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Abstract

An edge coloring of a connected graph G is a proper-path coloring if every two
vertices of G are connected by a properly colored path. The minimum number of
colors required of a proper-path coloring of G is called the proper connection number
pc(G) of G. For a connected graph G with proper connection number 2, the minimum
size of a connected spanning subgraph H of G with pc(H) = 2 is denoted by µ(G). It
is shown that if s and t are integers such that t ≥ s + 2 ≥ 5, then µ(Ks,t) = 2t − 2.
We also determine µ(G) for several classes of complete multipartite graphs G. In
particular, it is shown that if G = Kn1,n2,...,nk

is a complete k-partite graph, where

k ≥ 3, r =
∑k−1

i=1 ni ≥ 3 and t = nk ≥ r2 + r, then µ(G) = 2t− 2r + 2.

1 Introduction

An edge coloring of a connected graph G is a rainbow coloring of G if every two vertices are
connected by a path where no two edges are colored the same (a rainbow path). A connected
graph G with a rainbow coloring is a rainbow-connected graph. The minimum number of
colors required for a rainbow coloring of a connected graph G is its rainbow connection
number rc(G). These concepts were introduced and studied by Chartrand, Johns, McKeon
and Zhang in 2006 resulting in the 2008 paper [3]. Since then, much research has been done
on these topics. In fact, a book [5] has been written on rainbow connection in graphs.

An edge coloring of a graph G is a proper coloring of G if every two adjacent edges of G are
assigned distinct colors. The minimum number of colors required of a proper edge coloring
of G is its chromatic index, denoted by χ′(G). An edge coloring of a connected graph G is
called a proper-path coloring if every two vertices of G are connected by a properly colored
path (a proper path). The minimum number of colors required of a proper-path coloring
of G is called the proper connection number pc(G) of G. Therefore, pc(G) ≤ χ′(G) for
every connected graph G. This concept was independently introduced and studied in [1, 2].
Recently, much research has been done on these concepts and, in fact, there is a dynamic
survey on this topic due to Li and Magnant [4].

In [1] it was shown that every complete multipartite graph that is neither a complete
graph nor a star has proper connection number 2. In fact, many connected graphs have been
shown to have proper connection number 2. On the other hand, a graph can have a large
proper connection number. For example, pc(T ) = ∆(T ) for every tree T . Indeed, we have
the following observation (see [1]).

Observation 1.1 Let G be a nontrivial connected graph containing bridges. If the maxi-
mum number of bridges incident with a single vertex in G is b, then pc(G) ≥ b.

While trees can have large proper connection number, this is not true for 2-connected
graphs. The following theorem is due to Borozan, Fujita, Gerek, Magnant, Manoussakis,
Montero and Tuza in [2].

Theorem 1.2 If G is a 2-connected graph that is not complete, then pc(G) ≤ 3.
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Figure 1: A 2-connected graph G with proper connection number 3

The upper bound 3 in Theorem 1.2 cannot be improved as it was shown in [2] that
2-connected graphs with proper connection number 3 exist. The 2-connected graph G in
Figure 1 has proper connection number 3. A proper-path 3-coloring of G is shown in Figure 1.

The graph G in Figure 1 is, of course, also 2-edge connected. That is, there exist 2-
edge connected graphs with proper connection number 3. While verifying that the proper
connection number of the graph G of Figure 1 is 3 may require some time, there is a class of
2-edge connected graphs with proper connection number 3, the verification of which is more
immediate.

A graph G is a friendship graph if every two distinct vertices of G have a unique common
neighbor. A friendship graph has odd order 2k+1 for some positive integer k. The friendship
graph of order 3 is K3 and the friendship graph of order 2k+1 ≥ 5 is obtained by identifying
one vertex from each of k triangles.

Proposition 1.3 If G is the friendship graph of order 7, then pc(G) = 3.

Proof. Label the vertices of G as shown in Figure 2(a). First, the edge coloring c′ where
c′(wx1) = c′(wy1) = c′(wz1) = 1, c′(wx2) = c′(wy2) = c′(wz2) = 2 and c′(x1x2) = c′(y1y2) =
c′(z1z2) = 3 is a proper-path 3-coloring of G and so pc(G) ≤ 3.
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Figure 2: The friendship graph of order 7

Next, we show that pc(G) ≥ 3. Assume, to the contrary, that there is a proper-path
2-coloring c of G with the colors 1 and 2. Denote the triangle with vertices x1, x2, w by T1,
the triangle with vertices y1, y2, w by T2 and the triangle with vertices z1, z2, w by T3, as
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shown in Figure 2(a). We claim that in each of the three triangles T1, T2, T3, the two edges
incident with w are assigned different colors by c.

Assume, to the contrary, that one of T1, T2, T3 has its two edges incident with w colored
the same, say c(wx1) = c(wx2) = 1. Since there is a proper x1 − y1 path and there is
a proper x1 − z1 path, at least one edge incident with w in T2 and T3 is colored 2, say
c(wy1) = c(wz1) = 2. Since G contains a proper y1− z1 path, either wy2 or wz2 is colored 1,
say c(wy2) = 1. Since G contains a proper x1 − y2 path, c(y1y2) = 1. Thus, (y1, w, z2, z1)
is the unique proper y1 − z1 path, which implies that c(wz2) = 1 and c(z1z2) = 2. However
then, there is no proper x1 − z2 path, which produces a contradiction. Thus, as claimed, in
each of three triangles T1, T2, T3, the two edges incident with w are assigned different colors
by c. Hence, we may assume that c(wx1) = c(wy1) = c(wz1) = 1 and c(wx2) = c(wy2) =
c(wz2) = 2, as shown in Figure 2(b).

