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Abstract
Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper
entitled The Physical Content of Quantum Kinematics and Mechanics. He
motivated his arguments with a gedanken experiment, a gamma ray microscope
to measure the position of a particle. A primary result was that, due to the
quantum nature of light, there is an inherent uncertainty in the determinations of
the particle’s position and momentum dictated by an indeterminacy relation,
q p hd d ~ . Heisenberg offered this demonstration as ‘a direct physical inter-
pretation of the [quantum mechanical] equation pq qp i- = - ’ but con-
sidered the indeterminacy relation to be much more than this. He also argued
that it implies limitations on the very meanings of position and momentum and
emphasised that these limitations are the source of the statistical character of
quantum mechanics. In addition, Heisenberg hoped but was unable to demon-
strate that the laws of quantum mechanics could be derived directly from the
uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue
that the Schrödinger equation for a free particle does indeed follow from the
indeterminacy relation together with reasonable statistical assumptions.

Keywords: uncertainty principle, Schrödinger equation, foundations of
quantum mechanics, Heisenberg’s microscope

1. Introduction

The idea of fundamental uncertainty in nature was introduced by Werner Heisenberg in his
seminal 1927 paper entitled Über den anschaulichen Inhalt der quantentheoretischen
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Kinematik und Mechanik, translated by Wheeler and Zurek as ‘The Physical Content of
Quantum Kinematics and Mechanics’ [1]. The German noun Anschaulichkeit and the
adjective anschaulich connote visualization or intuition through mechanical models [2].
While Wheeler and Zurek translate the German words ‘anschaulichen inhalt’ as ‘physical
content,’ the historian and philosopher of science Miller favours ‘intuitive contents’ [2, 3].
Heisenberg’s biographer Cassidy prefers the expression ‘perceptual content’ instead [4]. Thus
there are various alternative ways of translating the title of Heisenberg’s paper. Anschaulich
seems to be ‘one of those German words that defy an unambiguous translation’ as Uffink has
pointed out [5].

Heisenberg’s use of the word anschaulich was undoubtedly intended to answer Schrödinger’s
argument that his wave mechanics was more anschaulich than Heisenberg’s matrix mechanics [6].
However, Heisenberg’s paper turned out to be much more than a defence of the matrix mechanics
formulation of quantum mechanics. The very first sentence in his paper declares, ‘We believe we
understand the physical content of a theory when we can see its qualitative experimental con-
sequences in all simple cases and when at the same time we have checked that the application of
the theory never contains inner contradictions’ [1]. He then proceeds, largely through the use of a
simple gedanken experiment, a γ-ray microscope, to give a simple physical interpretation of the
abstract quantum mechanical commutation relation, pq qp i- = - . By the end of the paper, he
was able to conclude that ‘as we can think through qualitatively the experimental consequences of
the theory in all simple cases, we will no longer have to look at quantum mechanics as unphysical
and abstract’ [1]. This was an extraordinary claim about a theory that nearly all physicists, at the
time, characterised as unphysical and abstract.

In fact, soon after Heisenberg’s paper was received, there arose many questions of clar-
ification and outright objections to his conclusions. Most notably, Bohr criticised several aspects
of Heisenberg’s treatment even before the paper was published. Curiously, Heisenberg included
these criticisms at the end of his paper in an Addition in Proof but did not address them in the
body of the paper. While Bohr acknowledged the importance of Heisenberg’s indeterminacy
relations, he considered them to be an aspect of his principle of complementarity, a principle
Bohr considered to be at the heart of quantum mechanics. In particular, he pointed out that
Heisenberg’s analysis of the γ-ray microscope presupposed complementarity (in this case, the
wave/particle duality of photons). He also pointed out a flaw in Heisenberg’s analysis of the
optics that, when corrected, did not change the conclusions. The importance of complementarity
was later stressed by Bohr [7], Heisenberg [8] and Pauli [9]. This way of looking at the
Heisenberg relations became the standard view of the Copenhagen interpretation.

The modern consensus is that Heisenberg’s derivation is, at best, a heuristic argument
and the uncertainties that appear in the standard uncertainty principle q p 2D D , which
follows immediately from the commutation relation for q and p, have little to do with
disturbance and measurement errors [10–12]. Rather q p 2D D simply expresses a
property of all quantum states. On the other hand, even this interpretation cannot be divorced
from the language of experiment. Systems must be prepared in quantum states and state
preparation necessarily involves the action of some experimental apparatus. Furthermore the
meaning of, for example, qD is the spread in the results of the measurements of q for
similarly prepared systems and this also involves the action of an experimental apparatus.
However, the uncertainty principle does not necessarily restrict the accuracy with which q
and p can be simultaneously measured; in fact, it can be argued that quantum mechanics says
nothing at all about the simultaneous measurements of non-commuting observables [10].

