On Minimum Spanning Subgraphs of Graphs With Proper Connection Number 2

Zhenming Bi
zhenming.bi@wmich.edu
Gary Chartrand
Western Michigan University, gary.chartrand@wmich.edu
Garry L. Johns
gl@@svsu.edu
Ping Zhang
ping.zhang@wmich.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Bi, Zhenming; Chartrand, Gary; Johns, Garry L.; and Zhang, Ping (2016) "On Minimum Spanning Subgraphs of Graphs With Proper Connection Number 2," Theory and Applications of Graphs: Vol. 3 : Iss. 2 , Article 2.
DOI: 10.20429/tag.2017.030202
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol3/iss2/2

On Minimum Spanning Subgraphs of Graphs With Proper Connection Number 2

Cover Page Footnote

We greatly appreciate the valuable suggestions made by anonymous referees that resulted in an improved paper.

Abstract

An edge coloring of a connected graph G is a proper-path coloring if every two vertices of G are connected by a properly colored path. The minimum number of colors required of a proper-path coloring of G is called the proper connection number $\operatorname{pc}(G)$ of G. For a connected graph G with proper connection number 2 , the minimum size of a connected spanning subgraph H of G with $\mathrm{pc}(H)=2$ is denoted by $\mu(G)$. It is shown that if s and t are integers such that $t \geq s+2 \geq 5$, then $\mu\left(K_{s, t}\right)=2 t-2$. We also determine $\mu(G)$ for several classes of complete multipartite graphs G. In particular, it is shown that if $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ is a complete k-partite graph, where $k \geq 3, r=\sum_{i=1}^{k-1} n_{i} \geq 3$ and $t=n_{k} \geq r^{2}+r$, then $\mu(G)=2 t-2 r+2$.

1 Introduction

An edge coloring of a connected graph G is a rainbow coloring of G if every two vertices are connected by a path where no two edges are colored the same (a rainbow path). A connected graph G with a rainbow coloring is a rainbow-connected graph. The minimum number of colors required for a rainbow coloring of a connected graph G is its rainbow connection number $\operatorname{rc}(G)$. These concepts were introduced and studied by Chartrand, Johns, McKeon and Zhang in 2006 resulting in the 2008 paper [3]. Since then, much research has been done on these topics. In fact, a book [5] has been written on rainbow connection in graphs.

An edge coloring of a graph G is a proper coloring of G if every two adjacent edges of G are assigned distinct colors. The minimum number of colors required of a proper edge coloring of G is its chromatic index, denoted by $\chi^{\prime}(G)$. An edge coloring of a connected graph G is called a proper-path coloring if every two vertices of G are connected by a properly colored path (a proper path). The minimum number of colors required of a proper-path coloring of G is called the proper connection number $\operatorname{pc}(G)$ of G. Therefore, $\operatorname{pc}(G) \leq \chi^{\prime}(G)$ for every connected graph G. This concept was independently introduced and studied in [1, 2]. Recently, much research has been done on these concepts and, in fact, there is a dynamic survey on this topic due to Li and Magnant [4].

In [1] it was shown that every complete multipartite graph that is neither a complete graph nor a star has proper connection number 2. In fact, many connected graphs have been shown to have proper connection number 2 . On the other hand, a graph can have a large proper connection number. For example, $\operatorname{pc}(T)=\Delta(T)$ for every tree T. Indeed, we have the following observation (see [1]).

Observation 1.1 Let G be a nontrivial connected graph containing bridges. If the maximum number of bridges incident with a single vertex in G is b, then $\operatorname{pc}(G) \geq b$.

While trees can have large proper connection number, this is not true for 2-connected graphs. The following theorem is due to Borozan, Fujita, Gerek, Magnant, Manoussakis, Montero and Tuza in [2].

Theorem 1.2 If G is a 2-connected graph that is not complete, then $\operatorname{pc}(G) \leq 3$.

Figure 1: A 2-connected graph G with proper connection number 3

The upper bound 3 in Theorem 1.2 cannot be improved as it was shown in [2] that 2 -connected graphs with proper connection number 3 exist. The 2-connected graph G in Figure 1 has proper connection number 3. A proper-path 3-coloring of G is shown in Figure 1.

The graph G in Figure 1 is, of course, also 2-edge connected. That is, there exist 2edge connected graphs with proper connection number 3. While verifying that the proper connection number of the graph G of Figure 1 is 3 may require some time, there is a class of 2-edge connected graphs with proper connection number 3, the verification of which is more immediate.

A graph G is a friendship graph if every two distinct vertices of G have a unique common neighbor. A friendship graph has odd order $2 k+1$ for some positive integer k. The friendship graph of order 3 is K_{3} and the friendship graph of order $2 k+1 \geq 5$ is obtained by identifying one vertex from each of k triangles.

Proposition 1.3 If G is the friendship graph of order 7 , then $\operatorname{pc}(G)=3$.
Proof. Label the vertices of G as shown in Figure 2(a). First, the edge coloring c^{\prime} where $c^{\prime}\left(w x_{1}\right)=c^{\prime}\left(w y_{1}\right)=c^{\prime}\left(w z_{1}\right)=1, c^{\prime}\left(w x_{2}\right)=c^{\prime}\left(w y_{2}\right)=c^{\prime}\left(w z_{2}\right)=2$ and $c^{\prime}\left(x_{1} x_{2}\right)=c^{\prime}\left(y_{1} y_{2}\right)=$ $c^{\prime}\left(z_{1} z_{2}\right)=3$ is a proper-path 3-coloring of G and so $\operatorname{pc}(G) \leq 3$.

Figure 2: The friendship graph of order 7
Next, we show that $\mathrm{pc}(G) \geq 3$. Assume, to the contrary, that there is a proper-path 2 -coloring c of G with the colors 1 and 2. Denote the triangle with vertices x_{1}, x_{2}, w by T_{1}, the triangle with vertices y_{1}, y_{2}, w by T_{2} and the triangle with vertices z_{1}, z_{2}, w by T_{3}, as
shown in Figure 2(a). We claim that in each of the three triangles T_{1}, T_{2}, T_{3}, the two edges incident with w are assigned different colors by c.