Since G contains a proper x1 − y1 path, it follows that c(x1x2) = 1 or c(y1y2) = 1, say
the former. There is now only one possible proper x2−z2 path, namely, (x2, w, z1, z2), which
implies that c(z1z2) = 2. However then, there is only one proper x2 − y2 path, namely
(x2, w, y1, y2), which implies that c(y1y2) = 2. Thus, we arrive at the coloring of G shown
in Figure 2(c). However then, there is no proper y1 − z1 path, producing a contradiction.
Hence, pc(G) ≥ 3 and so pc(G) = 3.

The proof of Proposition 1.4 and the proper-path 3-coloring of G described in this proof
can be extended to give the following result.

Corollary 1.4 Every friendship graph of order at least 7 has proper connection number 3.

We have noted that many graphs have proper connection number 2. Certainly, many
2-connected graphs have proper connection number 2. If G is a noncomplete connected
graph containing a connected spanning subgraph H such that pc(H) = 2, then pc(G) = 2 as
well. In fact, every noncomplete connected supergraph F of H with V (F ) = V (H) also has
proper connection number 2. This suggests the following concept. For a connected graph
G with pc(G) = 2, let µ(G) denote the minimum size of a connected spanning subgraph H
of G with pc(H) = 2. In this context, we refer to a spanning subgraph H of G with µ(G)
edges as a minimum spanning subgraph of G. In what follows, we determine µ(G) for some
familiar graphs G with pc(G) = 2.

2 Complete Bipartite Graphs

We now investigate this concept for complete multipartite graphs that are neither a star nor
a complete graph, beginning with complete bipartite graphs Ks,t with 2 ≤ s ≤ t. Since Ks,t

contains a Hamiltonian path if and only if t − s ≤ 1, it follows that this minimum size is
t+ s− 1 for these graphs. It therefore suffices to consider those graphs Ks,t with t− s ≥ 2.
We begin with the graphs K2,t where t ≥ 4.

Theorem 2.1 For an integer t ≥ 4, µ(K2,t) = 2t− 2.
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Proof. Let U = {u1, u2} and W = {w1, w2, . . . , wt} be the two partite sets of K2,t and let
H = K2,t − {u1w2, u2w1}. Thus, the size of H is 2t − 2. We show (1) pc(H) = 2 and (2)
H has the minimum size of a connected spanning subgraph of K2,t with proper connection
number 2.

First, we show that pc(H) = 2. Define the edge coloring c : E(H)→ {1, 2} by

c(uiwj) =

{
1 if either i = 1 and j = 1 or 3 ≤ j ≤ t− 1 or (i, j) = (2, t)

2 if either i = 2 and 2 ≤ j ≤ t− 1 or (i, j) = (1, t).

To verify that c is a proper-path coloring of H, we show that every two vertices of H are
connected by a proper path. Let x and y be two nonadjacent vertices of H.

? If {x, y} = {u1, u2}, then (u1, w3, u2) is a proper u1 − u2 path.

If {x, y} = {u1, w2}, then (u1, wt, u2, w2) is a proper u1 − w2 path.

If {x, y} = {u2, w1}, then (u2, wt, u1, w1) is a proper u2 − w1 path.

? Let x = wi and y = wj where 1 ≤ i < j ≤ t. First, suppose that x ∈ {w1, w2}.
If x = w1 and y = wj for 2 ≤ j ≤ t − 1, then (w1, u1, wt, u2, wj) is a proper w1 − wj

path.

If x = w1 and y = wt, then (w1, u1, wt) is a proper w1 − wt path.

If x = w2 and y = wj for 3 ≤ j ≤ t − 1, then (w2, u2, wt, u1, wj) is a proper w2 − wj

path.

If x = w2 and y = wt, then (w2, u2, wt) is a proper w2 − wt path.

Next, suppose that x = wi where 3 ≤ i ≤ t− 1.

If y = wj for i+ 1 ≤ j ≤ t− 1, then (wi, u1, wt, u2, wj) is a proper wi − wj path.

If y = wt, then (wi, u1, wt) is a proper wi − wt path.

Hence, c is a proper-path coloring of H and so pc(H) = 2.

Next, we show that H has the minimum size of a connected spanning subgraph of K2,t

with proper connection number 2. Suppose that there is a connected spanning subgraph F
of K2,t having less than 2t− 2 edges for which pc(F ) = 2. Necessarily, at least three vertices
of W have degree 1 in F . It cannot occur that three vertices of degree 1 in F are adjacent to
the same vertex of U , for otherwise pc(F ) ≥ 3 by Observation 1.1. Hence, we may assume
that the vertices wi, 1 ≤ i ≤ 3, have degree 1 in F and that u1w1, u1w2, u2w3 are edges of
F . Any proper-path coloring c : E(F ) → {1, 2} of F must assign distinct colors to u1w1

and u1w2, say c(u1w1) = 1 and c(u1w2) = 2. We may assume, without loss of generality,
that c(u2w3) = 1. Let P be a proper w1 − w3 path in F . Thus, P = (w1, u1, wj, u2, w3) for
some integer j ≥ 4. Since c(w1u1) = c(u2w3) = 1 and P is a proper path, it follows that
c(u1wj) 6= 1 and c(wju2) 6= 1 and so c(u1wj) = c(wju2) = 2, which is a contradiction.

