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Robust Nonlinear Control of Brushless dc 
Motors for Direct-Drive 

Robotic Applications 

Abstract-The control problem associated with brushless dc motors 
(BLDCM) for direct-drive robotic applications is considered. In order to 
guarantee the high-performance operation of BLDCM’s in such applica- 
tions, the effects of reluctance variations and magnetic saturation are 
accounted for in the model. Such a BLDCM model constitutes a highly 
coupled and nonlinear dynamic system. Using the transformation theory 
of nonlinear systems, a feedback control law, which is shown to com- 
pensate for the system nonlinearities, is derived. Conditions under which 
such a control law is possible are presented. Furthermore, the need for 
the derivation of explicit commutation strategies is eliminated, resulting 
in the reduction of the computations involved. To guarantee the high- 
performance operation of the system subject to substantial uncertain- 
ties, a robust control law is derived and appended to the overall control 
structure. The inclusion of the robust controller results in good tracking 
performance when there are modeling and measurement errors and 
payload uncertainties. The efficacy of the overall control law is investi- 
gated by considering a single-link direct-drive arm actuated by a 
BLDCM. 

I. INTRODUCTION 
OBUST tracking control of brushless dc motors R (BLDCM) for direct-drive robotic applications is consid- 

ered. This study has been motivated by the increasing poten- 
tial and interest in adopting BLDCM for high-performance 
applications such as direct-drive robotics [I], [5], [ 141. Until 
recently, the use of brushless motors had been limited due to 
the high cost of the electronic circuitry associated with them. 
However, due to the recent advancements in power electron- 
ics, brushless motors are replacing their brushed counterparts 
and are becoming the dominant actuators for high-perfor- 
mance applications. Furthermore, due to the continuing 
breakthroughs and reduction of costs in power electronics, 
the real-time implementation of advanced control schemes is 
becoming feasible [SI, [lo], thus resulting in the possibility 
of achieving better performance in the future. 

BLDCM’s have been an attractive choice for direct-drive 
robotics [l], mainly because of their large torque-producing 
capabilities, which are suitable for high acceleration and 
deceleration rates. In a direct-drive servo system, the load is 
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directly coupled to the motor, and therefore, the torque 
generated by the motor is directly transmitted to the load. AS 
a result, in order to ensure high performance of the system, 
the full dynamics of the motor and its interaction with the 
load must be taken into account. To guarantee the high-per- 
formance operation of BLDCM’s in such motion control 
applications, the effects of magnetic saturation and reluctance 
variations must be taken into account. Another class of 
motors, which has been regarded as being attractive for 
direct-drive applications, is the variable reluctance motor 
(VRM) [I], [9]. In VRM’s, the mutual couplings among the 
phase windings are negligible [9], [lo], whereas in a 
BLDCM, the mutual inductances play a significant role [5] .  
This introduces a major difficulty in terms of constructing the 
mathematical model and deriving commutation strategies for 
control purposes when magnetic saturation is present [5], [7]. 
The proposed approach, in this paper, eliminates the need for 
the derivation of explicit commutation strategies. 

The BLDCM’s under study constitute multivariable, cou- 
pled, nonlinear systems. Therefore, the tracking control 
problem associated with them is addressed in the context of 
tracking control of multivariable nonlinear systems. As the 
first step in the control design process, a feedback linearizing 
control law is derived, which compensates for the system 
nonlinearities. It is demonstrated that this control law, in 
conjunction with linear state feedback control, provides good 
dynamic performance in the presence of uncertainties. How- 
ever, the performance of this control law is shown to be 
degraded if accurate feedback measurements are unavailable. 
To alleviate this problem, and to guarantee good performance 
of the system in the presence of bounded uncertainties in the 
model and the measurements [3], [4], [ll], 1131, a robust 
control term is derived and appended to the feedback lineariz- 
ing controller. Computer simulations are used to examine the 
effectiveness of the proposed control when the BLDCM 
direct-drive system is subject to modeling, payload, and 
measurement uncertainties. 