Nevertheless, the question of how to relate Heisenberg’s analysis to the formalism of
quantum mechanics has never been completely settled and discussions about the meaning of
and primacy of Heisenberg’s uncertainty relations have continued unabated. These discussions
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often focus on one or more of the different expressions of the uncertainty principle such as:
restrictions on the accuracy of simultaneous measurements of canonically conjugate quantities,
e.g, p and q; restrictions on the of the spread of individual measurements of conjugate quantities
made on an ensemble of similarly prepared systems; restrictions on the physical compatibility
of experimental arrangements for accurately measuring different observables; and the inevitable
disturbance of a system due to its interaction with a measuring device. We will comment on
some of these in section 2. Heisenberg did not seem to distinguish among the above types of
uncertainty in his paper nor did he offer a quantitative definition of the uncertainties qd and pd
themselves. It seems to us that this was entirely in line with his intention of providing an
anschaulich description of quantum mechanics with the purpose of providing physical insight
into the content of the abstract formalism. This certainly seems to be the purpose of many
authors of introductory QM texts who include descriptions of Heisenberg’s γ-ray microscope.

The purpose of our present paper is to push Heisenberg’s argument further and use his
γ-ray microscope not just to provide ‘a direct physical interpretation’ of the quantum
mechanical formalism but to show that his qualitative indeterminacy relation, q p hd d ~ ,
complemented with assumptions about the statistical analysis of measurement, provides a
direct route to the free particle Schrödinger equation (see section 3). Heisenberg considered
the possibility of such a derivation in the conclusions of his paper where he wrote ‘Of course
we would also like to be able to derive, if possible, the quantitative laws of quantum
mechanics directly from the physical foundations—that is, essentially, from relation (1)

q p hd d ~[ ]’ but then was forced to conclude that ‘We believe, rather, for the time being that
the quantitative laws can be derived out of the physical foundations only by use of the
principle of maximum simplicity’ [1]. Near the end of his paper, Heisenberg states

We have not assumed that quantum theory—in opposition to classical theory
—is an essentially statistical theory in the sense that only statistical conclu-
sions can be drawn from precise initial data ... Even in principle we cannot
know the present in all detail. For that reason everything observed is a
selection from a plenitude of possibilities and a limitation on what is possible
in the future.

In his 1929 Chicago lectures, ‘The Physical Principles of the Quantum Theory’ [8], he
pointed out that

... the idea that natural phenomena obey exact laws—the principle of causality
(...) rests on the assumption that it is possible to observe the phenomena
without appreciably influencing them.

However, nature is quantised and

There exists no infinitesimals by the aid of which an observation might be
made without appreciable perturbation.

2. Heisenberg’s microscope and the indeterminacy relations

Near the beginning of his paper, Heisenberg made use of a γ-ray microscope to investigate the
meaning of position and momentum of a particle in the context of quantum mechanics. Since
Einstein’s special theory of relativity, physicists have learned to pay strict attention to the
degree to which theoretical quantities can be measured. Bohr emphasised this in his debates
with Einstein and Heisenberg certainly had this in mind when he wrote [1]
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When one wants to be clear by what is to be understood by the words ‘position
of the object,’ for example of the electron (relative to a given frame of
reference), then one must specify definite experiments with whose help one
plans to measure the ‘position of the electron’; otherwise, this word has no
meaning.

Heisenberg then proceeds to introduce a γ-ray microscope with which one can determine the
position of an electron with arbitrary accuracy so long as the wavelength of the γ-ray is small
enough. In general, one can determine the position to an accuracy on the order of the
wavelength λ of the γ-ray, i.e., qd l~ . However, in making this measurement, the scattering
of the γ-ray by the electron imparts a momentum impulse to the electron proportional to the
momentum of the γ-ray photon, which by the Einstein relation is h l. If one considers this
impulse as an unknown momentum disturbance, then the uncertainty in the electron’s
momentum is p hd l~ (assuming the initial momentum of the electron is known precisely).
Combining these two relations one has

q p h. 1d d ~ ( )
Later in the paper he made the analogy with relativity explicit [1]:

It is natural in this respect to compare quantum theory with special relativity.
According to relativity, the word ‘simultaneous’ cannot be defined except
through experiments in which the velocity of light enters in an essential way. If
there existed a ‘sharper’ definition of simultaneity, as, for example, signals
which propagate infinitely fast, then relativity theory would be impossible ...
We find a similar situation with the definition of the concepts of ‘position of an
electron’ and ‘velocity’ in quantum theory. All experiments which we can use
for the definition of these terms necessarily contain the uncertainty implied by
equation (1) q p hd d ~[ ] ...

So, it seems, that Heisenberg considered the indeterminacy relation to be the result of an
empirical principle embodied in his γ-ray microscope in the same way that the relativity of
simultaneity was due to the empirical principle that the speed of light was a universal
constant. For Heisenberg equation (1), the first and most important relation in his paper,
imposes fundamental limitations on the very meaning of position and momentum. He
concludes that ‘... Even in principle we cannot know the present [state of a system] in all
detail.’

Heisenberg’s paper ends with a remarkable Addition in Proof in which he points to a
number of criticisms by Bohr. As Rosenfeld would later argue in his article on the history of
atomic theory [13], Heisenberg

declared in substance that he had missed essential points, whose clarification
would be found in a forthcoming paper by Bohr. This addendum must have
puzzled many readers: it is not often that the announcement of a decisive
progress in our insight into the workings of nature is qualified by such a
warning.

Bohr, in a subsequent paper in Nature [7], would emphasise the primacy of the Principle of
Complementarity in interpreting Heisenberg’s uncertainty relations. A year later Heisenberg,
in his 1929 Chicago lectures [8], corrected some technical errors (which however did not
affect the conclusions of his 1927 paper) and acknowledged the importance of the
complementary nature of wave and particle descriptions. However, as Camilleri has
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emphasised, Heisenbergs’s understanding of complementarity differed in some important
respects from Bohr’s view [14]. The extent to which complementarity sets limits on conjugate
quantities has been clarified by Hall [15], who succeeded in deriving generally applicable
uncertainty relations which quantify the limitations imposed by complementarity on quantum
systems.

