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Abstract—This paper presents a systematic approach to solve
for the optimal control of a variable-time impulsive system.
First, optimality condition for a variable-time impulsive system
is derived using the calculus of variations method. Next, a single
network adaptive critic technique is proposed to numerically
solve for the optimal control and the detailed algorithm is
presented. Finally, two examples-one linear and one
nonlinear-are solved applying the conditions derived and the
algorithm proposed. Numerical results demonstrate the power
of the neural network based adaptive critic method in solving
this class of problems.

I. INTRODUCTION

any dynamic processes are characterized by the fact
that at certain moments of time they experience abrupt
changes of the system states. These changes may seem

instantaneous because the durations of these changes are
negligible in comparison with that of the whole process.
Therefore, it is natural to assume that these changes are in the
form of impulses. Dynamic systems subjected to impulsive
effects are defined as impulsive systems. In order to refer to
the time instant, when an impulse happens, the term “impulse
instant” is used hereafter in this paper.

There have been applications of impulsive control in
chaotic systems [1-3], biped walking robots [4], optimal fixed
time fueling process [5], biological control [6], financial and
economics control [7-8], and satellite formation control
[9-10]. There are many other examples in practice such as
ultra high speed optical signals over communication networks,
collision of particles, inventory control, government
decisions, interest changes, and stock price changes etc.

Two types of impulse driven systems [11, 12] exist. One,
which fixes the impulse instants, is called the fixed-time
impulsive system. Optimal control of fixed-time impulsive
systems has been studied by the authors in [13], where
theorems are presented and linear/nonlinear examples are
studied. The second type is the variable-time impulsive
system. In this type of system, the impulse instants are not
fixed but are functions of system states. This paper studies
optimal control of a variable-time impulsive system, where an
impulse instant is decided by a resetting condition.
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Luo and Lee [14-15] derive the necessary conditions for a
variable-time impulsive system using the calculus of
variations method, but they do not consider the resetting
conditions. Miller [16] uses a method called discontinuous
time change to convert the system with impulses to an
auxiliary system of conventional differential equations.
Miller [17] also studies optimal impulsive control problem
with a restricted number of impulses using the same method.
Haddad et al. [18] present a hybrid version of Bellman’s
principle which provides necessary and sufficient optimality
conditions for both fixed-time and variable-time impulsive
systems. This method requires a Lyapunov function to serve
as the optimal cost function at the same time, which would be
difficult to find in practice.

Though the literature on impulsive control is quite
extensive, still there exists a need for the development of a
systematic design method. A major objective in this study is
to develop a controller design algorithm for variable-time
impulse problems to satisfy that need. Furthermore, the
proposed neural network based technique does not require
many assumptions and is implementable.

The rest of the paper is organized as follows: Section II
contains the derivation of the necessary conditions for
optimality. Section III illustrates the special neural network
scheme based on a structure called “single network adaptive
critic (SNAC)’’. Section IV presents two illustrative
problems and the simulation results. The case studies consist
of results from a linear problem and a nonlinear problem.
Finally, section V provides the conclusions.

II. OPTIMALITY CONDITION FOR IMPULSIVE SYSTEMS

A. Problem Formulation

In this paper, the following variable-time impulsive system
is considered, with the system model given by

� � � � � �� �
� � � �� �
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i i d i i i
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(1)

where � � nx t D� � � is the system state. D is an open set

with D�0 . cm
cu � � is the continuous control. dm

iu � �

represents the impulsive control. : n
cf D � � is a Lipchitz

continuous function. : dn m
dg D �� � is a continuous

differentiable function. : cn m
cg D �� � is a continuous

differentiable function. � represents the set of real numbers.
n , cm , and dm ��� . �

� represents the set of positive

integers. 1 2 30 < N� � � �� � � � � �� are impulse instants. i

Optimal Controller Synthesis of Variable-Time Impulsive Problems
Using Single Network Adaptive Critics

X. Wang and S.N. Balakrishnan

M

4095

978-1-4244-1821-3/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: University of Missouri. Downloaded on December 11, 2008 at 10:17 from IEEE Xplore.  Restrictions apply.



indexes the impulse instant sequence. 1i N �	 �� � .
Superscript � and � denote the right and left limits with
respect to the impulse instants. i� � and i� � are pre-impulse

and post-impulse instants, respectively. : n pG �� � decides
a state set S . p ��� . Initial states 0x and initial time are

assumed to be known.
As described in (1), system equation has two parts. When

� �� � 0iG x � � 
 , system dynamics are continuous,

characterized by ordinary differential equations.