The paper is organized as follows. In Section II, we 
describe the system that will be studied throughout the paper. 
The mathematical model associated with BLDCM with mag- 
netic saturation and reluctance variations is presented and 
discussed in some detail. In addition, experimental data are 
provided to demonstrate the validity of the BLDCM model 
that is used. In Section 111, the feedback linearizing control 
law is derived, which demonstrates good tracking perfor- 
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Fig. 1.  Typical configuration for a BLDCM and its commutation. 

mance in the absence of measurement uncertainties. The 
robust controller is presented in Section IV. In Section V, 
simulation results are presented for a directdrive system 
composed of a BLDCM and a one-degree-of-freedom robot 
arm. 

II. MATHEMATICAL MODEL OF BLDCM AND THE 

DIRECT-DRIVE ARM 
A BLDCM consists of a permanent magnet rotor, a posi- 

tion sensor mounted on the rotor, and a means to provide 
signals to the stator windings (see Fig. 1). The signals to the 
phase windings are synchronized with the output from the 
position sensor to provide the electronic commutation. The 
m a t u r e  windings (located on the stator) of a typical BLDCM 
are three-phase, Y-connected, and sinusoidally distributed 
[ 11, [ 1 11. Here, a one-degree-of-freedom inverted pendulum 
(robot arm) actuated by a BLDCM is considered (see Fig. 2). 
The motor will generate a prescribed torque profile such that 
the payload and the arm are guided along a given trajectory 
that is specified in terms of the time histories of position, 
velocity, and acceleration. For the payload to track the 
prescribed trajectory, appropriate control commands (volt- 
ages/currents) must be supplied to the motor windings. In 
turn, it is the performance of the motor that determines how 
accurately the trajectory is tracked. In this section, a BLDCM 
model which accounts for magnetic saturation and reluctance 
variations, is presented. Some experimental data are pre- 
sented to demonstrate the validity of the proposed model. 

A.  BLDCM with Linear Magnetic Structure 
In the absence of magnetic saturation, it is convenient to 

formulate the dynamic behavior of a BLDCM in the d-q-0 
coordinate frame as follows [21, [51, 1111: 

de dXd 
ud = Rid - nX - + - ' dt dt 

where R is phase resistance, U is voltage, i is current, e is 

Fig. 2. Directdrive arm actuated by a BLDCM. I = 1 .O m, M = 2.0 kg. 
The link is assumed massless. 

angular displacement, n is number of pole pairs, X is flux 
linkage, and t represents time. The torque function may be 
written as 

The flux linkages may be written in terms of the constant 
inductance parameters L,  and L,  and the electromotive 
force constant K, as follows: 

X, = L,i, (3) 

(4) Ad = L d i d  + K , .  

L ,  and L,  represent fictitious inductance quantities that are 
related to the stator phase winding inductances in the follow- 
ing way ' : 

where La is the average inductance of the phase windings, 
and L,  represents the amplitude of the sinusoidal variations 
in the phase winding inductances due to the rotor displace- 
ment. In other words, L,  represents the degree of reluctance 
variations in the air gap. 

To complete the mathematical model, the motion of the 
rotor and the arm are described by 

de 
dt 

= w  - 

d26 
dt2 (64 MI*- + M ~ I C O S ( B )  = q ( t )  

where U is angular velocity, J ,  is the motor inertia, M is 
the payload mass, I is the distance from the joint axis to the 
payload, and T,(t) represents the load torque. Equations (6b) 
and (6c) may be combined to obtain 

J-  d w  = T ( i , ,  i d )  - T L ( t )  
dt 

' The phase inductances and the electromotive force constant, as used in 
the formulation of the mathematical model, correspond to the line-to-neutral 
quantities. 
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where J = J,  + MI2 is the effective inertia, and TL is the 
effective load torque. 