While there has never been complete agreement on just what the standard Copenhagen
interpretation of quantum mechanics entails [14, 16, 17], Pauli’s 1958 article, ‘General
Principles of Quantum Mechanics’ [9] in Handbuch der Physik might be taken as the ‘final’
Copenhagen view on the uncertainty principle. In his discussion, Pauli reproduced both the
derivation of Bohr (assuming wave/particle duality of photons) and the (corrected) derivation
of Heisenberg. (Pauli also considered the relativistic regime.) The uncertainty relation,
q p hd d ~ , for photons follows directly from their wave nature. Photon-particle scattering
experiments then transfer this same relation to the position and momentum of particles. To
Pauli, the simplest interpretation of the latter is that particles also possess wave-like properties
such that h pl = . Ultimately, Pauli seems to give comparable importance to the uncertainty
principle and complementarity, e.g.,

The influence of the apparatus for measuring the momentum (position) of the
system is such that within the limits given by the uncertainty relationships
the possibility of using a knowledge of the earlier position (momentum) for the
prediction of the results of the later measurements of the position (momentum)
is lost. If, due to this, the use of a classical concept excludes that of another,
we call both concepts (e.g., position and momentum co-ordinates of a particle)
complementary (to each other), following Bohr. We might call modern
quantum theory as ‘The Theory of Complementarity’ (in analogy with the
terminology ‘Theory of Relativity’).

A corrected simple model of Heisenberg’s microscope, which is the one that invariably
appears in introductory texts, is depicted in figure 1. For simplicity assume that the γ-ray
photon beam is initially along the axis of the lens. The angular resolution of a lens of diameter
D is Ddq l» (or 1.22 Dl according to the Rayleigh criterion). This corresponds to a
distance at the object of q F F Dd dq l» » where F is the focal length of the lens. The
photon that is (elastically) scattered into the lens acquires a transverse component that is in the
range of p sinf- g to p sinf+ g where pγ is the original momentum of the photon. For small
angles, D Fsin tan 2f f» = . Therefore, the uncertainty in the transverse component of the
momentum of the recoiling photon is p D F p hD Fd l» »g g( ) . By conservation of
momentum, the uncertainty of the electron momentum becomes hD Fl» . Multiplying the
expressions for qd and pd we obtain q p hd d ~ , the same expression as in equation (1). While
this analysis would presumably have passed muster with Bohr, we suspect that Heisenberg
was satisfied with his original argument as he maintained that ‘one does not need to complain
that the basic equation (1) contains only qualitative predictions.’ He evidently thought such
complaints were irrelevant to his argument.

One of the main goals of Heisenberg’s paper was to obtain ‘a direct physical inter-
pretation of the equation pq qp i- = - .’ To do this he constructed the equivalent of a
minimum uncertainty Gaussian wave packet for which the quantum mechanical operators
p and q have their usual meanings. His conclusion was that for this particular quantum state,
q p 2d d = if qd and pd are interpreted as rms expectation values. Considering the quali-
tative nature of equation (1), Heisenberg then took it to be a direct consequence of
pq qp i- = - , the commutation rule of quantum formalism.
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Just four months after Heisenberg’s paper, Kennard [18] proved that for any normalised
state,

q p 2, 2D D ( )

where qD and pD are standard deviations, i.e., q q dq q dq2 2 2
* *ò òD º Y Y - Y Y⎡⎣ ⎤⎦( ) and

similarly for p 2D( ) . This is the familiar standard expression for the uncertainty principle.
Robertson [19] and Schrödinger [20] generalised this relation for any pair of observables but
their more general expression reduces to equation (2) for conjugate pairs [10]. We note that in
Heisenberg’s 1927 paper, his indeterminacy relation is expressed as either an approximate
equality or an equality rather than an inequality as in equation (2).

There have been many, many analyses of the uncertainty relation since 1927. Most of
them take standard, usually nonrelativistic, quantum mechanics as their starting point and go
on to compute various expressions of uncertainties that may be derived from the theoretical
formalism. These analyses can provide deep insight into the quantum formalism and its
interpretation but for the most part they are not directly relevant to the present paper, nor to
Heisenberg’s original paper for that matter. It was Heisenberg’s intent to derive a relation
from an empirical principle, in this case one governing the behaviour of a γ-ray microscope,
and then to compare this relation with one derived from abstract quantum formalism thereby
rendering a degree of anschaulichkeit to quantum mechanics.

The properties of light and electrons that are used for Heisenberg’s analysis all derive
from experimental results. This supports the view that the indeterminacy relation should be
considered an empirical principle, even if it is unlikely that Heisenberg’s analysis would have
been carried out if not for the urgent need to clarify the interpretation of quantum mechanics.
The wave-like behaviour of light had been known since Thomas Young’s experiments in the

Figure 1. Heisenberg microscope.
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1790s. The quantal nature of light was known from the work of Planck and Poincare, the
analysis of the photoelectric effect by Einstein, and the scattering experiments of Compton.
That electromagnetic radiation causes pressure and therefore has momentum was known to
Maxwell and others well before special relativity [21].