Assume, to the contrary, that one of T_{1}, T_{2}, T_{3} has its two edges incident with w colored the same, say $c\left(w x_{1}\right)=c\left(w x_{2}\right)=1$. Since there is a proper $x_{1}-y_{1}$ path and there is a proper $x_{1}-z_{1}$ path, at least one edge incident with w in T_{2} and T_{3} is colored 2, say $c\left(w y_{1}\right)=c\left(w z_{1}\right)=2$. Since G contains a proper $y_{1}-z_{1}$ path, either $w y_{2}$ or $w z_{2}$ is colored 1 , say $c\left(w y_{2}\right)=1$. Since G contains a proper $x_{1}-y_{2}$ path, $c\left(y_{1} y_{2}\right)=1$. Thus, $\left(y_{1}, w, z_{2}, z_{1}\right)$ is the unique proper $y_{1}-z_{1}$ path, which implies that $c\left(w z_{2}\right)=1$ and $c\left(z_{1} z_{2}\right)=2$. However then, there is no proper $x_{1}-z_{2}$ path, which produces a contradiction. Thus, as claimed, in each of three triangles T_{1}, T_{2}, T_{3}, the two edges incident with w are assigned different colors by c. Hence, we may assume that $c\left(w x_{1}\right)=c\left(w y_{1}\right)=c\left(w z_{1}\right)=1$ and $c\left(w x_{2}\right)=c\left(w y_{2}\right)=$ $c\left(w z_{2}\right)=2$, as shown in Figure 2(b).

Since G contains a proper $x_{1}-y_{1}$ path, it follows that $c\left(x_{1} x_{2}\right)=1$ or $c\left(y_{1} y_{2}\right)=1$, say the former. There is now only one possible proper $x_{2}-z_{2}$ path, namely, $\left(x_{2}, w, z_{1}, z_{2}\right)$, which implies that $c\left(z_{1} z_{2}\right)=2$. However then, there is only one proper $x_{2}-y_{2}$ path, namely $\left(x_{2}, w, y_{1}, y_{2}\right)$, which implies that $c\left(y_{1} y_{2}\right)=2$. Thus, we arrive at the coloring of G shown in Figure 2(c). However then, there is no proper $y_{1}-z_{1}$ path, producing a contradiction. Hence, $\operatorname{pc}(G) \geq 3$ and so $\operatorname{pc}(G)=3$.

The proof of Proposition 1.4 and the proper-path 3-coloring of G described in this proof can be extended to give the following result.

Corollary 1.4 Every friendship graph of order at least 7 has proper connection number 3 .
We have noted that many graphs have proper connection number 2. Certainly, many 2 -connected graphs have proper connection number 2 . If G is a noncomplete connected graph containing a connected spanning subgraph H such that $\mathrm{pc}(H)=2$, then $\mathrm{pc}(G)=2$ as well. In fact, every noncomplete connected supergraph F of H with $V(F)=V(H)$ also has proper connection number 2. This suggests the following concept. For a connected graph G with $\operatorname{pc}(G)=2$, let $\mu(G)$ denote the minimum size of a connected spanning subgraph H of G with $\operatorname{pc}(H)=2$. In this context, we refer to a spanning subgraph H of G with $\mu(G)$ edges as a minimum spanning subgraph of G. In what follows, we determine $\mu(G)$ for some familiar graphs G with $\operatorname{pc}(G)=2$.

2 Complete Bipartite Graphs

We now investigate this concept for complete multipartite graphs that are neither a star nor a complete graph, beginning with complete bipartite graphs $K_{s, t}$ with $2 \leq s \leq t$. Since $K_{s, t}$ contains a Hamiltonian path if and only if $t-s \leq 1$, it follows that this minimum size is $t+s-1$ for these graphs. It therefore suffices to consider those graphs $K_{s, t}$ with $t-s \geq 2$. We begin with the graphs $K_{2, t}$ where $t \geq 4$.

Theorem 2.1 For an integer $t \geq 4, \mu\left(K_{2, t}\right)=2 t-2$.

Proof. Let $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ be the two partite sets of $K_{2, t}$ and let $H=K_{2, t}-\left\{u_{1} w_{2}, u_{2} w_{1}\right\}$. Thus, the size of H is $2 t-2$. We show (1) $\operatorname{pc}(H)=2$ and (2) H has the minimum size of a connected spanning subgraph of $K_{2, t}$ with proper connection number 2.

First, we show that $\mathrm{pc}(H)=2$. Define the edge coloring $c: E(H) \rightarrow\{1,2\}$ by

$$
c\left(u_{i} w_{j}\right)= \begin{cases}1 & \text { if either } i=1 \text { and } j=1 \text { or } 3 \leq j \leq t-1 \text { or }(i, j)=(2, t) \\ 2 & \text { if either } i=2 \text { and } 2 \leq j \leq t-1 \text { or }(i, j)=(1, t) .\end{cases}
$$

To verify that c is a proper-path coloring of H, we show that every two vertices of H are connected by a proper path. Let x and y be two nonadjacent vertices of H.
\star If $\{x, y\}=\left\{u_{1}, u_{2}\right\}$, then $\left(u_{1}, w_{3}, u_{2}\right)$ is a proper $u_{1}-u_{2}$ path.
If $\{x, y\}=\left\{u_{1}, w_{2}\right\}$, then $\left(u_{1}, w_{t}, u_{2}, w_{2}\right)$ is a proper $u_{1}-w_{2}$ path.
If $\{x, y\}=\left\{u_{2}, w_{1}\right\}$, then $\left(u_{2}, w_{t}, u_{1}, w_{1}\right)$ is a proper $u_{2}-w_{1}$ path.
\star Let $x=w_{i}$ and $y=w_{j}$ where $1 \leq i<j \leq t$. First, suppose that $x \in\left\{w_{1}, w_{2}\right\}$.
If $x=w_{1}$ and $y=w_{j}$ for $2 \leq j \leq t-1$, then $\left(w_{1}, u_{1}, w_{t}, u_{2}, w_{j}\right)$ is a proper $w_{1}-w_{j}$ path.

If $x=w_{1}$ and $y=w_{t}$, then $\left(w_{1}, u_{1}, w_{t}\right)$ is a proper $w_{1}-w_{t}$ path.
If $x=w_{2}$ and $y=w_{j}$ for $3 \leq j \leq t-1$, then $\left(w_{2}, u_{2}, w_{t}, u_{1}, w_{j}\right)$ is a proper $w_{2}-w_{j}$ path.
If $x=w_{2}$ and $y=w_{t}$, then $\left(w_{2}, u_{2}, w_{t}\right)$ is a proper $w_{2}-w_{t}$ path.
Next, suppose that $x=w_{i}$ where $3 \leq i \leq t-1$.
If $y=w_{j}$ for $i+1 \leq j \leq t-1$, then $\left(w_{i}, u_{1}, w_{t}, u_{2}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path.
If $y=w_{t}$, then $\left(w_{i}, u_{1}, w_{t}\right)$ is a proper $w_{i}-w_{t}$ path.
Hence, c is a proper-path coloring of H and so $\mathrm{pc}(H)=2$.
Next, we show that H has the minimum size of a connected spanning subgraph of $K_{2, t}$ with proper connection number 2 . Suppose that there is a connected spanning subgraph F of $K_{2, t}$ having less than $2 t-2$ edges for which $\mathrm{pc}(F)=2$. Necessarily, at least three vertices of W have degree 1 in F. It cannot occur that three vertices of degree 1 in F are adjacent to the same vertex of U, for otherwise $\mathrm{pc}(F) \geq 3$ by Observation 1.1. Hence, we may assume that the vertices $w_{i}, 1 \leq i \leq 3$, have degree 1 in F and that $u_{1} w_{1}, u_{1} w_{2}, u_{2} w_{3}$ are edges of F. Any proper-path coloring $c: E(F) \rightarrow\{1,2\}$ of F must assign distinct colors to $u_{1} w_{1}$ and $u_{1} w_{2}$, say $c\left(u_{1} w_{1}\right)=1$ and $c\left(u_{1} w_{2}\right)=2$. We may assume, without loss of generality, that $c\left(u_{2} w_{3}\right)=1$. Let P be a proper $w_{1}-w_{3}$ path in F. Thus, $P=\left(w_{1}, u_{1}, w_{j}, u_{2}, w_{3}\right)$ for some integer $j \geq 4$. Since $c\left(w_{1} u_{1}\right)=c\left(u_{2} w_{3}\right)=1$ and P is a proper path, it follows that $c\left(u_{1} w_{j}\right) \neq 1$ and $c\left(w_{j} u_{2}\right) \neq 1$ and so $c\left(u_{1} w_{j}\right)=c\left(w_{j} u_{2}\right)=2$, which is a contradiction.