B. BLDCM with Magnetic Saturation 
The validity of the BLDCM model presented above is 

solely based on the assumption that the magnetic structure of 
the motor retains its linearity throughout the operation. In 
other words, the BLDCM mathematical model presented 
above is valid if the inductance parameters La and L, and 
the electromotive force constant K, remain constant. In the 
presence of magnetic saturation, however, these parameters 
can no longer be assumed to be constants throughout the 
operation. To include the effect of magnetic saturation in the 
mathematical model, the variations of these parameters must 
be formulated as functions of phase currents. In [5], it was 
shown that these variations could be modeled by a set of 
piecewise continuous polynomials as follows: 

a0 + q i  + a 2 i 2  + a3i3  
n f i i  

bo + b,i  + b2i2  + b3i3 + p4i4 
3ni2 

K , ( i )  = ( 7 4  

L , ( i )  = (7b) 
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La( i )  = KL,( i )  

where 

i =  JF i: + i ;  

and where ai ( j  = 1, ) and K are 
constant coefficients. Based on an experimental procedure, 
through which a set of four-dimensional surfaces correspond- 
ing to the phase flux linkages and the electromagnetic torque 
function are identified, the numerical values for the coeffi- 
cients in (7a)-(7c) can be computed [5 ] .  

To be able to take advantage of the simple structure 
associated with the BLDCM model in the d-q-0 coordinate 
frame, the inductance parameters and the electromotive force 
constant are modeled to be piecewise constant functions of 
the phase current variable i .  In other words, these parameters 
are considered constant in prescribed intervals of current. It 
is important to note that since the variations in L,, L,, and 
K, have been accurately characterized, by (7a)-(7c), the 
width of the current intervals may be chosen to be arbitrarily 
small. To establish the validity of the proposed modeling 
procedure, Figs. 3 and 4 illustrate the comparisons between 
the experimental results and the corresponding predicted 
values obtained from the mathematical model. As is evident 
from the figures, the agreement is quite reasonable. Further- 
more, the results indicate the significance of reluctance varia- 
tions (Fig. 3 )  and the degree of magnetic saturation that is 
present (Fig. 4). 

), Pk (k = 1, 

III. NONLINEAR CONTROL OF BLDCM AND THE 

DIRECT-DRIVE ARM 

In the past, the control problem associated with BLDCM's 
has mostly been addressed based on simplified linear models, 
e.g., [l]. Namely, the following assumptions have been 

0.0040 

0.0038 - - Predicted data from model 
I Experimental data . 

0.0020 ! . I . I . I . I . ! 
0 10 2 0  30 4 0  50 

Rotor position, degrees 

Experimental and predicted values of phase winding inductance in Fig. 3. 
the linear magnetic range. 

401 

. , . , . , . , . , . I . !  

0 5 10 15  20 25  30 35 

Current, amperes 

Fig. 4. Experimental and predicted plots of torque-current characteristics 
at rotor speed of 200 r/min. 

made: 1) The reluctance variations are insignificant, i.e., 
L, = 0; 2) the d-axis dynamics may be neglected; 3) the 
saturation effects may be neglected. As a result of these 
assumptions, a BLDCM model resembling that of a conven- 
tional dc motor is obtained, making the control problem 
similar to that associated with a conventional dc motor. Here, 
these assumptions are relaxed, and the full dynamics of a 
BLDCM are included in the derivation of the control law. 

The tracking control problem associated with BLDCM's is 
attacked as a feedback linearizing control problem [8]. A 
nonlinear dynamic system 

dx 
- dt = f ( x )  + G ( x ) u ( t )  (9) 

where f ( x ) :  R" 4 R" and G ( x ) :  R" + R n X m  are smooth 
vector fields, is said to be feedack linearizable if there exist 
1) a neighborhood U in R" of the origin, 2) a differentiable 
transformation with a differentiable inverse T ( x ) :  R" + R", 
and 3) the nonlinear feedback 

v ( f )  = b( . ) . ( t )  + U ( . )  (10) 
with B(x): R" + R m x m  being nonsingular, such that the 
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transformed state vector 

z ( t )  = T ( x )  (11) 

satisfies the linear system of differential equations 

dz - = Az(t )  + BY(t) 
d t  

where the pair ( A ,  B) is in the appropriate Brunovsky 
canonical form with the Kronecker indices K , , K , , . . . , K ,. 