In the last few years, there have been conflicting claims regarding the question of whether
Heisenberg’s indeterminacy relation q p hd d ~ is generally applicable; for discussions, see
e.g. [6, 22, 23]. The validity of the uncertainty principle q p 2D D , which follows from
the commutator of q and p, is of course not questioned. But the validity of the relation
q p hd d ~ depends on how one defines uncertainty and disturbance. The papers addressing
this controversy consider the problem of taking the rather vague concepts of uncertainty and
disturbance that Heisenberg used in his gedanken experiment and replacing them by defi-
nitions that are precise and at the same time general enough to apply to a wide class of
measurements. Thus inequivalent measurement-disturbance relations can be found in the
literature [24, 25], as discussed in [6, 22, 23] and, not surprisingly, these different definitions
can lead to conclusions that are in disagreement. This is at the moment an active area of
research and it is still not clear which of the different Heisenberg-type inequalities that follow
from these different definitions will prove useful in the analysis of experiments or for the
development of new theoretical tools. In all such studies, an effort is made to find reasonable
mathematical expressions derived from the quantum formalism that may be interpreted as
measures of uncertainty and disturbance and to look for inequalities which are satisfied by
these expressions. Thus the approach of these papers is in some sense a reversal of the
procedure followed by Heisenberg, who arrived at his indeterminacy relation after suggesting
plausible but imprecise definitions of uncertainty and disturbance for particular experiments.
It is for this reason that the conclusions of these studies are not directly relevant to our paper,
which takes Heisenberg’s heuristic approach as its starting point to derive additional results.
We are not as much interested in what standard quantum formalism has to say about the
uncertainty principle but rather in how Heisenberg’s empirical principle points the way to
quantum mechanics. It is to this topic that we now turn.

3. Schrödinger equation from the Heisenberg relations

Einstein, in his ‘Reply to Criticisms’ in the volume ‘Albert Einstein: Philosopher-Scientist’
[26], makes reference to Heisenberg’s uncertainty relation in two places. In the first comment,
he writes that the correctness of the uncertainty relation ‘is, from my own point of view,
rightfully regarded as finally demonstrated.’ Later on, he refers to the ‘natural limits fixed by
the indeterminacy relation’ while discussing ‘the very important progress which the statistical
quantum theory has brought to theoretical physics.’ These two remarks on the uncertainty
relation suggest that he believed it should be taken as an empirical principle, especially given
the fact that much of what he writes about quantum mechanics in this essay consists of
incisive criticism of the standard interpretation of the theory.

As we mentioned above, Heisenberg had hoped his uncertainty relation would serve as a
foundation for quantum mechanics. It would have been possible, already in the late 1920s, to
fulfil his expectations; i.e., to show that the basic equations of quantum mechanics follow
from the empirical relation q p hd d ~ . Such an argument requires only the realization that the
standard Hamilton–Jacobi formulation of classical mechanics can serve as the basis for a
theory of the motion of classical ensembles [27, 28] and a familiarity with the foundations of
statistics. These tools are needed to define the uncertainties for position and momentum,
which remain vague in Heisenberg’s paper, in a more precise way.
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Hall and Reginatto [29, 30] have already shown that it is possible to go from the
Heisenberg uncertainty relation to the Schrödinger equation provided one introduces a more
powerful exact form of the uncertainty principle which postulates that the quantum system is
subject to momentum fluctuations with a strength that is inversely correlated with the
uncertainty in position. They argued that their approach offered [29]

... a new way of viewing the uncertainty principle as the key concept in
quantum mechanics. While it is true that no one before quantum mechanics
would think of taking an uncertainty principle as a fundamental principle, our
analysis is valuable in that it enforces the importance of the uncertainty
principle in distinguishing quantum mechanics from classical mechanics—in a
sense, it says that the uncertainty principle is the fundamental element that is
needed for the transition to quantum mechanics.

While the approach presented in this paper is in some ways similar to that of Hall and
Reginatto [29, 30], it is less formal and perhaps more empirically motivated in the sense that it
takes as its starting point the particular type of measurement considered by Heisenberg. To
carry out our approach, we will first introduce uncertainties for position and momentum using
an operational point of view. Then a physically motivated jump to the Schrödinger equation
will be made. This requires introducing an additional assumption that effectively amounts to
postulating a quantisation procedure.

3.1. The uncertainty in position

In his discussion of uncertainty in position, Heisenberg does not define precisely what he
means. He simply writes (using our notation) ‘Let qd[ ] be the precision with which the value
[q] is known ( qd[ ] is, say, the mean error of [q])’ and then proceeds with the analysis. Here
instead we pay close attention to some technical aspects of the measurement of position and
derive a precise definition of qd .