Next, we determine µ(Ks,t) for all integers s and t with t ≥ s+ 2 ≥ 5.

Theorem 2.2 If s and t are integers with t ≥ s+ 2 ≥ 5, then µ(Ks,t) = 2t− 2.
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Proof. Let G = Ks,t with partite sets

U = {u1, u2, . . . , us} and W = {w1, w2, . . . , wt}.

Write t = sq + r for integers q and r where 0 ≤ r ≤ s− 1.
First, we construct a connected spanning subgraph H of G of size 2t − 2 such that

pc(H) = 2. We consider two cases, according to whether r = 0 or 1 ≤ r ≤ s− 1.

Case 1. r = 0. Partition the set W into q ≥ 2 subsets W1,W2, . . . ,Wq where |Wi| = s
for 1 ≤ i ≤ q such that W1 = {w1, w2, . . . , ws} and W2 = {ws+1, ws+2, . . . , w2s}.

? First, suppose that s = 3. If q = 2, let Q1 = (u1, w3, u2, w4, u1) = C4 and Q2 =
(u2, w5, u3, w6, u2) = C4. If q ≥ 3, then for each integer i with 3 ≤ i ≤ q, let Qi = C6

be a Hamiltonian cycle of the subgraph G[U ∪Wi] = K3,3 of G induced by U ∪Wi.
Let H be the spanning subgraph of G with

E(H) = E(Q1) ∪ E(Q2) ∪ · · · ∪ E(Qq) ∪ {u1w1, u1w2}. (1)

? Next, suppose that s ≥ 4. Let U ′ = U − {u1, u2} and W ′ = W1 − {w1, w2}. Let
Q1 = C2s−4 be a Hamiltonian cycle in the subgraph G[U ′∪W ′] = Ks−2,s−2 of G induced
by U ′ ∪W ′ and for each integer i with 2 ≤ i ≤ q, let Qi = C2s be a Hamiltonian cycle
in the subgraph G[U ∪Wi] = Ks,s of G induced by U ∪Wi. Let H be the spanning
subgraph of G whose edge set is described in (1). Hence, the size of H is 2t− 2.

It remains to show that pc(H) = 2. We first define an edge coloring c : E(H) → {1, 2}.
For 1 ≤ i ≤ q, let c be a proper edge coloring of the even cycle Qi. Also, let c(u1w1) = 1
and c(u1w2) = 2. Next, we show that c is a proper-path coloring of H. Let x and y be two
nonadjacent vertices of H. If x and y lie on some even cycle Qp for some p ∈ {1, 2, . . . , q},
then there is a proper x− y path in H. Thus, we may assume that x and y do not lie on a
common even cycle Qi where 1 ≤ i ≤ q.

First, suppose that s = 3. Since x and y do not lie on a common even cycle Qi where
1 ≤ i ≤ q, it follows that x, y ∈ U ∪ {w1, w2, . . . , w6}. Let H ′ be the subgraph of H induced
by U ∪ {w1, w2, . . . , w6}. We may furthermore assume that the edges of H ′ are colored as
shown in Figure 3, where a solid edge and a dashed edge are colored differently. If x, y ∈ U ,
say x = u1 and y = u3, then (u1, w3, u2, w5, u3) is a proper x−y path. Thus, we may assume
that at least one of x and y does not belong to U , say y ∈ W . Then y = wi for some i with
i = 1, 2, . . . , 6. A case-by-case argument shows that there is a proper x− y path in H ′ (and
so in H). For example, (u1, w4, u2, w6) is a proper u1 − w6 path and (w1, u1, w4, u2, w6) is a
proper w1 − w6 path.

Next, suppose that s ≥ 4. Since every two distinct vertices of U lie on the even cycle Q2,
it follows that at least one of x and y does not belong to U , say y ∈ W . We consider two
subcases, according to whether x ∈ U or x ∈ W .

Subcase 1.1. x ∈ U . First, suppose that y = wi for 3 ≤ i ≤ s. Then x ∈ {u1, u2}. Since
x lies on Q2 and y is adjacent to a vertex z on Q2, there are two x−y paths passing through
z, one of which is proper. Next, suppose that y ∈ {w1, w2}. Since x and y are nonadjacent,
x = ui for some i with 2 ≤ i ≤ s. Then x lies on Q2 and y is adjacent to the vertex u1 on
Q2. Then there are two x− y paths passing through u1, one of which is proper.
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Figure 3: A subgraph H ′ in H when s = 3

Subcase 1.2. x ∈ W . We may assume that x = wi and y = wj where 1 ≤ i < j. First,
suppose that i ∈ {1, 2}. If (i, j) = (1, 2) or j ≥ s + 1, then (wi, u1, wj) is a proper wi − wj

path in H. Next, suppose that 3 ≤ j ≤ s. Then x is adjacent to u1 of Q2 and y is adjacent
to a vertex z of Q2 (where it is possible that u1 = z). There are two x − y paths passing
through z, one of which is proper. Next, suppose that i ≥ 3. Hence, x ∈ Wa and y ∈ Wb

where 1 ≤ a < b ≤ q. Then x is adjacent to a vertex z on Qb and y lies on Qb. Thus, there
are two x− y paths passing through z, one of which is proper.