The necessary and sufficient conditions [8] for the nonlin- 
ear system (9) to be feedback linearizable are that for a 
neighborhood U in R", the following must be satisfied: 1) 
Thevectorfields {Gl, [f, G1l,- . . , (adKl- l f ,  G,);*.,G,, 
[f, G,], * * e ,  (ad'm-lf, G,)}' are linearly independent; 2) 
the sets C j  = { G , , . . . ,  (ad" j - ' f ,  G I ) ; * * ,  G,, 

,(ad"j-'f, G,)} for j = 1, 2;-*, m are involutive3; 
3) the sets Cj span the same space as Cj  n C. In the 
following section, conditions are derived defining the regions 
in which the BLDCM model is feedback linearizable. 

A. Transformation to the Linear System 
In this section, we address the feedback linearizing control 

of a BLDCM. The need to derive explicit commutation 
strategies as in [9] and [lo] is eliminated because we have 
described the BLDCM dynamics in the d-q-0 coordinate 
frame, where the flux linkages and the torque function are 
represented as functions that are independent of the rotor 
position. For convenience, we will rearrange and write the 
BLDCM governing the equations in the following form: 

dB 

d t  = u  (134 - 

du 

di, 1 de 
- = -[ U, - Ri, - nL i - - n K e z }  (13c) 
dt  L, d d t  dt  

To keep the formulation in a generalized framework, no 
specific form of TL(t) will be assumed, with the exception 
that TL(t) is assumed to be a smooth function of time. 
Comparing the BLDCM governing equations, i.e., 
(1 3a) - (1 3d), to the system defined by (9), one can define the 
following 

XZ 

x3 
k1x4 + k,x4x5 - TL 

- k 4 ~ 3  - k3x4 - k5x3x, 

where k ,  = 3nK,/2 J ,  k ,  = 3n(Ld - L,)/2 J, k3 = 
R/L,, k4 = nK,/L,, k ,  = nLd/Lq, k ,  = R/Ld,  k ,  = 
nL,/Ld, q, = l /Lq ,  q, = l /Ld .  Note that the integral of 
position has been added as a new state for the convenience of 
including an integral control term in the pole-placement 
controller of Section 111-C. 

We will now apply the necessary and sufficient conditions 
given in Section 111-A to the BLDCM system, i.e., 
(14a)-(14d). Note that if it is possible to obtain a control law 
to transform the governing equations to a linear system 
equivalent, then to achieve the desired dynamic performance, 
one is left with a linear control problem. It will be shown 
below that the necessary and sufficient conditions for the 
existence of T( x )  are satisfied for K , = 4, K = 1. First, the 

five-dimensional space. To show this, we will construct the 
matrix whose columns are the vectors in the set C ,  as 
follows: 

set C = {G,, If, G,I, (ad'f, G,), (ad3f ,  Cl), G2) spans a 

[f. G,], (df, G,); . * , and (udkf, G,) denote the Lie brackets of the 
vector fields f and G, and are defined as follows: 

a c .  af 
ax ax [ f, G,] = (ud'f, G,) = 'f - -G, 

and (df, G,) = [ f, (,&If, G,)] . 

A set S composed of vector fields in R" is said to be involutive if the 
Lie bracket of any pair of vector fields in S can be expressed as a linear 
combination of the vector fields in S, where the coefficients in the linear 
combination are allowed to be smooth functions in R". 

Obviously, this matrix has full rank, as long as the following 
condition is satisfied: 

k ,  + k ,x ,  # 0 .  

Second, the set Cl = {G,, If, G,l, (ad'f, G,), G,, If, 
(16) 

G,]} and the set C, are involutive. C, is trivially involutive 
since it is empty. To show the involutivity of C , ,  it can be 
demonstrated that Lie brackets [GI, [f, G,]], [G,, (ad'f, 
G1119 [G,, G21, [GI, [f, G211, [[f, Gll, (ad2f ,  GJI, [[f, 
GI19 G21, [[f, Gll, If, GzI1, [(ad2f7 Gl), Gzl, [ (ad2f ,  
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0 0 1 0 0  

0 0 0 0 0  
4 4  = 1 ; 1: A =  1 0 0 0 1 0 ;  
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GI ,  [f, G,]], [G,, [f, G,]] can be written as a linear 
combination of the elements of C , .  Finally, the span of C1 
(C,) is clearly equal to the span of the intersection of C ,  
(C,) and C. 