Consider an experiment in which the measurand (i.e., the quantity to be measured) is the
position of the particle. We introduce a model relating the value of the measurand q̃ to the
estimated value qk that results from a given measurement by setting

q q , 3k k= +˜ ( )

where the subscript k= 1,K,N labels a particular measurement out of a set of N
measurements (that is, we allow for the possibility of repeating the measurement N times) and

k is the discrepancy between the value of the measurand q̃ and the estimated value qk. Thus
the result of the experiment will be a series of numbers, q q q, , , N1 2 ¼( ), and from this series of
numbers the experimentalist will estimate the position of the particle. This requires a
mathematical model of the analysis of the measurement data. More formally, we assume that
there is some probability density P which describes the probability of measuring qk and treat
the measurement qk as if it was a sample from this distribution. Since qk is a location
parameter, it will be natural to assume that the probability density is of the form
P P q q, al= -( ˜ ), where the al , a= 1,K, n, are any additional parameters which are
needed to fully describe the probability density. For example, P might be the Gaussian

P
1

2
e , 4

q q1
2

2

ps
= - s

-
( )( )

˜
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in which case there is only one additional parameter 1l , which corresponds to the standard
deviation, 1l s= . One may, of course, consider more complicated densities which depend on
multiple parameters.

The particle’s position can be estimated from the data by means of an ‘estimator’ or
‘point estimate,’ which is a statistic (that is, a function f qk( ) of the data qk{ }) used to infer the
value of the measurand q̃ that enters into the statistical model. There are of course many
different possible estimators, some better, some worse. For the analysis of the γ-ray micro-
scope, let us assume that the following two conditions are required:

(i) As the Heisenberg uncertainty relation is assumed to hold only for the case of an optimal
experiment (i.e., a cleverly designed experiment and the best available data analysis), the
estimator used should be the one that has the lowest possible variance,

(ii) the estimator should be an unbiased estimator, that is, the mean of the sampling
distribution of the statistic should be equal to the parameter being estimated.

While the second condition seems natural, one should be aware that there is an element of
arbitrariness in the criterion of being unbiased [31–33]. It is introduced here for technical
reasons: it is possible to establish a lower bound for the variance of an unbiased estimator but
there is no analogous proof for the general case [32, 33]. Furthermore, one can argue that this
condition is not unreasonable in the context of a repeatable experiment which may be carried
out a large number of times.

These assumptions are all that we need for a precise definition of qd . It can be shown that
all unbiased estimators satisfy the Cramér–Rao inequality [34],

f q P
P

P

q
var d

1
, 5

2 1

 ò
¶
¶

-
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( )
˜

( )

where var( f ) denotes the variance of the estimator f. The proof requires a mild regularity
condition which allows reversing the order of integration with respect to q and differentiation
with respect to q̃ [34] and we assume here that this condition holds. Because

P P q q, l= -( ˜ ), we have P

q

P

q

2 2
=¶

¶
¶
¶( ) ( )˜

and the inequality can be written in the

equivalent form

f q P
P

P

q
var d

1
. 6

2 1

 ò
¶
¶

-
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( ) ( )

Assume that q̃ is estimated from the data using the best possible estimator, which we take
to mean the unbiased estimator that has the lowest variance, and that this estimator achieves
the Cramér–Rao lower bound (i.e., it is an ‘efficient estimator’). Then,

q q P
P

P

q
d

1
. 72

2 1

òd =
¶
¶

-
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( ) ( )

We take this particular expression for qd and use it to define the uncertainty of any optimal
determination of position, including the one considered by Heisenberg in his gedanken
experiment. The expression in curly brackets on the right hand side of equation (7) is the
Fisher information [35] associated with translations of q. For this reason, qd is also known as
the the Fisher length [36].

As an illustration, consider again a Gaussian distribution. Both the mean and the median
are examples of unbiased estimators. But in the case of large samples the variance of the mean
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is smaller than the variance of the median [34], thus the mean would be considered a better
estimator. How does the mean compare to other estimators? It is straightforward to show that
for a Gaussian distribution, the Cramér–Rao lower bound is achieved by the sample mean.
Thus it has the lowest possible variance of all unbiased estimators4.

More generally, if an efficient unbiased estimator exists, it will be the maximum like-
lihood estimator [33]. The expression given by equation (7) is therefore closely connected to
maximum likelihood estimation.

3.2. The uncertainty in momentum

The experiment considered by Heisenberg is one that measures the location of a particle, thus
position plays a fundamental role. Based on the assumption of an optimal measurement, we
have defined the uncertainty in position via equation (7). As far as the measurement is
concerned, there is an obvious asymmetry between position and momentum, as Hilgevoord
and Uffink [37] have emphasised,

Note that only one measurement is actually performed: the determination of
the photon’s position. From the result of this measurement a prediction can be
made about the outcome of subsequent measurements of the photon’s (or
electron’s) momentum. No simultaneous measurements are involved! Neither
are joint probabilities, nor is the projection postulate.

Thus the uncertainty in momentum must be handled differently than the uncertainty in
position. As there is no measurement of momentum, the uncertainty in momentum cannot be
estimated experimentally. Heisenberg writes (using our notation) ‘Let pd[ ] be the precision
with which the value [p] is determinable; that is, here, the discontinuous change of p in the
Compton effect.’ But this is not sufficient for our purposes. We consider a definition of
momentum uncertainty which is both more general and more precise. We will proceed in two
steps. We will first consider the case of a classical particle, for which there is a natural and
straightforward definition of momentum uncertainty. Afterward, we will look for an
appropriate definition of momentum uncertainty that is valid for the quantum case.