Case 2. 1 ≤ r ≤ s − 1. Partition the set W into q + 1 subsets W0,W1,W2, . . . ,Wq

where |W0| = r and |Wi| = s for 1 ≤ i ≤ q such that W0 = {w1, w2, . . . , wr} and W1 =
{wr+1, wr+2, . . . , wr+s}.

? For r = 1, let W ′ = W1 − {w2} and U ′ = U − {u1}. Now, let Q1 = C2s−2 be a
Hamiltonian cycle in the subgraph G[U ′ ∪W ′] = Ks−1,s−1 of G induced by U ′ ∪W ′

and for 2 ≤ i ≤ q if q ≥ 2, let Qi = C2s be a Hamiltonian cycle in the subgraph
G[U ∪Wi] = Ks,s of G induced by U ∪Wi. Let H be the spanning subgraph of G
whose edge set is described in (1).

? For r = 2, let Qi = C2s be a Hamiltonian cycle in the subgraph G[U ∪Wi] = Ks,s for
1 ≤ i ≤ q. Let H be the spanning subgraph of G whose edge set is described in (1).

? For r = 3, let Q0 = (u1, w3, u2, w4, u1) = C4. Let U ′ = U −{u1} and W ′ = W1−{w4}.
Now let Q1 = C2s−2 be a Hamiltonian cycle in the subgraph G[U ′ ∪W ′] = Ks−1,s−1 of
G induced by U ′∪W ′. For each integer i with 2 ≤ i ≤ q, let Qi = C2s be a Hamiltonian
cycle in the subgraph G[U∪Wi] = Ks,s of G induced by U∪Wi. Let H be the spanning
subgraph of G whose edge set is

E(H) = E(Q0) ∪ E(Q1) ∪ · · · ∪ E(Qq) ∪ {u1w1, u1w2}. (2)

? For r ≥ 4, let W ′ = W0−{w1, w2} and U ′ = {u1, u2, . . . , vr−2}. Now, let Q0 = C2r−4 be
a Hamiltonian cycle in the subgraph G[U ′∪W ′] = Kr−2,r−2 of G induced by U ′∪W ′ and
for 1 ≤ i ≤ q, let Qi = C2s be a Hamiltonian cycle in the subgraph G[U ∪Wi] = Ks,s

of G induced by U ∪ Wi. Let H be the spanning subgraph of G whose edge set is
described in (2).

In each case, the size of H is 2t − 2. We define an edge coloring c : E(H) → {1, 2} such
that each even cycle Qi (1 ≤ i ≤ q or 0 ≤ i ≤ q) is properly colored and c(u1w1) = 1 and
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c(u1w2) = 2. An argument similar to that in Case 1 shows that c is a proper-path coloring
of H and so pc(H) = 2.

Next, we show that the minimum size of a connected spanning subgraph of Ks,t with
proper connection number 2 is 2t− 2. Suppose that there is a connected spanning subgraph
F of Ks,t having less than 2t − 2 edges but pc(F ) = 2. Necessarily, at least three vertices
of W have degree 1 in F . It cannot occur that three vertices of degree 1 in F are adjacent
to the same vertex of U , for otherwise, pc(F ) ≥ 3 by Observation 1.1. We may assume
that the vertices wi, 1 ≤ i ≤ 3, have degree 1 in F . Suppose that e1, e2, e3 are the three
pendant edges that are incident with w1, w2 or w3, respectively. Any proper-path coloring
c : E(F )→ {1, 2} of F must assign the same color to two of e1, e2, e3, say c(e1) = c(e2) = 1.
Thus, e1 and e2 cannot be adjacent, say e1 = u1w1 and e2 = u2w2. Let P be a proper
w1 − w2 path in F , say P = (w1, u1, wi, . . . , wj, u2, w2) for some integers i, j ∈ {3, 4, . . . , t}.
Let P ′ = P − {w1, u1, u2, w2} be the subpath of P . Then P ′ has even length and the edges
of P ′ are colored alternately 2 and 1. However then, c(wju2) = c(u2w2) = 1, which is a
contradiction. Therefore, the minimum size of a connected spanning subgraph of Ks,t with
proper connection number 2 is 2t− 2.

Combining Theorems 2.1 and 2.2, we obtain the following.

Corollary 2.3 If s and t are integers with t ≥ s+ 2 ≥ 4, then µ(Ks,t) = 2t− 2.

The proof of Theorem 2.2 gives rise to the following useful corollary.

Corollary 2.4 Let F be a connected spanning subgraph of the complete bipartite graph Ks,t

with partite sets U and W , where |U | = s, |W | = t and 1 ≤ s ≤ t and t ≥ 3. If at least three
vertices of W have degree 1 in F , then pc(F ) ≥ 3.