Having demonstrated the existence of a transformation, 
i.e., change of coordinates z ( t )  = T ( x ) ,  which transforms 
the BLDCM nonlinear system description to a controllable 
linear system in the Brunovsky canonical form with the 
Kronecker indices K = 4, K , = 1, we may now attempt to 
derive a control law of the form (lo), which will result in the 
transformation of the BLDCM description (( 14a)-( 14d)) to a 
linear system description of the form given by (12), where 

B = 0 0 . (17) [ 
B. Derivation of the Feedback Linearizing Controller 

To proceed with the derivation of the feedback linearizing 
control law, it is helpful to consider the following. The 
control commands U, and vd will be designed to achieve the 
following objectives: 1) compensate for the nonlinearities and 
decouple the dynamics; 2) guide the payload along a given 
trajectory; 3) provide robustness. The third objective will be 
addressed in Section IV. The first objective is identical to 
deriving the feedback linearizing controller. To achieve this, 
the control voltages are derived such that the system equa- 
tions (13a)-(13d) are transformed to the following linear 
controllable form 

de 
dt 

dw 
dt 

= w  - 

= a  - 

d a  
dt - U' 
- -  

did - -  - U 2  dt 

where U, and u2 are the control commands of the trans- 
formed linear system, and a is acceleration. To derive the U, 
and vd,  which will accomplish this transformation, we will 
proceed as follows: 

- 51 (19) 
dt J dt dt 

which can be written as 

a T ( i q , i d )  di ,  a z - ( i q , i d )  did + ai ,  dt dt 

(20) 

Recalling (2)-(4), we then get 

By substituting (21) and (22) in (20) and proceeding further, 
the following is arrived at: 

u g =  {($)(Jv,+%) - (2) 
* { (Ld - L q ) i q }  { vd - Rid + nL,i,w} I 

In a similar manner and by comparing (18d) and (13d), one 
will get 

vd = Ldv2 + Rid - nL,i,U. (24) 

As is evident from (23), the control voltage U, is computable 
if 

This condition is likely to always hold since, in general, 
magnitude of K, is much larger than I L, - L ,  I 4,  suggest- 
ing that condition (25) is violated only for very large values 
of id.5 Moreover, as described in the following paragraph, 
the d-axis controller is designed to stabilize id at zero, 
providing further assurance for the existence of the feedback 
linearizing controller. 

To accomplish the second objective, i.e., to guide the 
payload along a prescribed trajectory, a tracking controller in 
terms of the transformed control inputs v I  and u2 is de- 
signed. Observing that the control input v 2  affects the dynam- 
ics of the d-axis current variable, to eliminate the effect of 
the d-axis current on the generated torque, u2 is designed to 
drive id  to zero as fast as possible. Consequently, the control 
input U, will be given the full authority to achieve zero 
tracking error. 

4The BLDCM's under study have the following specifications in the 
linear magnetic range: 

K ,  = 0.02502 V/rad/s, L ,  = 0.95 d, L,  = 0.2 m ~ ,  R = 0.9 n 
where the values are based on line-to-neutral measurements. 

BLDCM under study, (25) will be. violated for id = 417 A. 
' For example, if one uses the nominal values for the parameters of the 
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C. Pole-Placement Control 

(23) and (24), can be written as 

acceleration are available. If, however, estimated accelera- 
tion information is to be used, which is the case is most 
practical situations, the performance of the system may be 
drastically degraded. To account for modeling, payload, and 
measurement errors, a robust control law will be presented in 
the following section. 