3.2.1. Momentum uncertainty for the classical case. In the previous section we defined the
uncertainty in position q by means of a probability density defined over the configuration
space of the particle (i.e., Euclidean three-dimensional space). If the particle is in motion, the
probability density associated with the location of the particle will also be in motion. Since
momentum is associated with velocity, it is clear that we need to consider the dynamics of this
probability density. There is one fundamental requirement: the probability density
P P q t,= ( ) introduced in the previous section must satisfy a continuity equation,
otherwise probability is not conserved. Such an equation is of the form

P
Pv

q
0, 8+

¶
¶

=˙ ( ) ( )

where v v q t,= ( ) is the velocity field associated with the motion of P.
To specify the motion of P, we need an equation for the velocity field v. We consider first

a classical particle, and later we will look at the modifications that are needed for a quantum
particle. In the case of a classical particle, one may define v with the help of the Hamilton–

4 Of course, in the present case, we are not suggesting that the mean of a series of measurements of position be
considered as the best estimator, but rather, a single optimal measurement of the type suggested by Heisenberg’s
microscope.
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Jacobi formalism, in which case

v
m

S

q

1
, 9=

¶
¶

( )

where S S q t,= ( ) satisfies the the Hamilton–Jacobi equation

S
m

S

q
V

1

2
0, 10

2

+
¶
¶

+ =
⎛
⎝⎜

⎞
⎠⎟

˙ ( )

with a potential term V. It is straightforward to express the average energy E⟨ ⟩ associated with
the ensemble of classical particles; i.e.,

E q P
m

S

q
Vd

1

2
. 11

2

ò=
¶
¶

+
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥⟨ ⟩ ( )

As an aside, notice that it is not strictly necessary to postulate equation (9) because v follows
from the equations of motion for P and S whenever P is highly localised (i.e., a delta
function). Thus v is operationally well defined [27, 38]. If P is not localised then P S q¶ ¶ can
be thought of as momentum density associated with P.

It will be useful for the analysis of the next section to restrict the formulation to the
specific case of interest. Since the gedanken experiment involves a free particle immediately
before and after the collision, we are interested in the case in which the potential term is set to
zero. From equation (11), the average energy for the case V=0 is given by

H q P
m

S

q
d

1

2
. 12C

2

ò=
¶
¶

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

We will see in the next section that HC plays the role of a classical Hamiltonian; i.e., the
Hamiltonian that determines the equation of motion for the ensemble of free classical
particles.

Now we can define the uncertainty in the momentum pC of a classical particle in the usual
way via the variance,

p p q P
S

q
q P

S

q
var d d , 13C C

2
2 2

ò òd = =
¶
¶

-
¶
¶

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( ) ( ) ( )

where we use equation (9) to express the momentum in terms of S

q

¶
¶
. Notice that pvar C( ) and

HC are related by the equation

p p p mH pvar 2 . 14C C C C C
2 2 2= - = -( ) ⟨( ) ⟩ ⟨ ⟩ ⟨ ⟩ ( )

This observation will be useful in the next section.
What changes do we have to make to this formulae when we have a quantum particle?

Clearly the expression for pC
2d( ) , equation (13), can no longer be valid because it is

inconsistent with the Heisenberg uncertainty relation. While equation (8), the continuity
equation, must be satisfied to ensure conservation of probability, the classical Hamilton–
Jacobi equation, equation (10), certainly cannot be applied to quantum phenomena. Both of
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these inadequacies can be corrected by adding a quantum term to the classical Hamiltonian, a
task to which we now turn.

3.2.2. Momentum uncertainty for the quantum case. The previous steps did not require
anything particularly out of the ordinary. The uncertainty in position qd was defined using
tools of statistics developed in the 1920s for precisely such types of measurement. The
uncertainty in momentum pCd of the classical particle was defined by means of Hamilton–
Jacobi theory and some basic concepts from probability theory. The next step of jumping to
the Schrödinger equation requires more creativity.

Heisenberg’s analysis leads to the semiquantitative expression q p hd d ~ , which should
be valid for the case of an optimal measurement carried out on a quantum particle if the
experiments are to be consistent with the claim that this relation represents a fundamental
limit. We rewrite this as the equality

q p
h

, 15Hd d
h

= ( )

where 0h > is a dimensionless constant which Heisenberg did not bother to determine and
the subscript H in pHd is there to remind us that this is the uncertainty in momentum that
appears in Heisenberg’s indeterminacy relation, equation (1). Equation (15) can be written in
the equivalent form

p
h

q

h
q P

P

P

q

1
d

1
, 16H

2
2

2 2

2

2

2

òd
h d h

= =
¶
¶

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

where we used equation (7) in the last equality. Furthermore, since Heisenberg considers a
‘best case’ scenario, the product q pd d will typically be greater than h

h
. So we replace

Heisenberg’s relation by the inequality

q p
h

, 17Q d d
h

( )

which presumably is valid for any measurements performed on a quantum particle. The
symbol pQd represents the variance in subsequent measurements of the momentum of the
quantum particle. This may seem somewhat removed of the pd in Heisenberg’s indeterminacy
relation, which represented a disturbance of the momentum caused by the γ-ray microscope.
However, one can certainly claim that this disturbance is equivalent to the uncertainty in any
subsequent measurement of the particle’s momentum. In this sense, it is reasonable to
consider the use of the γ-ray microscope to be a procedure of state preparation going forward.
Heisenberg seemed to make no distinction between these two interpretations of pd .