3 Complete Multipartite Graphs

We now look at complete k-partite graphs for k ≥ 3. Let G = Kn1,n2,...,nk
be the complete

k-partite graph of order n =
∑k

i=1 ni, where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and k ≥ 3. Since G

contains a Hamiltonian path if and only if nk ≤
∑k−1

i=1 ni + 1, it follows that µ(G) = n − 1

in this case. Thus, it suffices to consider the case when nk ≥
∑k−1

i=1 ni + 2. We begin by
establishing an upper bound for µ(G) for such complete k-partite graphs G.

Proposition 3.1 Let G = Kn1,n2,...,nk
be the complete k-partite graph of order n =

∑k
i=1 ni,

where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and k ≥ 3. If nk ≥
∑k−1

i=1 ni + 2, then µ(G) ≤ 2nk − 2.

Proof. Let V1, V2, . . . , Vk be the partite sets of G with |Vi| = ni for 1 ≤ i ≤ k and let F
be the complete bipartite graph with partite sets V1 ∪ V2 ∪ · · · ∪ Vk−1 and Vk. It follows by
the proofs of Theorems 2.1 and 2.2 that F contains a connected spanning subgraph H of
size 2nk− 2 such that pc(H) = 2. Since F is a connected spanning subgraph of G, it follows
that G contains a connected spanning subgraph H of size 2nk − 2 such that pc(H) = 2 and
so µ(G) ≤ 2nk − 2.

Next, we describe a class of complete k-partite graphs where k ≥ 3 such that the upper
bound described in Proposition 3.1 is attainable.
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Proposition 3.2 Let G = Kn1,n2,...,nk
be the complete k-partite graph of order n =

∑k
i=1 ni,

where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and k ≥ 3. If nk =
∑k−1

i=1 ni + 2, then µ(G) = 2nk − 2.

Proof. Since G has order n with nk =
∑k−1

i=1 ni + 2, it follows by Proposition 3.1 that
µ(G) ≤ 2nk − 2. Every connected spanning subgraph H of G of size 2nk − 3 is a tree. Since
G contains no Hamiltonian path, it follows that pc(H) = ∆(H) ≥ 3. Thus, there is no
connected spanning subgraph of size 2nk − 3 having proper connection number 2. Hence,
µ(G) ≥ 2nk − 2 and so µ(G) = 2nk − 2.

We now investigate µ(G) for the complete 3-partite graphs G. To simplify the notation,
let G = Kr,s,t be a complete 3-partite graph where 1 ≤ r ≤ s ≤ t and t ≥ r + s + 2. We
show that the upper bound described in Proposition 3.1 is attainable when r = s = 1 and
t ≥ 4. First, we state a useful observation.

Observation 3.3 If F is a connected spanning subgraph of a graph G such that pc(F ) =
pc(G) = 2, then µ(G) ≤ µ(F ).

Proposition 3.4 For each integer t ≥ 4, µ(K1,1,t) = 2t− 2.

Proof. Since K2,t ⊆ K1,1,t, it follows by Observation 3.3 and and Theorem 2.1 that

µ(K1,1,t) ≤ µ(K2,t) ≤ 2t− 2.

Thus, it suffices to show that µ(K1,1,t) ≥ 2t − 2. Assume, to the contrary, that there is
a connected spanning subgraph F of K1,1,t of size m < 2t − 2 with pc(F ) = 2. Thus, at
least three vertices of W have degree 1 in F . Let the partite sets of K1,1,t be {u}, {v} and
W = {w1, w2, . . . , wt}.

First, suppose that exactly three vertices of W have degree 1 in F . Thus, m ≥ 2t − 3.
Since m < 2t − 2, it follows that m = 2t − 3 and so uv /∈ E(F ). However then, F is a
bipartite subgraph of K2,t with partite sets {u, v} and W . Since F has three vertices of
degree 1 in W , it then follows by Corollary 2.4 that pc(F ) ≥ 3, which is impossible.

Next, suppose that at least five vertices of W have degree 1 in F . Then either u or v is
incident with at least three bridges in F and so pc(F ) ≥ 3 by Observation 1.1, which is a
contradiction. Thus, exactly four vertices of W have degree 1 in F and each of u and v is
incident with exactly two of these four vertices. Therefore, we may assume that the vertices
wi (1 ≤ i ≤ 4) have degree 1 in F and uw1, uw2, vw3, vw4 are edges of F . Furthermore, if
uv /∈ E(F ), then F is a bipartite subgraph of K2,t with partite sets {u, v} and W . Again,
since F has four vertices of degree 1 in W , it then follows that pc(F ) ≥ 3 by Corollary 2.4,
which is impossible. Thus, we assume that uv ∈ E(F ).

Any proper-path coloring c : E(F )→ {1, 2} of F must assign distinct colors to uw1 and
uw2, say c(uw1) = 1 and c(uw2) = 2 and distinct colors to vw3 and vw4, say c(vw3) = 1 and
c(vw4) = 2. Assume, without loss of generality, that c(uv) = 1. Any proper w1−w3 path P
in F must begin with w1, u and terminate with v, w3. Necessarily, the only other vertex on
P is wj for some j with 5 ≤ j ≤ t, that is, P = (w1, u, wj, v, w3). Since c(w1u) = c(vw3) = 1
it follows that c(uwj) = c(vwj) = 2, which is a contradiction.