Next, we determine $\mu\left(K_{s, t}\right)$ for all integers s and t with $t \geq s+2 \geq 5$.
Theorem 2.2 If s and t are integers with $t \geq s+2 \geq 5$, then $\mu\left(K_{s, t}\right)=2 t-2$.

Proof. Let $G=K_{s, t}$ with partite sets

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\} \text { and } W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}
$$

Write $t=s q+r$ for integers q and r where $0 \leq r \leq s-1$.
First, we construct a connected spanning subgraph H of G of size $2 t-2$ such that $\operatorname{pc}(H)=2$. We consider two cases, according to whether $r=0$ or $1 \leq r \leq s-1$.

Case 1. $r=0$. Partition the set W into $q \geq 2$ subsets $W_{1}, W_{2}, \ldots, W_{q}$ where $\left|W_{i}\right|=s$ for $1 \leq i \leq q$ such that $W_{1}=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ and $W_{2}=\left\{w_{s+1}, w_{s+2}, \ldots, w_{2 s}\right\}$.
\star First, suppose that $s=3$. If $q=2$, let $Q_{1}=\left(u_{1}, w_{3}, u_{2}, w_{4}, u_{1}\right)=C_{4}$ and $Q_{2}=$ $\left(u_{2}, w_{5}, u_{3}, w_{6}, u_{2}\right)=C_{4}$. If $q \geq 3$, then for each integer i with $3 \leq i \leq q$, let $Q_{i}=C_{6}$ be a Hamiltonian cycle of the subgraph $G\left[U \cup W_{i}\right]=K_{3,3}$ of G induced by $U \cup W_{i}$. Let H be the spanning subgraph of G with

$$
\begin{equation*}
E(H)=E\left(Q_{1}\right) \cup E\left(Q_{2}\right) \cup \cdots \cup E\left(Q_{q}\right) \cup\left\{u_{1} w_{1}, u_{1} w_{2}\right\} . \tag{1}
\end{equation*}
$$

\star Next, suppose that $s \geq 4$. Let $U^{\prime}=U-\left\{u_{1}, u_{2}\right\}$ and $W^{\prime}=W_{1}-\left\{w_{1}, w_{2}\right\}$. Let $Q_{1}=C_{2 s-4}$ be a Hamiltonian cycle in the subgraph $G\left[U^{\prime} \cup W^{\prime}\right]=K_{s-2, s-2}$ of G induced by $U^{\prime} \cup W^{\prime}$ and for each integer i with $2 \leq i \leq q$, let $Q_{i}=C_{2 s}$ be a Hamiltonian cycle in the subgraph $G\left[U \cup W_{i}\right]=K_{s, s}$ of G induced by $U \cup W_{i}$. Let H be the spanning subgraph of G whose edge set is described in (1). Hence, the size of H is $2 t-2$.

It remains to show that $\mathrm{pc}(H)=2$. We first define an edge coloring $c: E(H) \rightarrow\{1,2\}$. For $1 \leq i \leq q$, let c be a proper edge coloring of the even cycle Q_{i}. Also, let $c\left(u_{1} w_{1}\right)=1$ and $c\left(u_{1} w_{2}\right)=2$. Next, we show that c is a proper-path coloring of H. Let x and y be two nonadjacent vertices of H. If x and y lie on some even cycle Q_{p} for some $p \in\{1,2, \ldots, q\}$, then there is a proper $x-y$ path in H. Thus, we may assume that x and y do not lie on a common even cycle Q_{i} where $1 \leq i \leq q$.

First, suppose that $s=3$. Since x and y do not lie on a common even cycle Q_{i} where $1 \leq i \leq q$, it follows that $x, y \in U \cup\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. Let H^{\prime} be the subgraph of H induced by $U \cup\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. We may furthermore assume that the edges of H^{\prime} are colored as shown in Figure 3, where a solid edge and a dashed edge are colored differently. If $x, y \in U$, say $x=u_{1}$ and $y=u_{3}$, then $\left(u_{1}, w_{3}, u_{2}, w_{5}, u_{3}\right)$ is a proper $x-y$ path. Thus, we may assume that at least one of x and y does not belong to U, say $y \in W$. Then $y=w_{i}$ for some i with $i=1,2, \ldots, 6$. A case-by-case argument shows that there is a proper $x-y$ path in H^{\prime} (and so in H). For example, $\left(u_{1}, w_{4}, u_{2}, w_{6}\right)$ is a proper $u_{1}-w_{6}$ path and $\left(w_{1}, u_{1}, w_{4}, u_{2}, w_{6}\right)$ is a proper $w_{1}-w_{6}$ path.

Next, suppose that $s \geq 4$. Since every two distinct vertices of U lie on the even cycle Q_{2}, it follows that at least one of x and y does not belong to U, say $y \in W$. We consider two subcases, according to whether $x \in U$ or $x \in W$.

Subcase 1.1. $x \in U$. First, suppose that $y=w_{i}$ for $3 \leq i \leq s$. Then $x \in\left\{u_{1}, u_{2}\right\}$. Since x lies on Q_{2} and y is adjacent to a vertex z on Q_{2}, there are two $x-y$ paths passing through z, one of which is proper. Next, suppose that $y \in\left\{w_{1}, w_{2}\right\}$. Since x and y are nonadjacent, $x=u_{i}$ for some i with $2 \leq i \leq s$. Then x lies on Q_{2} and y is adjacent to the vertex u_{1} on Q_{2}. Then there are two $x-y$ paths passing through u_{1}, one of which is proper.