When � �� � 0iG x � � 	 , system dynamics are impulsive, with the

behavior governed by an impulsive equation, where the states

jump according to the impulsive control. � �� � 0iG x � � 	 is

referred to as a resetting condition hereafter.
In this study, a fairly general objective function in (2) is

considered.

� � � � � �
1

1

1 1

,
i c

i

i

k k

cf d
i i

u x uJ x L L dt
�

�

�

�
�

�

	 	

	 � � �� � � (2)

where ( )fx� is the constraint on the terminal states,
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� is the penalty on the impulsive control, and
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� � is the penalty on the piecewise continuous

states. Note that 1k ft� �
� 	 , where ft is the final time.

B. Optimality Conditions

Theorem 1: Given the system dynamics in (3) with a known
initial time 0t , an initial state 0x , and the final time ft ,
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A resetting condition is

� �� � 0iG x � � 	 (4)

and an objective function is as in (2), where the variable
definitions are the same as before in (1). Assuming that
optimal control exists, and introducing the Hamiltonian
function [19],

� � 1, , ( ) ( , ),T n
c c c cH x u L x f x u� � � �� �� � (5)

A continuous control cu and an impulsive control series of

iu ’s that produce a stationary value of the objective function

J are obtained by solving the following equations.

1) Between two consecutive impulses, 1,i it � �� �
�� �� � � ,

� The state propagation equation is
� �,c cx f x u	� (6)

� The costate propagation equation is
( , , )

0TcH x u

x

�
�

�
� 	

�
� (7)

� The continuous control equation is

0
c

H

u
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(8)

2) Between the pre-impulse and the post-impulse instants,
,i it � �� �� �� � � ,

� The state update equation is

� �i i d i ix x g x u� � �	 � (9)

� The costate update equation is
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� The resetting equation is

� �� � 0iG x � � 	 (11)

� The impulsive control equation is

� � � �� �2 ( )
0Ti

i d i i
i

L u
g x

u
� � �� ��

� 	
�

(12)

� The jump equation is

i iH H� �	 (13)

The boundary condition are split; i.e., some are
given at 0t t	 and some are given at ft t	 :

0 givenx (14)
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f

f
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x
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Proof:
Using Hamiltonian function (5), the objective function (2)

can be rewritten as
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where 1k ft� �
� 	 .

Suppose that *
iu and *

cu are the optimal control,

continuous and impulsive, respectively, and *x is the optimal

state. Define � �i d i ih x g x u� ��� . Define 0J as the optimal

objective function. By introducing a set of Lagrange
multipliers i& and � , the optimal cost function can then be

written as
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Now, perturb control by letting *
i i iu u n'	 � and

*
c cu u s'	 � . Perturb impulsive instants by letting

� �*
i i t� � '(	 � . Then the corresponding � �*x x t')	 � . The

cost function after perturbation J' is

� �

� �
1

1

1

1 1

( ) ( )

( , ) ( , , )
i

i

k
T

f d i i
i

k k
T

i i i i c
i i

J x L u G x

h x u x H x u x dt

'

�

�

�

& � �
�

�
�

�

	

�
� �

	 	

� �	 � � �� �

� � � �� � � �� �� �

�

� � � �

(18)

The last term on the right hand side of (18) can be rewritten
as
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Because the initial conditions are known, the state and

time variations at the initial time are zeros. Rearrange the first
term of the last line on the right hand side of (19),
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Also, integrate the last term on the right-hand side of (20)
by parts, equation (19) can be written as
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Since 0

0
lim

J J
J

'
,
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�
	 , the first order approximation of the

perturbed cost J' can be written as
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Rearranging terms, (22) can be written as follows:
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Since , ,i in ( s and ) are independent, in order to

eliminate them from influencing J, , one can choose the
multiplier � �t� such that the coefficients of , ,i in ( and i)

vanish. Consequently,
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with the boundary condition
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Now, (23) becomes
*

*
1

* 1

* * *
1 1

( ) i

i

k k
d i

i i
i ii i c

L u h H
J n sdt

u u u

�

�

, &
�

�
�

�

	 	

� �� � �
	 � �* +� � �� �
� � � (29)

For J, to be zero for any arbitrary in and s ,
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Condition (27) can be rearranged and written as the jump
condition,

i iH H� �	 (32)

All the equations in theorem 1 are validated. Equation (32)
is referred to as the jump equation hereafter.

