification 

scenarios were tested: (i) using only the four bands as input; and (ii) using directional 

filtering response as additional input band. 

 The assessment comprises carrying out the entire process of segmentation and 

classification of the image in both representations, i.e. the Cartesian complex-based image 

segmentation and its subsequent SVM-based classification and a conventional image 

segmentation (Arbeláez et al., 2011) and its subsequent SVM-based classification. 

Although the digital elevation model was available, it was not used because this study 

only compares conventional pixel and Cartesian complex image representations. 
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FIGURE 2. Cartesian complex-based multispectral image segmentation and SVM-based 

classification workflow  

3.1. Image-object production stage 

The image-object production stage comprised 10 tasks, which are described below, 

proposed by Arbeláez et al., (2011). However, these tasks were conducted on 1-cell inter-

pixel space elements, based on Cartesian complexes (CC), rather than on the conventional 

space of pixels. The segment Cartesian complex so obtained was used as super pixels 

(image-objects) input for subsequent classification stage. 

3.1.1. CC (1) and grey scale (2) conversions 

First, it is necessary the image conversion from the conventional pixel space to the CC-

based space (step 1) for having available inter pixel space elements. It followed the 

procedure described in Kovalevsky (2008) applying the EquNaLi set membership rule 

(Kovalevsky, 1989) on-the-fly when an inter-pixel element (1-cells) was needed. Figure 3(a) 

shows a 5×5 color 2D toy image which, as a 2D Cartesian complex, is graphically 

represented including inter–pixel space elements.  

A 2–cell in a Cartesian complex corresponds to a pixel of the 2D image, while the lower 

dimensional cells correspond to the inter–pixel elements that do not exist in the 2D image. 

In figure 3(b), a 2–cell is represented as a square area, each 1–cell is represented as a 

vertical or horizontal dark segment line corresponding to the inter–pixel element between 

the two respective pixels, and each 0–cell is represented as a black dot corresponding to the 

inter–pixel element in the centre of the four respective pixels.  

The finite space is completed with lower dimensional cells on the boundary of it. While 

the representation of figure 3(b) is intuitive, this suggests a non-existent "density" in a 

locally finite space; for this reason, it is preferred the one given in figure 3(c). There each 
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cell of any dimension is represented as a dot and differentiated by its combinatorial 

coordinates but in the figure has been used colours, the same as in Figure 3(b), because the 

combinatorial coordinates are not shown. 

 

    

                   (a)           (b)         (c)  

FIGURE 3.  A 2D image represented in a 2D Cartesian complex. (a) A colour image. (b) 

Image with inter-pixel elements included. (c) Digital representation as an abstract cell 

finite set 

In computer vision, the luminance provides more information in distinguishing visual 

features, so it is preferred as filtering input. To obtain a single grey scale image from the 

multispectral CC image, a linear combination of all bands was proposed and computed 

based on the level of information provided by each band using the covariance matrix (Tso 

and Mather, 2009). The contribution of each band was calculated by means of equation 1.  

  (1) 

where covi,j and covi,l are the covariance between bands i and j or l, n is the number of 

bands and l = 1,2,…,n. The computed weights for the training image were w1= 0.48, w2 = 

0.25 and w3 = 0.26, while for the test image were w1 = 0.51, w2 = 0.23 and w3 = 0.26. 

3.1.2. Multiscale texture analysis (3) and Texture grouping (4) 

A texture analysis was performed to reduce the risk that differences in contrast due to 

the texture of the area to be delimited are considered borders. Filter banks for texture 

recognition (Leung and Jitendra, 1996) were used in the filtering task, but using a central 1-

cell. Each filter bank was composed by Gaussian derivative filter kernels each with an 

orientation, a radius around the central 1-cell and a granularity scale. Orientations were 

defined from SSFs available in a SSF central arrangement (Fukuda, 2004) (see Section 

3.1.3). Filter kernels with (2n+1) × 2n 2-cells (pixels) were used, where n is the number of 

1-cells from the central one. Figure 4(a) shows a rotated Gaussian filter kernel (biggest dots 

are 2-cells, smallest dots are inter-pixel elements and the black one is the central 1-cell) and 

its application on a small portion of the training image (figure 4(b)). The figure shows that, 
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when the initial kernel (horizontal along central 1-cell) is rotated, the new kernel is 

extended and completed with zeroes in such a way that it contains the rotated evaluation 

kernel (filled dots). In this study, as in Arbeláez et al., (2011), a filter bank with 2 scales 

(n=3, 3 √2) and 8 orientations was used for the texture analysis, but on each inter-pixel 1-

cell.  