Figure 3: A subgraph H^{\prime} in H when $s=3$

Subcase 1.2. $x \in W$. We may assume that $x=w_{i}$ and $y=w_{j}$ where $1 \leq i<j$. First, suppose that $i \in\{1,2\}$. If $(i, j)=(1,2)$ or $j \geq s+1$, then $\left(w_{i}, u_{1}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in H. Next, suppose that $3 \leq j \leq s$. Then x is adjacent to u_{1} of Q_{2} and y is adjacent to a vertex z of Q_{2} (where it is possible that $u_{1}=z$). There are two $x-y$ paths passing through z, one of which is proper. Next, suppose that $i \geq 3$. Hence, $x \in W_{a}$ and $y \in W_{b}$ where $1 \leq a<b \leq q$. Then x is adjacent to a vertex z on Q_{b} and y lies on Q_{b}. Thus, there are two $x-y$ paths passing through z, one of which is proper.

Case 2. $1 \leq r \leq s-1$. Partition the set W into $q+1$ subsets $W_{0}, W_{1}, W_{2}, \ldots, W_{q}$ where $\left|W_{0}\right|=r$ and $\left|W_{i}\right|=s$ for $1 \leq i \leq q$ such that $W_{0}=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ and $W_{1}=$ $\left\{w_{r+1}, w_{r+2}, \ldots, w_{r+s}\right\}$.
\star For $r=1$, let $W^{\prime}=W_{1}-\left\{w_{2}\right\}$ and $U^{\prime}=U-\left\{u_{1}\right\}$. Now, let $Q_{1}=C_{2 s-2}$ be a Hamiltonian cycle in the subgraph $G\left[U^{\prime} \cup W^{\prime}\right]=K_{s-1, s-1}$ of G induced by $U^{\prime} \cup W^{\prime}$ and for $2 \leq i \leq q$ if $q \geq 2$, let $Q_{i}=C_{2 s}$ be a Hamiltonian cycle in the subgraph $G\left[U \cup W_{i}\right]=K_{s, s}$ of G induced by $U \cup W_{i}$. Let H be the spanning subgraph of G whose edge set is described in (1).
\star For $r=2$, let $Q_{i}=C_{2 s}$ be a Hamiltonian cycle in the subgraph $G\left[U \cup W_{i}\right]=K_{s, s}$ for $1 \leq i \leq q$. Let H be the spanning subgraph of G whose edge set is described in (1).
\star For $r=3$, let $Q_{0}=\left(u_{1}, w_{3}, u_{2}, w_{4}, u_{1}\right)=C_{4}$. Let $U^{\prime}=U-\left\{u_{1}\right\}$ and $W^{\prime}=W_{1}-\left\{w_{4}\right\}$. Now let $Q_{1}=C_{2 s-2}$ be a Hamiltonian cycle in the subgraph $G\left[U^{\prime} \cup W^{\prime}\right]=K_{s-1, s-1}$ of G induced by $U^{\prime} \cup W^{\prime}$. For each integer i with $2 \leq i \leq q$, let $Q_{i}=C_{2 s}$ be a Hamiltonian cycle in the subgraph $G\left[U \cup W_{i}\right]=K_{s, s}$ of G induced by $U \cup W_{i}$. Let H be the spanning subgraph of G whose edge set is

$$
\begin{equation*}
E(H)=E\left(Q_{0}\right) \cup E\left(Q_{1}\right) \cup \cdots \cup E\left(Q_{q}\right) \cup\left\{u_{1} w_{1}, u_{1} w_{2}\right\} \tag{2}
\end{equation*}
$$

\star For $r \geq 4$, let $W^{\prime}=W_{0}-\left\{w_{1}, w_{2}\right\}$ and $U^{\prime}=\left\{u_{1}, u_{2}, \ldots, v_{r-2}\right\}$. Now, let $Q_{0}=C_{2 r-4}$ be a Hamiltonian cycle in the subgraph $G\left[U^{\prime} \cup W^{\prime}\right]=K_{r-2, r-2}$ of G induced by $U^{\prime} \cup W^{\prime}$ and for $1 \leq i \leq q$, let $Q_{i}=C_{2 s}$ be a Hamiltonian cycle in the subgraph $G\left[U \cup W_{i}\right]=K_{s, s}$ of G induced by $U \cup W_{i}$. Let H be the spanning subgraph of G whose edge set is described in (2).

In each case, the size of H is $2 t-2$. We define an edge coloring $c: E(H) \rightarrow\{1,2\}$ such that each even cycle $Q_{i}(1 \leq i \leq q$ or $0 \leq i \leq q)$ is properly colored and $c\left(u_{1} w_{1}\right)=1$ and
$c\left(u_{1} w_{2}\right)=2$. An argument similar to that in Case 1 shows that c is a proper-path coloring of H and so $\mathrm{pc}(H)=2$.

Next, we show that the minimum size of a connected spanning subgraph of $K_{s, t}$ with proper connection number 2 is $2 t-2$. Suppose that there is a connected spanning subgraph F of $K_{s, t}$ having less than $2 t-2$ edges but $\mathrm{pc}(F)=2$. Necessarily, at least three vertices of W have degree 1 in F. It cannot occur that three vertices of degree 1 in F are adjacent to the same vertex of U, for otherwise, $\mathrm{pc}(F) \geq 3$ by Observation 1.1. We may assume that the vertices $w_{i}, 1 \leq i \leq 3$, have degree 1 in F. Suppose that e_{1}, e_{2}, e_{3} are the three pendant edges that are incident with w_{1}, w_{2} or w_{3}, respectively. Any proper-path coloring $c: E(F) \rightarrow\{1,2\}$ of F must assign the same color to two of e_{1}, e_{2}, e_{3}, say $c\left(e_{1}\right)=c\left(e_{2}\right)=1$. Thus, e_{1} and e_{2} cannot be adjacent, say $e_{1}=u_{1} w_{1}$ and $e_{2}=u_{2} w_{2}$. Let P be a proper $w_{1}-w_{2}$ path in F, say $P=\left(w_{1}, u_{1}, w_{i}, \ldots, w_{j}, u_{2}, w_{2}\right)$ for some integers $i, j \in\{3,4, \ldots, t\}$. Let $P^{\prime}=P-\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}$ be the subpath of P. Then P^{\prime} has even length and the edges of P^{\prime} are colored alternately 2 and 1 . However then, $c\left(w_{j} u_{2}\right)=c\left(u_{2} w_{2}\right)=1$, which is a contradiction. Therefore, the minimum size of a connected spanning subgraph of $K_{s, t}$ with proper connection number 2 is $2 t-2$.

Combining Theorems 2.1 and 2.2, we obtain the following.
Corollary 2.3 If s and t are integers with $t \geq s+2 \geq 4$, then $\mu\left(K_{s, t}\right)=2 t-2$.
The proof of Theorem 2.2 gives rise to the following useful corollary.
Corollary 2.4 Let F be a connected spanning subgraph of the complete bipartite graph $K_{s, t}$ with partite sets U and W, where $|U|=s,|W|=t$ and $1 \leq s \leq t$ and $t \geq 3$. If at least three vertices of W have degree 1 in F, then $\operatorname{pc}(F) \geq 3$.