The feedback linearizing control, which is expressed in 

(26) 

IV. ROBUST CONTROL 
In this section, a nonlinear robust controller is designed 

and appended to the control law of the previous section. The 

where 

42 
(27) 

The control law defined by (23) and (24) transforms the 
nonlinear system of (13a)-(13d) to the linear canonical form 
(18a)-(18d). Since at this point one is left with a linear 
system, the controls u1 and u2 can be designed based on 
linear control system techniques. Since we are interested in 
tracking a desired trajectory, it is convenient to replace the 
state vector z ( t )  of (12) and (17) with a new state vector 
y ( t )  as follows: 

y ( t )  = [ / - e ) d t  ed 

controller is robust in the sense that in the presence of 
bounded uncertainties in the model, the tracking error enve- 
lope is bounded. Furthermore, as will be shown below, the 
size of the tracking error envelope can be altered through the 
proper choice of control parameters. The overall controller 
shall be used for position tracking control of the direct-drive 
arm actuated by a BLDCM. The overall control is specified 

where e,, W d ,  and (Yd are the time histories of position, 
velocity, and acceleration, respectively, of the desired trajec- 
tory. 

Assuming that the system nonlinearities have been com- 
pensated for, in order to achieve the desirable dynamic 
response for the overall system, we will use a pole-placement 
controller in conjunction with the linearized system. The 
following state feedback law is considered 

where 
v ( t )  = m ( t )  (30) 

The elements of H are appropriately chosen based on a 
desirable reference model. We specify the characteristic 
equation of the reference model as 

F(A) = ( A +  h 5 ) ( 2  + 25'0, + w:)(A2 + 25'02 + U ; ) .  

(32) 
Once the feedback control law for the linear system has been 
specified, the nonlinear control can be computed by 

u p )  = P - ' ( x ) ( H y ( t )  - +)}. (33) 
Clearly, in order for the feedback linearizing controller to 

exist, the matrix p( x )  must be invertible. The invertibility of 
p ( x )  is guaranteed if (16), or equivalently (25), is satisfied. 
As will be shown in the simulation results of Section V, the 
proposed control law of this section behaves well even if the 
system is subject to significant payload uncertainties and 
modeling errors, provided that accurate measurements of 

- e  id]' 

to be 
u ( t )  = u , ( t )  + A u ( t )  (34) 

where u,( t )  corresponds to the control law of Section III, 
and Au(t)  represents the correction term that will make the 
system robust. In the absence of uncertainties, the control 
u,(t)  will provide good dynamic response. Au(t) ,  which is a 
saturating function, will guarantee robustness in the presence 
of uncertainties. 

Assuming that there are uncertainties in the mathematical 
model of the system, to distinguish between the actual system 
and the system model in our previous derivations, the system 
model is represented by f *( x )  and G*( x ) ,  and the following 
are defined 

A f = f - f *  (354 

( 3 W  AG = G - G*. 

The derivation of the robust controller for the BLDCM 
system will be proceeded following the framework provided 
in [3], [4], and [12]. One of the basic assumptions needed is 
what are usually known as the matching conditions, which 
implies that the dynamics of the system are affected by the 
control input in the same manner that the uncertainties are 
affected. To enforce this assumption, we introduce A f * and 
AG*, which satisfy the following conditions 

aT AG* AG* 
- A G =  ax B A G * f l = B [  AG? AGZ '16. (36b) 
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Through the application of the transformation T ( x ) ,  condi- 
tions (36a) and (36b) become 

( A  - A * ) T ( x )  = AA T ( x )  = B [ A f *  - AG*a] (37a) 
B - B* = AB = BAG*. 

By imposing the matching conditions (37a)-(37b), two things 
have been achieved. First, the system uncertainties have now 
been imbedded in A f * and AG*, and second, it is shown 
that the uncertainties are affected in the same way as the input 
to the system is affected by matrix B.  Applying conditions 
(37a) and (37b) to the system under consideration, we get 

(37b) 

- -  ' A y  - B(AG*pu,, + A f * )  
dt  

Having assumed bounded uncertainties, we can define 4 such 
that 

6 2 II AG*Pu, + A f  * I I  (39) 
to provide a measure for the bound on uncertainties. Assum- 
ing that accurate measurements for y , ,  y , ,  and y 3  in (29) 
are available (a realistic assumption), we can obtain A f * and 
AG* as follows: 

A f;" = - ( k ,  + k,x , )  A f 4  - k,x4 A f ,  (40a) 