After multiscale texture analysis, each 1-cell received a response vector with 8 values 

(the number of filter kernels in the filter bank). Those response vectors were grouped using 

the k-means clustering technique to produce an image texture with 32 texture classes. The 

texture class centres were first calculated for the training window texture analysis and after 

applied to the test window texture analysis. 

  

                (a)                (b) 

FIGURE 4. ¡Error! rotated second derivative Gaussian filter kernel (a) and its outcome 

when applied to a little portion of training window (b) 

3.1.3. Multiscale oriented gradient (5) 

Boundaries correspond to image discontinuities, so it would be expected that a large 

distance between the local histogram on each side, along a given orientation, should be an 

indicator of being in one of them (Arbeláez et al., 2011). For each scale, the oriented 

gradient calculation began defining a Manhattan distance based ball (Worboys and 

Duckham, 2004), which was centred at a 1-cell. Each ball was overlaid with a SSF central 

arrangement to produce a sector set (figure 5(a)). Then, for each sector, its histogram was 

calculated and then, it was combined with the others sector histograms on the same side in 

agreement with a given orientation (figure 5(b)). The oriented gradient image was 

computed for each 1-cell placing at it a ball split in two half balls along each SSF 

orientation. 
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     (a) Sectors    (b) Ball halves 

FIGURE 5: Common sectors in a 7-SSF central arrangement (a), and their combination for 

four SSF orientations (b) 

In Valero et al., (2017), the SSF set is produced passing each SSF over each 0-cell and 

the central 1-cell but this causes that the inner defined SSFs are contained by one or several 

outermost. In this study, the SSFs were obtained in such a way that each one crossed both 

an external 1-cell and a central one. Therefore, the maximum number of SSFs was obtained 

combinatorically from nSSF=2(2(n−1)+1)+1, where n is a radius in number of cracks from 

the central one. Oriented matroids (Whitney, 1935; Oxley, 2006) were used to produce 

indices for sectors considering that each SSF subdivides the space in three subsets (the 

inter-pixel elements located on that SSF and the space elements located on each side). 

Equation 2 was used to transfer the SSF geometry to its associated sign. 

 

(2) 

where c is a 1-cell, Hi(c) is ith SSF value at x,y combinatorial coordinate of c, H(x,y) = 

ax + by + l (Kovalevsky, 2008) and m = a if c is a vertical 1-cell or b if c is a horizontal one.  

The position vector (De Loera et al., 2010) δ(c) of each 1-cell and its sector index were 

calculated as in Valero et al., (2017), but applying equation 2 for each SSF in the central 

arrangement (see figure 5(a)¡Error! No se encuentra el origen de la referencia.). For a 

given orientation, only the 1-cell elements on each SSF side were considered (shown as 

black dots in figure 5(b)¡Error! No se encuentra el origen de la referencia.). 

3.1.4. Oriented boundary gradient (6) and Maximum boundary strength (7)  

In order to obtain a geometrical measurement of oriented boundary strength, the oriented 

gradient images calculated for each scale based on balls of several radii from the finest to 

the coarser were linearly combined for producing the oriented boundary gradient using 

equation 3. 

 

(3) 

Where c is a CC 1-cell element, ns is the number of scales, θ is an orientation and Gi is 

the oriented gradient at i scale. Then, the oriented boundary gradient image was used for 

finding the maximum gradient value G(C) = maxθ (G(c, θ)) G(c) = maxθ(G(c, θ))  
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3.1.5. Oriented affinity analysis (8) 

An affinity analysis based spectral boundary strength was done as by Arbeláez et al. 

(2011), but between pairs of 1-cell elements inside an affinity area. The affinity area was 

defined using a Manhattan distance based ball. The search started with the smallest ball 

(only a 1-cell from the central one) computing each time the affinity between each external 

1-cell and the central one. Next, the search proceeded in an iterative process expanding the 

ball by a 1-cell in all directions each time. Then, it was computed the affinity between each 

updated external 1-cell and its previous 1-cell that was in the same SSF from the central 1-

cell (this is shown in figure 6(a)¡Error! No se encuentra el origen de la referencia.). 

While the ball expanded, W and D sparse matrices were progressively calculated. 

Next, W and D matrices were used to calculate eigenvector images using the decimated 

procedure and software developed by Pont-Tuset et al., (2015). Then, a filter bank of 

oriented first derivative Gaussian kernels was applied. Finally, filtered eigenvector channels 

were linearly combined by orientation to produce the oriented affinity image. Figure 6(b) 

shows the oriented affinity outcome for a small portion of the training window by the most 

horizontal orientation. 

  

FIGURE 6: Affinity search area defined using a Manhattan distance based ball (a) and the 

most horizontal affinity CC calculated from all filtered eigenvectors (b) 

3.1.6. Oriented boundary strength (9) and Image-object (10) production  

The oriented gradient images calculated for each scale along with the oriented affinity 

image were linearly combined by orientation for producing the oriented global boundary 

strength using Equation 4.  