Next, we show that the upper bound described in Proposition 3.1 can be strict if t is
sufficiently large.
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Proposition 3.5 For an integer t ≥ 11, if G ∈ {K1,2,t, K1,1,1,t}, then

µ(G) = 2t− 4.

Proof. Since K1,2,t is a spanning subgraph of K1,1,1,t, it follows by Observation 3.3 that
µ(K1,1,1,t) ≤ µ(K1,2,t). Thus, it suffices to show that µ(K1,2,t) ≤ 2t−4 and µ(K1,1,1,t) ≥ 2t−4
for each integer t ≥ 11.

We first show that µ(K1,2,t) ≤ 2t− 4. Let G = K1,2,t, whose partite sets are {x, z}, {y}
and W = {w1, w2, . . . , wt}. Let F be the connected spanning subgraph of G obtained from
the path P3 = (x, y, z) by joining w1 and w2 to x, w3 and w4 to y, w5 and w6 to z, w7 to
x and z, wi to x and y for 8 ≤ i ≤ t − 2, wi to y and z for i = t − 1, t. The graph F is
shown in Figure 4 for t = 11. Since (i) there are six vertices of W of degree 1 in F , namely
wi for 1 ≤ i ≤ 6, (ii) the remaining t− 6 vertices of W have degree 2 in F and (iii) there are
exactly two edges in G[{x, y, z}], it follows that the size of F is 2t− 4.
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Figure 4: A connected spanning subgraph F of K1,2,11 for t = 11

Since there is a proper-path 2-edge coloring of F , it follows that pc(F ) = 2. Such a
proper-path 2-edge coloring of F is shown in Figure 5 for t = 11. If t ≥ 12, then (1) color
the two edges wix and wiy (10 ≤ i ≤ t − 2) as w8x and w8y, (2) color the two edges wt−1y
and wt−1z as w10y and w10z and (3) color the two edges wty and wtz as w11y and w11z. It
can be verified that for every two nonadjacent vertices u and v of F , there is a proper u− v
path in F . For example, if 12 ≤ i ≤ t − 2, then (w8, x, w9, y, wi) is a proper w8 − wi path
in F .
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Figure 5: A proper-path 2-edge coloring of F for t = 11
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Next, we show that µ(K1,1,1,t) ≥ 2t− 4. Let G = K1,1,1,t whose partite sets are {x}, {y},
{z} and W = {w1, w2, . . . , wt}. Assume, to the contrary, that µ(G) ≤ 2t−5. Then there is a
connected spanning subgraph F of G of size m ≤ 2t− 5 with pc(F ) = 2. We consider three
cases, according to the number of edges in the subgraph G[{x, y, z}] induced by {x, y, z}.

Case 1. The subgraph G[{x, y, z}] contains no edge. Then F is a connected spanning
subgraph of K3,t with pc(F ) = 2. Since µ(K3,t) = 2t − 2, the size of F is at least 2t − 2,
which is impossible.

Case 2. The subgraph G[{x, y, z}] contains exactly one edge, say e = xy is an edge of
G[{x, y, z}]. Since the size of F is at most 2t − 5, at least six vertices of W have degree 1
in F . It cannot occur that three vertices of degree 1 in W are adjacent to a vertex in F , for
otherwise, pc(F ) ≥ 3 by Observation 1.1. Thus, we may assume, without loss of generality,
that the vertices wi (1 ≤ i ≤ 6) have degree 1 in F and xw1, xw2, yw3, yw4, zw5, zw6. Any
proper-path coloring c : E(F )→ {1, 2} of F must assign distinct colors to the two adjacent
pendant edges in F , say c(xw1) = c(yw3) = 1 and c(xw2) = c(yw4) = 2. Then a proper
w1 − w3 path must be (w1, x, y, w3) and so c(xy) = 2; while a proper w2 − w4 path must be
(w2, x, y, w4) and so c(xy) = 1, which is impossible.

Case 3. The subgraph G[{x, y, z}] contains at least two edges. Then at least seven vertices
of W have degree 1 in F . Thus, three vertices of degree 1 in W are adjacent to a vertex in F
and so pc(F ) ≥ 3 by Observation 1.1, which is impossible.

Hence, µ(K1,1,1,t) ≥ 2t− 4. Since 2t− 4 ≤ µ(K1,1,1,t) ≤ µ(K1,2,t) ≤ 2t− 4, it follows that
µ(K1,1,1,t) = µ(K1,2,t) = 2t− 4.

Proposition 3.5 is a special case of a more general result. Let G = Kn1,n2,...,nk
be the

complete k-partite graph, where k ≥ 3, let r =
∑k−1

i=1 ni and t = nk. We now present a
formula for µ(G) when r ≥ 3 and t is sufficiently large compared to r.

Theorem 3.6 Let G = Kn1,n2,...,nk
be a complete k-partite graph where

k ≥ 3, r =
∑k−1

i=1 ni ≥ 3 and t = nk.

If t ≥ r2 + r, then
µ(G) = 2t− 2r + 2.