3 Complete Multipartite Graphs

We now look at complete k-partite graphs for $k \geq 3$. Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be the complete k-partite graph of order $n=\sum_{i=1}^{k} n_{i}$, where $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ and $k \geq 3$. Since G contains a Hamiltonian path if and only if $n_{k} \leq \sum_{i=1}^{k-1} n_{i}+1$, it follows that $\mu(G)=n-1$ in this case. Thus, it suffices to consider the case when $n_{k} \geq \sum_{i=1}^{k-1} n_{i}+2$. We begin by establishing an upper bound for $\mu(G)$ for such complete k-partite graphs G.

Proposition 3.1 Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be the complete k-partite graph of order $n=\sum_{i=1}^{k} n_{i}$, where $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ and $k \geq 3$. If $n_{k} \geq \sum_{i=1}^{k-1} n_{i}+2$, then $\mu(G) \leq 2 n_{k}-2$.

Proof. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the partite sets of G with $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq k$ and let F be the complete bipartite graph with partite sets $V_{1} \cup V_{2} \cup \cdots \cup V_{k-1}$ and V_{k}. It follows by the proofs of Theorems 2.1 and 2.2 that F contains a connected spanning subgraph H of size $2 n_{k}-2$ such that $\mathrm{pc}(H)=2$. Since F is a connected spanning subgraph of G, it follows that G contains a connected spanning subgraph H of size $2 n_{k}-2$ such that $\mathrm{pc}(H)=2$ and so $\mu(G) \leq 2 n_{k}-2$.

Next, we describe a class of complete k-partite graphs where $k \geq 3$ such that the upper bound described in Proposition 3.1 is attainable.

Proposition 3.2 Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be the complete k-partite graph of order $n=\sum_{i=1}^{k} n_{i}$, where $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ and $k \geq 3$. If $n_{k}=\sum_{i=1}^{k-1} n_{i}+2$, then $\mu(G)=2 n_{k}-2$.

Proof. Since G has order n with $n_{k}=\sum_{i=1}^{k-1} n_{i}+2$, it follows by Proposition 3.1 that $\mu(G) \leq 2 n_{k}-2$. Every connected spanning subgraph H of G of size $2 n_{k}-3$ is a tree. Since G contains no Hamiltonian path, it follows that $\operatorname{pc}(H)=\Delta(H) \geq 3$. Thus, there is no connected spanning subgraph of size $2 n_{k}-3$ having proper connection number 2. Hence, $\mu(G) \geq 2 n_{k}-2$ and so $\mu(G)=2 n_{k}-2$.

We now investigate $\mu(G)$ for the complete 3-partite graphs G. To simplify the notation, let $G=K_{r, s, t}$ be a complete 3-partite graph where $1 \leq r \leq s \leq t$ and $t \geq r+s+2$. We show that the upper bound described in Proposition 3.1 is attainable when $r=s=1$ and $t \geq 4$. First, we state a useful observation.

Observation 3.3 If F is a connected spanning subgraph of a graph G such that $\mathrm{pc}(F)=$ $\operatorname{pc}(G)=2$, then $\mu(G) \leq \mu(F)$.

Proposition 3.4 For each integer $t \geq 4, \mu\left(K_{1,1, t}\right)=2 t-2$.
Proof. Since $K_{2, t} \subseteq K_{1,1, t}$, it follows by Observation 3.3 and and Theorem 2.1 that

$$
\mu\left(K_{1,1, t}\right) \leq \mu\left(K_{2, t}\right) \leq 2 t-2
$$

Thus, it suffices to show that $\mu\left(K_{1,1, t}\right) \geq 2 t-2$. Assume, to the contrary, that there is a connected spanning subgraph F of $K_{1,1, t}$ of size $m<2 t-2$ with $\operatorname{pc}(F)=2$. Thus, at least three vertices of W have degree 1 in F. Let the partite sets of $K_{1,1, t}$ be $\{u\},\{v\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$.

First, suppose that exactly three vertices of W have degree 1 in F. Thus, $m \geq 2 t-3$. Since $m<2 t-2$, it follows that $m=2 t-3$ and so $u v \notin E(F)$. However then, F is a bipartite subgraph of $K_{2, t}$ with partite sets $\{u, v\}$ and W. Since F has three vertices of degree 1 in W, it then follows by Corollary 2.4 that $\mathrm{pc}(F) \geq 3$, which is impossible.

Next, suppose that at least five vertices of W have degree 1 in F. Then either u or v is incident with at least three bridges in F and so $\mathrm{pc}(F) \geq 3$ by Observation 1.1, which is a contradiction. Thus, exactly four vertices of W have degree 1 in F and each of u and v is incident with exactly two of these four vertices. Therefore, we may assume that the vertices $w_{i}(1 \leq i \leq 4)$ have degree 1 in F and $u w_{1}, u w_{2}, v w_{3}, v w_{4}$ are edges of F. Furthermore, if $u v \notin E(F)$, then F is a bipartite subgraph of $K_{2, t}$ with partite sets $\{u, v\}$ and W. Again, since F has four vertices of degree 1 in W, it then follows that $\mathrm{pc}(F) \geq 3$ by Corollary 2.4, which is impossible. Thus, we assume that $u v \in E(F)$.

Any proper-path coloring $c: E(F) \rightarrow\{1,2\}$ of F must assign distinct colors to $u w_{1}$ and $u w_{2}$, say $c\left(u w_{1}\right)=1$ and $c\left(u w_{2}\right)=2$ and distinct colors to $v w_{3}$ and $v w_{4}$, say $c\left(v w_{3}\right)=1$ and $c\left(v w_{4}\right)=2$. Assume, without loss of generality, that $c(u v)=1$. Any proper $w_{1}-w_{3}$ path P in F must begin with w_{1}, u and terminate with v, w_{3}. Necessarily, the only other vertex on P is w_{j} for some j with $5 \leq j \leq t$, that is, $P=\left(w_{1}, u, w_{j}, v, w_{3}\right)$. Since $c\left(w_{1} u\right)=c\left(v w_{3}\right)=1$ it follows that $c\left(u w_{j}\right)=c\left(v w_{j}\right)=2$, which is a contradiction.

Next, we show that the upper bound described in Proposition 3.1 can be strict if t is sufficiently large.

Proposition 3.5 For an integer $t \geq 11$, if $G \in\left\{K_{1,2, t}, K_{1,1,1, t}\right\}$, then

$$
\mu(G)=2 t-4
$$

Proof. Since $K_{1,2, t}$ is a spanning subgraph of $K_{1,1,1, t}$, it follows by Observation 3.3 that $\mu\left(K_{1,1,1, t}\right) \leq \mu\left(K_{1,2, t}\right)$. Thus, it suffices to show that $\mu\left(K_{1,2, t}\right) \leq 2 t-4$ and $\mu\left(K_{1,1,1, t}\right) \geq 2 t-4$ for each integer $t \geq 11$.