Remark 1: For 0, ft t t� �� � � , there are n unknown states
1nx ��� and n unknown costates 1n� ��� decided by 2n

differential equations (6) and (7) for the continuous part, 2n
impulsive dynamics given by (9)-(10) at each impulse instant.
There are 2n boundary conditions given by (14)-(15) for the
2n unknown states and costates. cu and iu are calculated by

the optimality equations (8) and (12), respectively. At each
impulse instant, an additional jump equation is given by (32)
for deciding an optimal impulse instant i� together with the

resetting equation (11). The number of unknowns is equal to
the number of equations.

Remark 2: Since the boundary conditions are split, in
order to solve for the optimal controls, the control design is
faced with a two-point-boundary-value (TPBV) problem.

Remark 3: For an infinite horizon setting, the final
constraint in the objective function (2) is removed and the
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boundary condition (15) is no longer needed. It is assumed
that the optimal solution exists when ft � � .

III. SOLUTION TECHNIQUE: SNAC

This section introduces the single network adaptive critic
(SNAC) technique to solve for the optimal control in the
impulsive systems. SNAC has been used in solving nonlinear
continuous control problems in [20-21]. This paper extends
the SNAC scheme to impulsive control problems.

A. Adaptive Critic Overview

The concept of adaptive critic is derived from the modeling
of the brain as a supervisor and an action structure [20] where
the supervisor criticizes the action (controller) of the system
to achieve a better overall goal. Several authors [21-23] have
used multilayer-perceptron neural networks with a fixed
structure to solve nonlinear control problems arising in
aerospace and power systems, as well as other benchmark
nonlinear control problems.

The novelty of this paper lies in using neural network
structures, SNAC, to solve optimal variable-time impulsive
control problems.

B. Infinite Time Adaptive Critic Neural Network Scheme

For infinite time optimal control, the mapping between the
states and the costates does not depend explicitly on time.
Therefore, a single neural network can be used to capture the
relation between states and costates. In a control affine
problem, the costates can be used to calculate the optimal
control.

The idea of the SNAC technique is to use the state and the
costate propagation equations, the state and costate update
equations, the jump equation, and the control expression in
Theorem 1 to train a single neural network to capture the
optimal relation between costates and states at the impulse
instant. In this paper, the neural network is trained to
approximate the function � �ix�� � with ix� as inputs and i�

� as

outputs. The solution presented here assumes that the number
of resetting equation 1p 	 , which means that the resetting
condition is a scalar equation. In this way, the multiplier �
becomes a scalar and can be solved using the jump equation
and the state/costate update equations.

Figure 1 gives the flowchart of the optimal impulsive
control synthesis using “SNAC”.

NN 0��
0x�

State Update

0x�

State/Costate
Propagation

NN
1x� 1�

�

State/Costate
Update

� �*

1�
�

State/Costate
Propagation� �*

0��

� �*

0x�

State Update

� �*

0x�

Update

� �� �1 0G x� 	

Fig.1 SNAC Scheme for an Impulsive Control Problem

Starting from the left bottom corner of the figure, 0x� is a

set of pre-impulse states satisfying the resetting condition,
and it is chosen so that its values approximately span the
domain of interest. The neural network is called “NN.” 0��

represents the post-impulse costates set, generated by the
neural network NN. “State update” block represents the state
update equation(9), where the impulsive control is calculated
according to the optimal impulsive control equation (12). 0x�

is the corresponding set of post-impulse states. “State/costate
Propagation” block refers to the state and costate propagation
equations (6) and (7) where the optimal continuous control is
calculated according to the control equation(8). 1x� is a set of

pre-impulse states at the next impulse instant. “State/Costate
Update” block refers to the set of equations at the impulsive
instants, including (9)-(13). All the training is off-line. The
following are the steps used for the neural network training:
1) Input 0x� to the NN to obtain 0�� as the output.