Proof. Denote the partite sets of G by V1, V2, . . . , Vk, where |Vi| = ni for 1 ≤ i ≤ k. First,
we show that µ(G) ≥ 2t − 2r + 2. Let H be a minimum connected spanning subgraph of
G with pc(H) = 2. Certainly, every vertex of Vk has degree at least 1 in H. Also, at most
2r vertices of Vk have degree 1, for otherwise, there are vertices of H incident with three
or more pendant edges and so pc(H) ≥ 3 by Observation 1.1, contradicting the fact that
pc(H) = 2. Thus, at most two vertices of Vk of degree 1 can be adjacent to the same vertex
of ∪k−1

i=1 Vi. If any two vertices w′, w′′ of degree 1 in Vk are incident with edges of the same
color, then H[∪k−1

i=1 Vi] must contain an edge of the other color. Thus, the size of H must be
at least (∑

w∈Vk

degH w

)
+ 2 ≥ 2r + 2(t− 2r) + 2 = 2t− 2r + 2
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and so µ(G) ≥ 2t− 2r + 2.

Next, we show that µ(G) ≤ 2t − 2r + 2. To verify this, we show that there exists
a connected spanning subgraph F of size 2t − 2r + 2 in G such that pc(F ) = 2. Let
∪k−1

i=1 Vi = {v1, v2, . . . , vr}, where the only edges of F [∪k−1
i=1 Vi] are vr−2vr−1 and vr−1vr. Let

Vk = {w1, w2, . . . , wt} where degF wi = 1 for 1 ≤ i ≤ 2r. In particular, for 1 ≤ i ≤ r,
w2i−1 and w2i are adjacent to vi. Next, we define an edge coloring c : E(F ) → {1, 2} as
follows. Let c(vr−2vr−1) = 1, c(vr−1vr) = 2, c(viw2i−1) = 1 and c(viw2i) = 2 for 1 ≤ i ≤ r.
There are

(
r
2

)
distinct pairs of vertices in {v1, v2, . . . , vr}. For each such pair {va, vb}, two

vertices w′ and w′′ in {w2r+1, w2r+2, . . . , wr2+r} are selected, which are both joined to va and
vb, where c(vaw

′) = c(vbw
′′) = 1 and c(vaw

′′) = c(vbw
′) = 2. If t > r2 + r, then each vertex

in {wr2+r+1, wr2+r+2, . . . , wt} is joined to two vertices in {v1, v2, . . . , vr}, where one edge is
colored 1 and the other edge is colored 2. This completes the construction of F and the
edge coloring c of F . The subgraph F and the coloring c of F are illustrated in Figure 6
for K2,2,20, where each solid edge is colored 1 and each dashed edge is colored 2.
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Figure 6: A subgraph F of K2,2,20 and an edge coloring of F

We now show that c is a proper-path 2-coloring of F . It remains to show that every two
nonadjacent vertices x and y of F are connected by a proper path. This is obvious if there
is a proper path of length 2 connecting x and y. Thus, we consider the other possibilities,
namely either x, y ∈ Vk or exactly one of x and y belongs to Vk. First, we consider the
situation when x, y ∈ Vk. There are three cases.

Case 1. {x, y} = {wi, wj} where 1 ≤ i 6= j ≤ 2r. Suppose that wivp and wjvq are edges
in F where 1 ≤ p < q ≤ r. We consider three subcases, according to whether p < q ≤ r − 3
or p, q ≥ r − 2 or p ≤ r − 3 and q ≥ r − 2.

Subcase 1.1. p < q ≤ r − 3. If c(wivp) 6= c(wjvq), say c(wivp) = 1 and c(wjvq) = 2, then
there exists a vertex ws where s > 2r such that vpws, wsvq ∈ E(F ) and c(vpws) = 2 and
c(wsvq) = 1. Then (wi, vp, ws, vq, wj) is a proper wi − wj path in F . If c(wivp) = c(wjvq),
say c(wivp) = c(wjvq) = 1, then there are vertices wa and wb where a, b > 2r such that
vpwa, wavr−1, vqwb, wbvr ∈ E(F ) with c(wavr−1) = c(wbvr) = 1 and c(wavp) = c(wbvq) = 2.
Thus, (wi, vp, wa, vr−1, vr, wb, vq, wj) is a proper wi − wj path in F .

Subcase 1.2. p, q ∈ {r − 2, r − 1, r}. First, assume that wivr−2, wjvr−1 ∈ E(F ).
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? If wivr−2 and vr−1wj are both colored 2, then (wi, vr−2, vr−1, wj) is a proper wi − wj

path in F .

? If wivr−2 and vr−1wj are both colored 1, then there is a vertex wa with a > 2r
such that vr−2wa, wavr ∈ E(F ) such that c(vr−2wa) = 2 and c(wavr) = 1. Hence,
(wi, vr−2, wa, vr, vr−1, wj) is a proper wi − wj path in F .

? If wivr−2 and vr−1wj are colored differently, say c(wivr−2) = 1 and c(vr−1wj) = 2,
then there is a vertex wa with a > 2r such that vr−2wa, wavr−1 ∈ E(F ) such that
c(vr−2wa) = 2 and c(wavr−1) = 1. Hence, (wi, vr−2, wa, vr−1, wj) is a proper wi − wj

path in F .