We first show that $\mu\left(K_{1,2, t}\right) \leq 2 t-4$. Let $G=K_{1,2, t}$, whose partite sets are $\{x, z\},\{y\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. Let F be the connected spanning subgraph of G obtained from the path $P_{3}=(x, y, z)$ by joining w_{1} and w_{2} to x, w_{3} and w_{4} to y, w_{5} and w_{6} to z, w_{7} to x and z, w_{i} to x and y for $8 \leq i \leq t-2, w_{i}$ to y and z for $i=t-1, t$. The graph F is shown in Figure 4 for $t=11$. Since (i) there are six vertices of W of degree 1 in F, namely w_{i} for $1 \leq i \leq 6$, (ii) the remaining $t-6$ vertices of W have degree 2 in F and (iii) there are exactly two edges in $G[\{x, y, z\}]$, it follows that the size of F is $2 t-4$.

Figure 4: A connected spanning subgraph F of $K_{1,2,11}$ for $t=11$

Since there is a proper-path 2 -edge coloring of F, it follows that $\mathrm{pc}(F)=2$. Such a proper-path 2-edge coloring of F is shown in Figure 5 for $t=11$. If $t \geq 12$, then (1) color the two edges $w_{i} x$ and $w_{i} y(10 \leq i \leq t-2)$ as $w_{8} x$ and $w_{8} y,(2)$ color the two edges $w_{t-1} y$ and $w_{t-1} z$ as $w_{10} y$ and $w_{10} z$ and (3) color the two edges $w_{t} y$ and $w_{t} z$ as $w_{11} y$ and $w_{11} z$. It can be verified that for every two nonadjacent vertices u and v of F, there is a proper $u-v$ path in F. For example, if $12 \leq i \leq t-2$, then $\left(w_{8}, x, w_{9}, y, w_{i}\right)$ is a proper $w_{8}-w_{i}$ path in F.

Figure 5: A proper-path 2-edge coloring of F for $t=11$

Next, we show that $\mu\left(K_{1,1,1, t}\right) \geq 2 t-4$. Let $G=K_{1,1,1, t}$ whose partite sets are $\{x\},\{y\}$, $\{z\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. Assume, to the contrary, that $\mu(G) \leq 2 t-5$. Then there is a connected spanning subgraph F of G of size $m \leq 2 t-5$ with $\operatorname{pc}(F)=2$. We consider three cases, according to the number of edges in the subgraph $G[\{x, y, z\}]$ induced by $\{x, y, z\}$.

Case 1. The subgraph $G[\{x, y, z\}]$ contains no edge. Then F is a connected spanning subgraph of $K_{3, t}$ with $\operatorname{pc}(F)=2$. Since $\mu\left(K_{3, t}\right)=2 t-2$, the size of F is at least $2 t-2$, which is impossible.

Case 2. The subgraph $G[\{x, y, z\}]$ contains exactly one edge, say $e=x y$ is an edge of $G[\{x, y, z\}]$. Since the size of F is at most $2 t-5$, at least six vertices of W have degree 1 in F. It cannot occur that three vertices of degree 1 in W are adjacent to a vertex in F, for otherwise, $\mathrm{pc}(F) \geq 3$ by Observation 1.1. Thus, we may assume, without loss of generality, that the vertices $w_{i}(1 \leq i \leq 6)$ have degree 1 in F and $x w_{1}, x w_{2}, y w_{3}, y w_{4}, z w_{5}, z w_{6}$. Any proper-path coloring $c: E(F) \rightarrow\{1,2\}$ of F must assign distinct colors to the two adjacent pendant edges in F, say $c\left(x w_{1}\right)=c\left(y w_{3}\right)=1$ and $c\left(x w_{2}\right)=c\left(y w_{4}\right)=2$. Then a proper $w_{1}-w_{3}$ path must be $\left(w_{1}, x, y, w_{3}\right)$ and so $c(x y)=2$; while a proper $w_{2}-w_{4}$ path must be $\left(w_{2}, x, y, w_{4}\right)$ and so $c(x y)=1$, which is impossible.

Case 3. The subgraph $G[\{x, y, z\}]$ contains at least two edges. Then at least seven vertices of W have degree 1 in F. Thus, three vertices of degree 1 in W are adjacent to a vertex in F and so $\mathrm{pc}(F) \geq 3$ by Observation 1.1, which is impossible.

Hence, $\mu\left(K_{1,1,1, t}\right) \geq 2 t-4$. Since $2 t-4 \leq \mu\left(K_{1,1,1, t}\right) \leq \mu\left(K_{1,2, t}\right) \leq 2 t-4$, it follows that $\mu\left(K_{1,1,1, t}\right)=\mu\left(K_{1,2, t}\right)=2 t-4$.

Proposition 3.5 is a special case of a more general result. Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be the complete k-partite graph, where $k \geq 3$, let $r=\sum_{i=1}^{k-1} n_{i}$ and $t=n_{k}$. We now present a formula for $\mu(G)$ when $r \geq 3$ and t is sufficiently large compared to r.

Theorem 3.6 Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be a complete k-partite graph where

$$
k \geq 3, r=\sum_{i=1}^{k-1} n_{i} \geq 3 \text { and } t=n_{k} .
$$

If $t \geq r^{2}+r$, then

$$
\mu(G)=2 t-2 r+2
$$

Proof. Denote the partite sets of G by $V_{1}, V_{2}, \ldots, V_{k}$, where $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq k$. First, we show that $\mu(G) \geq 2 t-2 r+2$. Let H be a minimum connected spanning subgraph of G with $\operatorname{pc}(H)=2$. Certainly, every vertex of V_{k} has degree at least 1 in H. Also, at most $2 r$ vertices of V_{k} have degree 1, for otherwise, there are vertices of H incident with three or more pendant edges and so $\mathrm{pc}(H) \geq 3$ by Observation 1.1, contradicting the fact that $\mathrm{pc}(H)=2$. Thus, at most two vertices of V_{k} of degree 1 can be adjacent to the same vertex of $\cup_{i=1}^{k-1} V_{i}$. If any two vertices $w^{\prime}, w^{\prime \prime}$ of degree 1 in V_{k} are incident with edges of the same color, then $H\left[\cup_{i=1}^{k-1} V_{i}\right]$ must contain an edge of the other color. Thus, the size of H must be at least

$$
\left(\sum_{w \in V_{k}} \operatorname{deg}_{H} w\right)+2 \geq 2 r+2(t-2 r)+2=2 t-2 r+2
$$