2) With 0�� and 0x� , use (12) to calculate iu assuming 0�� is

optimal.
3) Use the calculated iu and 0x� in the impulse state update

equation (9) to get 0x� .

4) Integrate 0x� and 0�� forward using the state and costate

propagation equations (6) and (7) while the optimal
continuous control cu is calculated using (8). The

propagation stops at the next impulse instant that satisfies the
resetting equation (11). The value of the states at this instant
are termed 1x� .

5) After 1x� is obtained, input 1x� to the NN to ouput 1�
� .

6) Use 1�
� and 1x� to calculate � �*

1�
� through the necessary

condition set (9)-(13) at the impulse instant.

7) Use (6) and (7) to backpropagate 1x� and � �*

1�
� and get the

target state � �*

0x� and costate � �*

0� � .

8) Use � �*

0x� and � �*

0� � to calculate the target state � �*

0x�

through the state update equation (9) .

9) Input � �*

0x� to the NN to output � �� �*

0 0x� � �

10) Train SNAC with � �*

0x� as the input and � �*

0� � as the

target output.

11) Stop training when the error between � �*

0� � and

� �� �*

0 0x� � � is ‘small enough’ (within an error bound set by the

control designer).
12) Optimal impulsive control can be calculated in the

closed loop form according to the optimal costate � �� �*

0 0x� � � .
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IV. SIMULATION RESULTS

For concept illustration, a linear vector system is
considered first, followed by a nonlinear vector example with
some similarity to the linear one.
A. Linear Vector Problem

The linear vector problem describes an oscillator with the
following dynamics.

� �
0 1 0 0

1 0 1 1c i ix x u u t, �
� � � � � �

	 � � �* + * + * +�� � � � � �
� (33)

The impulse is activated when the following resetting
condition (34) is satisfied.

� �1 0ix � 	 (34)

Choose the objective function J as

� �� �2 2 2 2
1 2

1

1

1 1

1 1

2 2
( )d ci

i

i

k k

i i
u x uxJ dt

�

�

�

�
�

�

	 	
� �	 �� � � (35)

The state weighting matrix � �1,1Q diag	 and the control

weighting matrix is a scalar, 1R 	 .

Assume 0 0t 	 and - .0 0,3
T

x� 	 . This problem is considered

as an infinite horizon problem by setting k � � and ft � � .

According to Theorem 1, system Hamiltonian function is

� �2 2 2
1 2 1 2 2 1

1
( )

2 c cH x x u x x u� �	 � � � � � � (36)

Since 0
c

H

u

�
	

�
, optimal continuous control 2cu �	 � . The

state and costate propagation equations are calculated
according to (6)-(7). Substituting 2cu �	 � , they become

1 2 1 1 2

2 1 2 2 2 1

x x x

x x x

� �

� � �

�	 	 � �� �
� �

	 � � 	 � �� 

��

��
(37)

At the impulse instants, the necessary conditions are

1 1

2 2

1 1

2 2 2

0

i i

x x

x x

H H

� � �

� �

�

� �

� �

� �

� � �

� �

� 	 �
�

	�
�

	 	�
� 	 ��
� 	

(38)

From the jump equation (13), which implies the continuity
of the Hamiltonian function at the impulse instants,
considering 1 1 0x x� �	 	 ,

� � � �

� � � � � � � �

� �

2- - 2 - - -
2 1 2 2

2 2- -
2 2 1 2 2 2

-

1 1
( ) -

2 2
1 1

- - -
2 2

H x x a

H x x b

H H c

� �

� � � �� � � � �

�

	 �

	 �

	

(39)

By substituting (39.b) and (39.a) into (39.c), 1�
� can be

calculated as

� � � �
� �

� �
� �

2 2

2 2 2

1

2 2

2

1 2 2 2 2

2 2

1 1
2 2

2 2

2

H x

x

x x

x

� �
�

�

� � �

�

� � � �

�

� �

� � � � �

� �

 !� � �" #
$ %	

�

� �
	

�

(40)

By substituting (40) into (38), the relations between the
post-impulse state/costate and pre-impulse state/costate are
obtained as