We would like to find a reasonable expression for pQd which involves pCd and pHd , the
only two other uncertainties that we have at our disposal. In the optimal quantum limit
p pQ Hd d , while in the classical limit p pQ Cd d . The simplest way to agree with these two
limits is to define pQ

2d( ) as the sum of pC
2d( ) and p ;H

2d( ) i.e., pQd is obtained by summing pCd
and pHd in quadrature. While this step has no rigorous justification, it is consistent with the
standard propagation of uncorrelated errors, a statistical procedure for data analysis that dates
back to Gauss. With this assumption,
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p p p

q P
S

q
q P

S

q

h
q P

P

P

q

q P
S

q

h

P

P

q
q P

S

q

d d d
1

d
1

d . 18

Q C H
2 2 2

2 2 2

2

2

2 2

2

2 2

ò ò ò

ò ò

d d d

h

h

= +

=
¶
¶

-
¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

-
¶
¶

⎪ ⎪

⎪ ⎪

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

( ) ( ) ( )

( )

We now set p pvar Q Q
2d=( ) ( ) . This is the expression for pvar Q( ) that ought to replace the

classical variance pvar C( ) for the case of a quantum particle. We now look at the
consequences of defining pvar Q( ) in terms of the pQ

2d( ) of equation (18).

3.3. From the Heisenberg uncertainty relation to the Schrödinger equation

From equation (14), p mH pvar 2C C C
2= -( ) ⟨ ⟩ . If we assume a similar functional form for

pvar Q( ) we are led to a quantum Hamiltonian equal to the first term in square brackets of the
last equality of equation (18) divided by m2 ,

H q P
m

S

q

h

m P

P

q
d

1

2 2

1
. 19Q

2 2

2 2

2

ò h
=

¶
¶

+
¶
¶

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

This expression for HQ replaces the classical Hamiltonian HC for the case of a quantum
particle. Equation (14) results from identifying the classical Hamiltonian with the kinetic
energy of a free particle. If one takes into account the increased quantum dispersion implied
by the uncertainty relation, it is clear that the effective kinetic energy of a quantum particle is
the classical expression plus the dispersion of equation (16) divided by m2 . Equating this
effective kinetic energy with the quantum Hamiltonian leads to and provides further
justification for equation (19).

Now comes a crucial observation: it is straightforward to show that the two equations that
describe the ensemble for a classical particle, equation (8) and equation (10), can be derived
using a Hamiltonian formalism if we take P and S as canonically conjugate field variables and
define rate equations in the usual way,

P P H
Pv

q
, , 20C= = -

¶
¶

˙ { } ( ) ( )

S S H
m

S

q
,

1

2
, 21C

2

= = -
¶
¶

⎛
⎝⎜

⎞
⎠⎟

˙ { } ( )

where F G,{ } denotes the Poisson bracket of F and G. We will now assume that the equations
that describe the ensemble for a quantum particle will follow in an analogous way, but with
HC replaced by HQ.

The equations that follow from the Hamiltonian HQ are the continuity equation,
equation (8), and the modified Hamilton–Jacobi equation,

S
m

S

q

h

m P

P

q

1

2

4

2

1
0. 22

2 2

2

2

2h
+

¶
¶

+
¶
¶

=
⎛
⎝⎜

⎞
⎠⎟

˙ ( )

This equation replaces the classical Hamilton–Jacobi equation for the case of a quantum
particle. As expected, when h  ¥ equation (22) becomes the classical Hamilton–Jacobi
equation.
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At this point, η, is still a free parameter, one that Heisenberg left undefined. In principle,
it could be determined experimentally. One might attempt to determine the value of η by a
more careful analysis of Heisenberg’s microscope experiment or by considering another more
optimal arrangement. However, this would certainly go beyond Heisenberg’s motive; he
intentionally left the symbol ‘∼’ in his relation, q p hd d ~ . Alternatively, one could leave η as
an unknown factor and then compare the results of subsequent calculations with known
phenomena such as atomic spectra. This would inevitably result in determining η to be 4p. If
we set 4h p= , equations (8) and (22) are precisely the Schrödinger equation written in the
formulation that Madelung introduced in 1926 [39]. The complex Madelung transformation,

P e Si y = , maps these two real equations to the free particle Schrödinger equation in its
usual form,

m q
i

2
. 23

2 2

2



y

y
= -

¶
¶

˙ ( )

In this way, we have outlined a path from the Heisenberg uncertainty relation to the
Schrödinger equation for a free particle and, perhaps, fulfilled Heisenberg’s wish ‘... to be
able to derive, if possible, the quantitative laws of quantum mechanics directly from the
physical foundations—that is, essentially, from q p hd d ~ .’

A claim to have derived the Schrödinger equation would be a bit of an overstatement
considering the assumptions made above, especially the momentum variance of
equation (18). The choice for the quantum Hamiltonian in equation (19) seems less worri-
some given that the freedom to choose appropriate Hamiltonians is often exercised. Even so,
we find the self-consistency of our approach convincing. For example, the substitution of the
Madelung expression for ψ in the standard quantum mechanical expression for momentum

variance, q qd d
q qi

2

i

2
* * 

ò òy y y y-¶
¶

¶
¶

⎡⎣ ⎤⎦( ) , yields precisely the variance in

equation (18). Again using the Madelung transformation but going in the other direction, the
Hamilton–Jacobi expression for the average momentum, p q Pd S

qò= ¶
¶

⟨ ⟩ implies the

quantum mechanical expression p qd
qi

*ò y y= ¶
¶

⟨ ⟩ . Another example is the quantum
mechanical minimum uncertainty (Gaussian) wave packet. Again from the Madelung trans-
formation, it’s straightforward to show that the equivalent Hamilton–Jacobi probability

density for such a packet is e q2 2 2

2ps

s-
, in which case the variance of q is q2

2

2

d = s , the lower

bound of the Cramér–Rao inequality of equation (7), while the momentum variance of
equation (18) for such a packet is p2

2

2

2

d =
s
, resulting in q p

2

d d = , our assumed minimum
Heisenberg uncertainty.