 

(4) 

Where c is a CC 1-cell element, ns is the number of scales, is an orientation, Gi is the 

oriented gradient at i scale and Ga is the oriented affinity. The maximum boundary strength 

image maxθ (Gs (c, θ)) was used as input for a segmentation based on a 2-levels watershed 
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transform (Valero et al., 2017) and its outcome was taken as image-object input for the 

classification stage. 

 

3.2. Classification stage 

3.2.1. Directional filtering (11) and grouping (12) 

Besides spectral channels, a directional filter response analysis was applied to produce 

an additional channel. First, a bank of filter for 8 orientations was produced from an SSF 

central arrangement. As in Section 3.1.3¡Error! No se encuentra el origen de la 

referencia., at each 1-cell a ball split in two halves was placed along each SSF orientation 

to produce a directional filter kernel (figure 7) assigning to each 2-cell in the half ball the 

respective sign based on equation 2¡Error! No se encuentra el origen de la referencia.. 

Then, this bank filter was applied to the grey scale image (obtained in Section 3.1.1¡Error! 

No se encuentra el origen de la referencia.) to produce at each 1-cell a response vector 

with as many values as the number of filter kernels in the filter bank. Next, as in 

section 3.1.2¡Error! No se encuentra el origen de la referencia. these response vectors 

were grouped using the k-means clustering technique to produce a response class image 

that was used as an additional SVM classification variable. 

 

FIGURE 7: Kernels used in directional filtering 

3.2.2. SVM-based classification scenarios (13) and accuracy assessment (14) 

The procedure described in Section 3.1 was applied to both training and test windows to 

produce the respective image-object Cartesian complexes. Mean values of input bands and 

directional filter response additional channel were used as image-object features. Two 

classification scenarios were tested: (i) using only the four bands as input; and (ii) using 

directionally filtered images as additional input bands. Both conventional and CC space 

representation were tested at each scenario. Training and test reference classification 

images are shown in figure ¡Error! No se encuentra el origen de la referencia.8, blue 

areas correspond to Building category, cyan to Low vegetation, green to Tree, yellow to 

Car and white to Impervious surfaces. Image classification and accuracy assessment 

processes comprised four steps: (i) Stratified sampling based training (table 1), (ii) 

Radiometric statistics calculation and SVM (one versus others)-based classification model 

training, (iii) SVM-based classifications, and (iv) thematic accuracy evaluation. 
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TABLE 1. Number of training and testing points at each thematic category 

Class Training Testing 

Building 11651 479851 

Impervious surfaces  6788 133712 

Tree 5247 202528 

Low vegetation  3320 133938 

Clutter/background 2311 36497 

Car 683 13474 

Total 30000 1000000 

 

 

(a) Training  (b) Test 

FIGURE 8: ISPRS Reference classification images 

4. Results and discussion 

Figure 9¡Error! No se encuentra el origen de la referencia. shows classified images 

obtained based on four spectral bands plus directional filtering responses (scenario 2), for 

both conventional (left) and CC representations (right). 
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FIGURE 9. SVM-based classification obtained from spectral channels plus directional 

filters for conventional (left) and CC (right) representations. 

In tables 2¡Error! No se encuentra el origen de la referencia. and 3, rows correspond 

to reference classification and columns to obtained classification. These tables show SVM-

based classification error matrices (reference weighted in percentage) for conventional and 

CC representations based only on the multispectral feature space (table 3¡Error! No se 

encuentra el origen de la referencia.) and conventional and CC representations based on 

the feature space extended with directional filter (Table 1). The overall accuracy for each 

classification and their respective 95% confidence intervals (Tang et al., 2004) were 

calculated from the error matrices (see table 4). 

As can be seen in table 4¡Error! No se encuentra el origen de la referencia. for 

scenario 2 the overall accuracy of the classification is slightly improved when the 

representation space based on the Cartesian complexes is used. Although the general 

improvement is not significant, the inclusion of the multi-scale factor both in the texture 

analysis and in the calculation of the oriented gradients was definitive to produced CC-

based image-objects comparable with those obtained from the conventional representation. 

The use of Cartesian complex-based watershed transform using multiscale texture and 

multispectral gradients and affinity analysis favoured the proper definition of super pixels 

resulting in just a small decrease in the classification overall accuracy (scenario 1). 

TABLE 2. Error matrix for classification based on four spectral channels for conventional 

(1) and CC (2) representations 

Category Building 

Impervio

us 

surface 

Tree 

Low 

vegetatio

n 

Clutter/ 

backgro

und 

Car 

 

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 
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Building 82.0 82.3 5.8 6.3 1.4 1.4 4.0 4.5 6.3 3.3 0.6 2.2 

Impervious 

surfaces 30.7 36.8 43.1 35.3 

11.