and so $\mu(G) \geq 2 t-2 r+2$.
Next, we show that $\mu(G) \leq 2 t-2 r+2$. To verify this, we show that there exists a connected spanning subgraph F of size $2 t-2 r+2$ in G such that $\operatorname{pc}(F)=2$. Let $\cup_{i=1}^{k-1} V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, where the only edges of $F\left[\cup_{i=1}^{k-1} V_{i}\right]$ are $v_{r-2} v_{r-1}$ and $v_{r-1} v_{r}$. Let $V_{k}=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ where $\operatorname{deg}_{F} w_{i}=1$ for $1 \leq i \leq 2 r$. In particular, for $1 \leq i \leq r$, $w_{2 i-1}$ and $w_{2 i}$ are adjacent to v_{i}. Next, we define an edge coloring $c: E(F) \rightarrow\{1,2\}$ as follows. Let $c\left(v_{r-2} v_{r-1}\right)=1, c\left(v_{r-1} v_{r}\right)=2, c\left(v_{i} w_{2 i-1}\right)=1$ and $c\left(v_{i} w_{2 i}\right)=2$ for $1 \leq i \leq r$. There are $\binom{r}{2}$ distinct pairs of vertices in $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. For each such pair $\left\{v_{a}, v_{b}\right\}$, two vertices w^{\prime} and $w^{\prime \prime}$ in $\left\{w_{2 r+1}, w_{2 r+2}, \ldots, w_{r^{2}+r}\right\}$ are selected, which are both joined to v_{a} and v_{b}, where $c\left(v_{a} w^{\prime}\right)=c\left(v_{b} w^{\prime \prime}\right)=1$ and $c\left(v_{a} w^{\prime \prime}\right)=c\left(v_{b} w^{\prime}\right)=2$. If $t>r^{2}+r$, then each vertex in $\left\{w_{r^{2}+r+1}, w_{r^{2}+r+2}, \ldots, w_{t}\right\}$ is joined to two vertices in $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, where one edge is colored 1 and the other edge is colored 2. This completes the construction of F and the edge coloring c of F. The subgraph F and the coloring c of F are illustrated in Figure 6 for $K_{2,2,20}$, where each solid edge is colored 1 and each dashed edge is colored 2.

Figure 6: A subgraph F of $K_{2,2,20}$ and an edge coloring of F
We now show that c is a proper-path 2-coloring of F. It remains to show that every two nonadjacent vertices x and y of F are connected by a proper path. This is obvious if there is a proper path of length 2 connecting x and y. Thus, we consider the other possibilities, namely either $x, y \in V_{k}$ or exactly one of x and y belongs to V_{k}. First, we consider the situation when $x, y \in V_{k}$. There are three cases.

Case 1. $\{x, y\}=\left\{w_{i}, w_{j}\right\}$ where $1 \leq i \neq j \leq 2 r$. Suppose that $w_{i} v_{p}$ and $w_{j} v_{q}$ are edges in F where $1 \leq p<q \leq r$. We consider three subcases, according to whether $p<q \leq r-3$ or $p, q \geq r-2$ or $p \leq r-3$ and $q \geq r-2$.

Subcase 1.1. $p<q \leq r-3$. If $c\left(w_{i} v_{p}\right) \neq c\left(w_{j} v_{q}\right)$, say $c\left(w_{i} v_{p}\right)=1$ and $c\left(w_{j} v_{q}\right)=2$, then there exists a vertex w_{s} where $s>2 r$ such that $v_{p} w_{s}, w_{s} v_{q} \in E(F)$ and $c\left(v_{p} w_{s}\right)=2$ and $c\left(w_{s} v_{q}\right)=1$. Then $\left(w_{i}, v_{p}, w_{s}, v_{q}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F. If $c\left(w_{i} v_{p}\right)=c\left(w_{j} v_{q}\right)$, say $c\left(w_{i} v_{p}\right)=c\left(w_{j} v_{q}\right)=1$, then there are vertices w_{a} and w_{b} where $a, b>2 r$ such that $v_{p} w_{a}, w_{a} v_{r-1}, v_{q} w_{b}, w_{b} v_{r} \in E(F)$ with $c\left(w_{a} v_{r-1}\right)=c\left(w_{b} v_{r}\right)=1$ and $c\left(w_{a} v_{p}\right)=c\left(w_{b} v_{q}\right)=2$. Thus, $\left(w_{i}, v_{p}, w_{a}, v_{r-1}, v_{r}, w_{b}, v_{q}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

Subcase 1.2. $p, q \in\{r-2, r-1, r\}$. First, assume that $w_{i} v_{r-2}, w_{j} v_{r-1} \in E(F)$.
\star If $w_{i} v_{r-2}$ and $v_{r-1} w_{j}$ are both colored 2 , then $\left(w_{i}, v_{r-2}, v_{r-1}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

* If $w_{i} v_{r-2}$ and $v_{r-1} w_{j}$ are both colored 1, then there is a vertex w_{a} with $a>2 r$ such that $v_{r-2} w_{a}, w_{a} v_{r} \in E(F)$ such that $c\left(v_{r-2} w_{a}\right)=2$ and $c\left(w_{a} v_{r}\right)=1$. Hence, $\left(w_{i}, v_{r-2}, w_{a}, v_{r}, v_{r-1}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.
\star If $w_{i} v_{r-2}$ and $v_{r-1} w_{j}$ are colored differently, say $c\left(w_{i} v_{r-2}\right)=1$ and $c\left(v_{r-1} w_{j}\right)=2$, then there is a vertex w_{a} with $a>2 r$ such that $v_{r-2} w_{a}, w_{a} v_{r-1} \in E(F)$ such that $c\left(v_{r-2} w_{a}\right)=2$ and $c\left(w_{a} v_{r-1}\right)=1$. Hence, $\left(w_{i}, v_{r-2}, w_{a}, v_{r-1}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

An argument for the situation where $w_{i} v_{r-1}, w_{j} v_{r} \in E(F)$ is similar. Next, assume that $w_{i} v_{r-2}, w_{j} v_{r} \in E(F)$.
\star If $c\left(w_{i} v_{r-2}\right)=2$ and $c\left(v_{r} w_{j}\right)=1$, then $\left(w_{i}, v_{r-2}, v_{r-1}, v_{r}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.
\star If $c\left(w_{i} v_{r-2}\right)=1$ and $c\left(v_{r} w_{j}\right)=2$, then there is a vertex w_{a} with $a>2 r$ such that $v_{r-2} w_{a}, w_{a} v_{r} \in E(F)$ such that $c\left(v_{r-2} w_{a}\right)=2$ and $c\left(w_{a} v_{r}\right)=1$. Hence, $\left(w_{i}, v_{r-2}, w_{a}\right.$, $\left.v_{r}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.
\star If $w_{i} v_{r-2}$ and $v_{r} w_{j}$ are colored the same, say $c\left(w_{i} v_{r-2}\right)=c\left(v_{r} w_{j}\right)=1$, then there is a vertex w_{a} with $a>2 r$ such that $v_{r-2} w_{a}, w_{a} v_{r-1} \in E(F)$ such that $c\left(v_{r-2} w_{a}\right)=2$ and $c\left(w_{a} v_{r-1}\right)=1$. Hence, $\left(w_{i}, v_{r-2}, w_{a}, v_{r-1}, v_{r}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