4. Discussion

The analysis of section 3 maps out a direct path from Heisenberg’s indeterminacy relation to
the formalism of quantum mechanics as embodied in the Schrödinger equation. Because the
analysis was framed in terms of probabilities, the statistical interpretation is automatic and
there is no need to introduce the Born rule for interpreting the wave function Ψ. As such, it
provides support for Heisenberg’s conclusion (as stated in the abstract of his 1927 paper), i.e.,
‘This indeterminacy is the real basis for the occurrence of statistical relations in quantum
mechanics.’ Our analysis also appears to fulfil, in part, Heisenberg’s desire to derive the laws
of quantum mechanics from his indeterminacy relation, q p hd d ~ . The endpoint of our
analysis, the Schrödinger equation for a free particle, automatically includes the wave
behaviour of matter with no additional assumptions.
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It is instructive to review how this happens. Heisenberg shows us that there are inevitably
uncertainties qd and pd associated with the position and momentum of a particle. Once the
uncertainty in position is accepted as a fundamental aspect of the theory, it is natural to
describe the position of the particle by a probability density P that is mathematically a field
over configuration space. Since the particle moves, P will have to change with time, and since
there is no reason why it should move in a rigid fashion, there has to be a second field, a
velocity vector field v


, which describes how the probability P changes in time. As we have

shown in section 3, the classical limit (in the form of the Hamilton–Jacobi formalism)
suggests that the velocity field can be derived from a single scalar field S according to
mv S= 


. Thus the motion of the particle is conveniently described in terms of two fields, P
and S, as a consequence of the indeterminacy postulated by Heisenberg. The derivation of the
Schrödinger equation from this insight is of course not a trivial exercise, as is apparent from
the analysis of section 3, but it can be carried out. Heisenberg introduced his γ-ray micro-
scope to investigate the very meanings of position and momentum of a particle. He maintained
that these concepts only derive meaning by virtue of experiments with which they are to be
measured. The result of his deliberations was the indeterminacy relation, q p hd d ~ . It should
be emphasised that this relation is quite distinct from the Kennard/Robertson/Schrödinger
uncertainty principle, q p 2D D . The latter is derived directly from the formalism of
quantum mechanics and is a statement about the properties of quantum states. The quantum
states themselves can be associated with hypothetical measurements only via the Born rule
and interpretative statements relating quantum operators and the outcome of these mea-
surements, the descriptions of which are usually vague and lie outside the formalism of
quantum mechanics. Heisenberg’s indeterminacy relation, on the other hand, is a statement
about the very meanings of q and p as derived from our ability to determine them using an
ideal measuring apparatus. It is in this sense that q p hd d ~ is an empirical principle of nature.
It is remarkable that the definition of qd that is needed to go from the Heisenberg uncertainty
relation to the Schrödinger equation, equation (7), is associated with maximum likelihood
estimation. This suggests a non-trivial connection between the Schrödinger equation and
classical statistics which should be explored further.

Since the early days of quantum mechanics there have been many discussions as to how
the theory should be interpreted. It seems likely that these questions arise in part as a
consequence of adopting the formalism of quantum mechanics, e.g., the Schrödinger
equation, as primal. One is then left with the problem of identifying the theoretical constructs,
the wave functions or quantum state vectors, with aspects of reality. On the other hand, if one
considers Heisenberg’s empirical indeterminacy relations as primal, such questions do not
immediately arise. Then the formalism of quantum mechanics and concomitant wave func-
tions become simply tools for making predictions.

In his 1927 paper, Heisenberg maintained that the statistical nature of quantum
mechanics arises from the indeterminacy relations. It should be noted that our analysis in
section 3 also treated classical physics as probabilistic. That statistics is important to classical
physics is not particularly novel; however, classical indeterminacy is usually relegated to the
behaviour of large numbers of particles (statistical mechanics) or simply labelled as exper-
imental noise and then summarily dismissed as a fundamental aspect of nature. This does not
have to be the case, as indicated by the analysis of section 3. So if it is not its statistical nature
that distinguishes quantum from classical mechanics, what does? It is generally accepted that
there is no classical analogue of the wave nature of particles nor of the concomitant quantum
interference. We have shown that the Schrödinger equation, which provides a wave
description, can be derived from Heisenberg’s indeterminacy relations. The implication seems
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to be that it is primarily the quantal nature of the world that leads to quantum interference and
so distinguishes quantum from classical mechanics.

Heisenberg’s uncertainty principle, even in its expression as an inequality, is generally
acknowledged as describing an underlying property of all quantum mechanical systems. Even
so, there are conflicting claims as to its fundamental importance as well as to its general
applicability. We have here endeavoured to argue that the uncertainty relation is of primal
importance to the foundations of quantum mechanics, a view that is certainly expressed by
Heisenberg in his 1927 seminal paper.
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