0 13.0 13.6 12.4 1.3 1.8 0.3 0.6 

Tree 

2.5 3.2 1.9 2.1 

55.

6 56.3 39.6 38.1 0.2 0.1 0.2 0.2 

Low vegetation 

1.6 3.3 1.8 1.8 

43.

6 43.2 52.9 51.5 0.2 0.1 0.0 0.0 

Clutter/backgrou

nd 22.9 27.0 12.2 14.7 

12.

4 12.4 44.9 38.1 1.1 1.3 6.5 6.6 

Car 

50.0 54.2 14.9 11.1 0.0 0.0 4.1 3.6 3.1 2.4 

27.

9 28.7 

TABLE 3. Error matrix for classification based on four spectral channels plus directional 

filters for conventional (1) and CC (2) representations.  

Category Building Impervio

us 

Tree Low Clutter/ Car 

   surface   vegetatio

n 

backgro

und 

  

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

Building 84.0 81.7 5.0 8.4 1.4 2.5 3.9 2.6 4.4 4.2 1.3 0.6 
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Impervious 

surfaces 33.2 17.7 41.7 58.5 12.0 10.5 12.3 10.7 0.5 2.0 0.3 0.7 

Tree 2.8 2.7 2.3 2.9 57.9 61.5 36.9 32.6 0.1 0.2 0.1 0.1 

Low vegetation 1.7 3.2 2.0 2.2 47.6 42.2 48.6 52.2 0.0 0.2 0.0 0.0 

Clutter/backgrou

nd 24.5 30.8 10.8 12.4 12.8 17.7 44.7 35.9 0.6 1.8 6.6 1.5 

Car 

50.6 59.4 13.5 9.3 0.2 0.0 4.4 3.1 3.1 1.3 

28.

2 26.7 

 TABLE 4. Overall thematic accuracy and confidence intervals for the SVM-based 

classification.  

 Space Overall 95% confidence 

interval 

Features representation accuracy Minimum Maximum 

Spectral only Conventional 63.86 22.81 73.77 

 CC 62.95 21.15 71.93 

Spectral + Conventional 64.51 23.29 74.28 

directional 

filtering 

CC 66.87 27.38 78.24 
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On the other hand, when the directional filtering grouping feature was used, the general 

accuracy value of the classification was slightly higher. This increase is small with respect 

to the result obtained from the classification based only on the spectral features since the 

response is scale dependent (Leung and Jitendra, 1996) and therefore, resulting classes are 

mixed depending on the combination of objects with different scales and texture patterns. It 

is not the case of Building class, which was the class that always became confused less than 

20% in conventional or CC representations. 

In spite that the assessment stage was conducted against the whole reference 

classification (i.e. an image composed by 1000000 pixels), the overall accuracy always was 

higher than 60%. As shown in table 4, the use of a CC space representation and a feature 

space extended with directional filtering response grouping produced a slight but 

progressive increase in overall accuracy, which is improved from 62.95%, in the CC 

representation with only spectral features, up to 66.87%, in the representation based on CC 

including all features. This means an improvement in the overall accuracy of 3.92% 

(scenario 2). 

5. Conclusions 

Results from this study show that the Cartesian complex-based image classification, 

based on the Cartesian complex space, allows to improve the accuracy by class for the 

classification based on feature space extended with directional filters responses. Results 

also suggest that the inclusion of additional, directionally filtered bands, not always 

improve thematic accuracy due to the scale dependence of directional filtering. 

The availability of an underlying Cartesian complex space provides a topologically 

correct oriented gradient calculation. In a conventional space when a disk is defined it is 

recommended not using the pixel linear arrangement which meets the diameter along the 

orientation as it does not lay in any of two sides but in the orientation. However, in a 

complex Cartesian space, there are interpixel elements that allow representing this situation 

properly by modelling that dividing line based on 1-cells and not on pixels, so it is possible 

use all 2-cell. The availability of an underlying CC space provides a topologically correct 

affinity analysis. In contrast to the conventional representation based only on pixels, the 

existence of inter-pixel elements allows an adequate affinity assessment along a connecting 

line whose representation is made from a SSF (1-cell elements). 

While results of the experiments show that, the benefits of the inclusion of an underlying 

space based on CC are not significant, the possibility to fulfil topological requirements 

suggest that the Cartesian complex-based image analysis framework is worth of further 

development. Authors will explore options to reformulate several processing tasks based on 

Cartesian complexes to produce better outcomes. This includes fitting cylindrical parabolas 

to elliptical patches at each 1-cell after computing oriented gradient to counteract the 

phantom border effect (i.e. to avoid producing borders which do not exist) (Malik et al., 

2001). 
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