Subcase 1.3. $p \leq r-3$ and $q \in\{r-2, r-1, r\}$. Suppose that $q=r-2$ and so $w_{i} v_{p}, w_{j} v_{r-2} \in E(F)$.
\star If $w_{i} v_{p}$ and $w_{j} v_{r-2}$ are colored differently, say $c\left(w_{i} v_{p}\right)=1$ and $c\left(w_{j} v_{r-2}\right)=2$, then there is a vertex w_{a} with $a>2 r$ such that $c\left(w_{a} v_{p}\right)=2$ and $c\left(w_{a} v_{r-2}\right)=1$. Hence, $\left(w_{i}, v_{p}, w_{a}, v_{r-2}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.
\star If $c\left(w_{i} v_{p}\right)=c\left(v_{r-2} w_{j}\right)=1$, then there are vertices w_{a} and w_{b} with $a, b>2 r$ such that $v_{p} w_{a}, w_{a} v_{r}, v_{r-1} w_{b}, w_{b} v_{r-2} \in E(F)$ where $c\left(w_{a} v_{r}\right)=c\left(v_{r-1} w_{b}\right)=1$ and $c\left(w_{a} v_{p}\right)=$ $c\left(v_{r-2} w_{b}\right)=2$. Then $\left(w_{i}, v_{p}, w_{a}, v_{r}, v_{r-1}, w_{b}, v_{r-2}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.
\star If $c\left(w_{i} v_{p}\right)=c\left(v_{r-2} w_{j}\right)=2$, then there is a vertex w_{a} with $a>2 r$ such that $v_{p} w_{a}, w_{a} v_{r-1} \in$ $E(F)$ such that $c\left(v_{p} w_{a}\right)=1$ and $c\left(w_{a} v_{r-1}\right)=2$. Hence, $\left(w_{i}, v_{p}, w_{a}, v_{r-1}, v_{r-2}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

The situations for $q=r-1$ or $q=r$ are similar.
Case 2. $\{x, y\}=\left\{w_{i}, w_{j}\right\}$ where $2 r<i \neq j \leq t$. Since each of w_{i} and w_{j} is incident with two edges of different colors in F, it follows that there exist $p, q \in\{1,2, \ldots, r\}$ such that $w_{i} v_{p}, w_{j} v_{q} \in E(F)$ and $c\left(w_{i} v_{p}\right) \neq c\left(w_{j} v_{q}\right)$. If $v_{p}=v_{q}$, then $\left(w_{i}, v_{p}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F; while if $v_{p} \neq v_{q}$, then there is a vertex w_{a} with $a>2 r$ such that $v_{p} w_{a}, w_{a} v_{q} \in E(F)$ such that $c\left(w_{i} v_{p}\right) \neq c\left(v_{p} w_{a}\right)$ and $c\left(w_{j} v_{q}\right) \neq c\left(v_{q} w_{a}\right)$. Thus, $\left(w_{i}, v_{p}, w_{a}, v_{q}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

Case 3. $\{x, y\}=\left\{w_{i}, w_{j}\right\}$ where $1 \leq i \leq 2 r$ and $2 r+1 \leq j \leq t$. Suppose that $w_{i} v_{p} \in E(F)$. Choose v_{q} such that $c\left(w_{i} v_{p}\right) \neq c\left(w_{j} v_{q}\right)$. We may assume that $v_{p} \neq v_{q}$. Then there is a vertex w_{a} with $a>2 r$ such that $v_{p} w_{a}, w_{a} v_{q} \in E(F)$ where $c\left(w_{i} v_{p}\right) \neq c\left(v_{p} w_{a}\right)$. Thus, $\left(w_{i}, v_{p}, w_{a}, v_{q}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

Next, we consider the situation when exactly one of x and y belongs to V_{k}, say $x \in V_{k}$ and $y=v_{j}$ for some integer j with $1 \leq j \leq r$. First, suppose that $x=w_{i}$ where $2 r+1 \leq i \leq t$. Let $w_{i} v_{p}, w_{i} v_{q} \in E(F)$, where say $c\left(w_{i} v_{p}\right)=1$ and $c\left(w_{i} v_{q}\right)=2$. Then there is a vertex w_{a} with $a>2 r$ such that $v_{j} w_{a}, w_{a} v_{p} \in E(F)$ and $c\left(w_{a} v_{j}\right)=1$ and $c\left(w_{a} v_{p}\right)=2$. Thus, $\left(w_{i}, v_{p}, w_{a}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F. Next, suppose that $x=w_{i}$ where $1 \leq i \leq 2 r$. Let $w_{i} v_{p} \in E(F)$, where say $c\left(w_{i} v_{p}\right)=1$. Then there is a vertex w_{a} with $a>2 r$ such that $v_{j} w_{a}, w_{a} v_{p} \in E(F)$ and $c\left(w_{a} v_{j}\right)=1$ and $c\left(w_{a} v_{p}\right)=2$. Thus, $\left(w_{i}, v_{p}, w_{a}, w_{j}\right)$ is a proper $w_{i}-w_{j}$ path in F.

Hence, c is a proper-path 2-coloring of F and so $\operatorname{pc}(F)=2$. Therefore, $\mu(G) \leq 2 t-2 r+2$ and so $\mu(G)=2 t-2 r+2$.

What remains then is determining $\mu(G)$ for $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$, where $k \geq 3, r=\sum_{i=1}^{k-1} n_{i}$ and $t=n_{k}$, when $r+2 \leq t<r^{2}+r$. Of course, the more general problem is that of determining or at least finding bounds for $\mu(G)$ for other connected graphs G not possessing a Hamiltonian path.

Closing Remarks: In a relatively short period after the concept of proper-path colorings in graphs was introduced, it has been studied by many, resulting in numerous beautiful theorems and intriguing conjectures and open questions (such as in the previous paragraph). Li and Magnant's a dynamic survey [4] provides useful information on this topic.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs. J. Combin. Math. Combin. Comput. To appear.
[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Monteroa and Z. Tuza, Proper connection of graphs. Discrete Math. 312 2550-2560, 2012.
[3] G. Chartrand, G. L. Johns, K. A. McKeon and P. Zhang, Rainbow connection in graphs. Math. Bohem. 133 85-98, 2008.
[4] X. Li and C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory and Applications of Graphs: Vol. 0: Iss. 1, Article 2. 2015.
[5] X. L. Li and Y. F. Sun, Rainbow Connections of Graphs. Springer, Boston, MA, 2012.
[6] V. G. Vizing, On an estimate of the chromatic class of a p-graph. (Russian) Diskret. Analiz. 3, 25-30, 1964