An argument for the situation where wivr−1, wjvr ∈ E(F ) is similar. Next, assume that
wivr−2, wjvr ∈ E(F ).

? If c(wivr−2) = 2 and c(vrwj) = 1, then (wi, vr−2, vr−1, vr, wj) is a proper wi − wj path
in F .

? If c(wivr−2) = 1 and c(vrwj) = 2, then there is a vertex wa with a > 2r such that
vr−2wa, wavr ∈ E(F ) such that c(vr−2wa) = 2 and c(wavr) = 1. Hence, (wi, vr−2, wa,
vr, wj) is a proper wi − wj path in F .

? If wivr−2 and vrwj are colored the same, say c(wivr−2) = c(vrwj) = 1, then there is a
vertex wa with a > 2r such that vr−2wa, wavr−1 ∈ E(F ) such that c(vr−2wa) = 2 and
c(wavr−1) = 1. Hence, (wi, vr−2, wa, vr−1, vr, wj) is a proper wi − wj path in F .

Subcase 1.3. p ≤ r − 3 and q ∈ {r − 2, r − 1, r}. Suppose that q = r − 2 and so
wivp, wjvr−2 ∈ E(F ).

? If wivp and wjvr−2 are colored differently, say c(wivp) = 1 and c(wjvr−2) = 2, then
there is a vertex wa with a > 2r such that c(wavp) = 2 and c(wavr−2) = 1. Hence,
(wi, vp, wa, vr−2, wj) is a proper wi − wj path in F .

? If c(wivp) = c(vr−2wj) = 1, then there are vertices wa and wb with a, b > 2r such
that vpwa, wavr, vr−1wb, wbvr−2 ∈ E(F ) where c(wavr) = c(vr−1wb) = 1 and c(wavp) =
c(vr−2wb) = 2. Then (wi, vp, wa, vr, vr−1, wb, vr−2, wj) is a proper wi − wj path in F .

? If c(wivp) = c(vr−2wj) = 2, then there is a vertex wa with a > 2r such that vpwa, wavr−1 ∈
E(F ) such that c(vpwa) = 1 and c(wavr−1) = 2. Hence, (wi, vp, wa, vr−1, vr−2, wj) is
a proper wi − wj path in F .

The situations for q = r − 1 or q = r are similar.

Case 2. {x, y} = {wi, wj} where 2r < i 6= j ≤ t. Since each of wi and wj is incident with
two edges of different colors in F , it follows that there exist p, q ∈ {1, 2, . . . , r} such that
wivp, wjvq ∈ E(F ) and c(wivp) 6= c(wjvq). If vp = vq, then (wi, vp, wj) is a proper wi−wj path
in F ; while if vp 6= vq, then there is a vertex wa with a > 2r such that vpwa, wavq ∈ E(F )
such that c(wivp) 6= c(vpwa) and c(wjvq) 6= c(vqwa). Thus, (wi, vp, wa, vq, wj) is a proper
wi − wj path in F .
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Case 3. {x, y} = {wi, wj} where 1 ≤ i ≤ 2r and 2r + 1 ≤ j ≤ t. Suppose that
wivp ∈ E(F ). Choose vq such that c(wivp) 6= c(wjvq). We may assume that vp 6= vq. Then
there is a vertex wa with a > 2r such that vpwa, wavq ∈ E(F ) where c(wivp) 6= c(vpwa).
Thus, (wi, vp, wa, vq, wj) is a proper wi − wj path in F .

Next, we consider the situation when exactly one of x and y belongs to Vk, say x ∈ Vk and
y = vj for some integer j with 1 ≤ j ≤ r. First, suppose that x = wi where 2r + 1 ≤ i ≤ t.
Let wivp, wivq ∈ E(F ), where say c(wivp) = 1 and c(wivq) = 2. Then there is a vertex
wa with a > 2r such that vjwa, wavp ∈ E(F ) and c(wavj) = 1 and c(wavp) = 2. Thus,
(wi, vp, wa, wj) is a proper wi − wj path in F . Next, suppose that x = wi where 1 ≤ i ≤ 2r.
Let wivp ∈ E(F ), where say c(wivp) = 1. Then there is a vertex wa with a > 2r such that
vjwa, wavp ∈ E(F ) and c(wavj) = 1 and c(wavp) = 2. Thus, (wi, vp, wa, wj) is a proper
wi − wj path in F .

Hence, c is a proper-path 2-coloring of F and so pc(F ) = 2. Therefore, µ(G) ≤ 2t−2r+2
and so µ(G) = 2t− 2r + 2.

What remains then is determining µ(G) for G = Kn1,n2,...,nk
, where k ≥ 3, r =

∑k−1
i=1 ni

and t = nk, when r + 2 ≤ t < r2 + r. Of course, the more general problem is that of
determining or at least finding bounds for µ(G) for other connected graphs G not possessing
a Hamiltonian path.

Closing Remarks: In a relatively short period after the concept of proper-path colorings
in graphs was introduced, it has been studied by many, resulting in numerous beautiful
theorems and intriguing conjectures and open questions (such as in the previous paragraph).
Li and Magnant’s a dynamic survey [4] provides useful information on this topic.
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