� �
� �

1 1

2 2 2

2

1 2 2 2 2

1

2 2

2 2

0

2 2

2

x x

x x

x x

x

�

� � �
�

�

� �

� �

� � �

� � � � �

�

� �

� �

� 	 	
�

	 ��
�

� ��
	�

��
�

	

(41)

Two 1-3-1 multilayer perceptron neural networks are
chosen to approximate � �1 ix�� � and � �2 ix�� � . Considering

� �1 0ix � 	 is a constant at the impulse instants, the relation

between the costates and the states actually becomes � �1 2x�� �

and � �2 2x�� � for this problem. The neural network is initially

trained with a randomly chosen linear relation as 1 2x�� �	 and

1 2x�� �	 .

Following the training process presented in the previous
section, it is found that after three iterations, neural network
output converges. The converged network input-output
relation is plotted in Fig. 2. From Fig.2, one can observe that a
linear relation exists.
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-0.2

0.0

0.2

0.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.8

-0.4

0.0

0.4

0.8
�

�

/

X -
2

�
�

0

X -
2

Fig.2. � �1 2x�� � and � �2 2x�� �

Fig. 3 is the system response. Trajectories of 1x , 2x , 1� ,

and 2� are presented for a test case with - .0 0,3
T

x 	 . The

controls are calculated using the networks for impulsive
control, 2iu ��	 � , and the relations 2cu �	 � for the

continuous control. System states asymptotically go to zero in
the picture. 1x and 2� trajectories are continuous while 2x

and 1� trajectories have jumps at the impulse instants.
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Fig.3. System Response with Controls Generated Using SNAC

Next application is a nonlinear variable-time impulsive
problem.
B. Nonlinear Vector Problem

Consider a Van Der Pol oscillator system dynamics as
follows:

� � � �
21

2 2 2
1 1 22 1 2

0 0

1 1 1c i i

xx
u u t

x x xx x x
, �

� �� � � � � �
* +	 � � �* + * + * +� � � � �* + � �� � � �� �

�

�
(42)

Assume a quadratic objective function with state weighting
matrix 2 2Q I �	 and control weighting matrix 1 1R I �	 .

The resetting condition is set as
� �1 0ix � 	 (43)

Then the Hamiltonian function is

� � � �

� � � �� �

2 2 2
1 2 1 2

2 2 2
2 1 1 2 1 2

1

2

1 1

c

c

H x x u x

x x x x x u

�

�

	 � � �

� � � � � � �
(44)

The state and the costate propagation equations follow.

� � � �

� �

� �� �

1 2

2 2 2
2 1 1 2 1 2

1 1 2 1 2 1
1

2
2 2 1 2 1 2

2

1 1

1 2 2

1 2

c

c

c

x x

x x x x x x u

H
x x x x u

x

H
x x x u

x

� �

� � �

	�
�

	 � � � � � ��
�� �
� 	 � 	 � � � � �

��
� �� 	 � 	 � � � � �

��

�

�

�

�

(45)

Optimal continuous control is calculated using

� �2 2
1 2 21 0c

c

H
u x x

u
�

�
	 � � � 	

�
(46)

which yields � �2 2
1 2 21cu x x �	 � � � (47)

By substituting (47) in (45), the state and the costate
propagation equations become

� � � �
1 2

22 2 2
2 1 1 2 1 2 2

2 2 3 2 2
1 1 2 2 1 2 2 1 2 1 2 1 2

2 2 2 2 2 3
2 2 1 2 2 1 2 2 2 2 1 2 2

1 1

2 2 2 2

2 2 2

x x

x x x x x x

x x x x x x x

x x x x x x

�

� � � � � �

� � � � � � �

	�
�

	 � � � � � ���
�

	 � � � � � ��
�

	 � � � � � � ��

�

�

�

�

(48)

From the necessary conditions at an impulse instant, the
following equation result,

1 1
1 1

2 2
2 2 2

1 1
1 1

2 2
2 2

2

=0
=0

0

d

d

i i

i i

x x
x x

x x u
x x

u
H H

H H

�
� � �

� � �
� �

� �
�

� �
� �

� �
� �

� �

� �

� 	
� 	�
�	 �� 	 ��� 	 �� �

1 	 �� �
	� � 	� �� 	� � 	� 	

(49)

Then the pre-impulse and post-impulse Hamiltonians
become

� � � �� � � � � �
22 2 2

2 2 2 2 1 2

1 1
1

2 2
H x x x� � �� � � � � � �	 � � � � (50)

� � � �� � � � � �
22 2 2

2 2 2 2 1 2

1 1
1

2 2
H x x x� � �� � � � � � �	 � � � � (51)

By equal H � to H � ,

� � � �� � � �
22 2 2

2 2 2 2 2 2 2

1
2

1 1
1

2 2
H x x x

x

� � � �
�

� � � � � � � �

�
�

� �
� � � � � �* +
� �	 (52)

Then the state and costate update equation (49) become

� � � �� � � �

1 1

2 2 2

22 2 2

2 2 2 2 2 2 2

1
2

2 2

=0

1 1
1

2 2

x x

x x

H x x x

x

�

� � � �
�

� �

� �

� �

� � � � � � � �

�
�

� �

� 	
�

	 ��
�� � �

� � � � � �� * +
� �� 	�

�
� 	

(53)

Strong nonlinearity is observed in both the propagation
equations in (48) and update equations in (53). Two 1-6-3-1
multilayer perceptron neural networks are used to capture the
optimal relation � �1 ix�� � and � �2 ix�� � .

The nonlinearity in the system brings numerical problems
into the training process if the initial guess of the relation
between the costates and the states is not proper. The states
and costates may go to infinity in a finite time with an intial
guess because of the nonlinearity.

In order to obtain a proper initial guess of � �1 ix�� � and

� �2 ix�� � , the infinite horizon relation optimal relation between

the costate and state during the continuous dynamic part is
used, which are denoted as � �1 x� and � �2 x� and used as the

initial guess at post-impulse i� � instant. In this way, the initial

guess of � �1 x�� � and � �2 x�� � is obtained. Then according to

the state update equation, the initial guess of � �1 x�� � and

� �2 x�� � can be calculated. The SNAC used to capture � �1 x�

and � �2 x� will be referred to as the continuous SNAC

hereafter. Details about the SNAC scheme for the infinite
horizon costate and state relationship during the continuous
dynamics part has been presented by Padhi [24].
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After a proper guess of the initial guess of � �1 ix�� � and

� �2 ix�� � is obtained, follow the training procedure presented

in the previous section. Two 1-6-3-1 multilayer perceptron
neural networks are chosen for the training. After 8 iterations,
the training converges and the required error bound is
achieved.

Fig.4 shows the difference between the initial relations and
the trained relations of � �1 x�� � and � �2 x�� � . The final trained

relations � �1 x�� � and � �2 x�� � show strong nonlinearity in the

pictures.
To compare impulsive SNAC with the infinite horizon

SNAC relation of the continuous dynamics, the continuous
SNAC relation � �1 x� and � �2 x� before and after training is

depicted in Fig.5. From Fig.4 and 5, the relations captured by
the impulsive SNAC and the continuous SNAC are different.

The reason that the relation captured by the impulsive
SNAC and the continuous SNAC is different lies in that the
relation captured by the impulsive SNAC is not an infinite
horizon relation but a finite horizon relation. But in the
optimal impulsive variable-time problem, a steady state
relation � �1 x�� � and � �2 x�� � still exists because this finite

horizon relation repeats between two impulses.
Fig.6 shows the system response using the costate and state

relation captured by the neural network. It is seen from the
picture that system states are asymptotically stable using the
SNAC based control design. From the figure, 1x and 2�

trajectories are continuous while 2x and 1� trajectories have

jumps at the impulse instants. This phenomena is consistent
with the state and costate update equations.

V. CONCLUSION

In this paper, the necessary conditions are derived for
optimal control of the variable-time impulsive systems. A
single neural network adaptive critic (SNAC) method is
developed to numerically solve the linear/nonlinear optimal
impulsive control problems. The simulation results of a linear
variable-time impulsive problem and a nonlinear
variable-time impulsive problem show the effectiveness of
the SNAC scheme. A systematic scheme of the optimal
control of variable-time impulsive systems has been
developed.
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