Af? = Afs (40b) 

AGT = -69, (404 

(404 

AGf = 0 (404 

AGZ = 69, (409 

AG2* = k,x,(69,  - 69 , )  

where 6q, = Aql  /ql and 69, = Aq2 14,. 
At this point, we have developed a set of explicit formulae 

for the bounds imposed on the modeling errors of our 
system, which can be estimated in quantitative terms. For 
example, 69 ,  and 6q2 express bounds for the percentage 
errors in inductance values. The correction term Au in the 
control law, which should provide robustness, is defined in 
terms of the uncertainty bound 6 and a saturating function as 
follows: 

= - c b P - ' r l ( r )  (41) 
where 

Furthermore 

where P is the matrix whose columns are the eigenvectors of 
the matrix ( A  + BH),  and a is a parameter that can be 
chosen to alter the bound on the tracking error. As will be 
shown in Section V, the controller presented above will 
provide bounded tracking errors in the presence of uncertain- 
ties. 

V. SIMULATION RESULTS 
In this section, the proposed control schemes of Sections 

III and IV are used to control a one-degree-of-freedom robot 
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Fig. 6. Time histories of position error along the cubic trajectory using 

accurate acceleration measurements in the presence of payload uncertain- 
ties. 

arm that is actuated by the BLDCM whose model was 
presented in Section II-B. The full dynamics of a BLDCM, 
including magnetic saturation and reluctance variation ef- 
fects, are accounted for. The task, defined in terms of a cubic 
position trajectory (Fig. 5) ,  is designed such that the BLDCM 
operates well into the magnetic saturation region. The pay- 
load is to travel along this trajectory, moving from the 
horizontal plane, i.e., 8 = 0, to the vertical and upright 
position, i.e., 0 = 'K /2 radians, in 1 s. The linear controller 
gains, i.e. h , ; . . ,  h,  in (31), are chosen such that the 
reference model (32) has two pairs of poles with natural 
frequencies w, = w2 = 6.4 Hz and damping ratios {, = 5, 
= 1. The controller gain h, corresponding to the current 
stabilizing control is set at lo3. For the first set of simulation 
tests, we will start with the assumption that accurate mea- 
surements of states, including acceleration measurements, are 
available. However, it is expected that there will exist pay- 
load and modeling uncertainties, which the controller has to 
overcome. For example, Fig. 6 shows the time history of 
position error when the payload is to travel along the refer- 
ence trajectory, and when payload inertia has been either 
underestimated or overestimated. 
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Fig. 7. Time histories of position error along the cubic trajectory using 
estimated acceleration measurements: (a) - 40% error in inertia an + 30% 
error in motor resistance; (b) +40% error in inertia and -30% error in 
motor resistance. 

In a typical BLDCM system, direct acceleration measure- 
ments are seldom available. Consequently, for practical pur- 
poses, one must either eliminate the need for such measure- 
ments or use estimated feedback information [5 ] .  The need 
for acceleration measurements may be eliminated if the con- 
trol commands are supplied from a current source rather than 
a voltage source [5 ] .  Alternatively, there are different schemes 
with which the acceleration information can be estimated. 
One way is to use the computed derivative of the velocity 
feedback in conjunction with the appropriate filtering tech- 
niques to eliminate the high-frequency noise. Another method, 
the method adopted here, is to predict the acceleration infor- 
mation based on the reference model in hand, i.e., use 
(1 3a)- (1 3d) and the modeled parameter values to estimate 
acceleration. Fig. 7 illustrates the performance of the system 
subject to uncertainties in the payload and the motor model 
when the acceleration information has been estimated based 
on the approximate system model. Obviously, the perfor- 
mance of the control law has deteriorated since inaccurate 
acceleration measurements have been used. 

To alleviate the problem associated with inexact accelera- 
tion measurements, the robust control term, which was de- 
rived in Section N, is appended to the nominal control law 
used in the simulations above. Fig. 8 depicts the performance 
of the robust controller when A f, = A f5 = 6q, = 
6q, = 0.35, and a = 10". It is evident from the figure that 
the tracking error profile has been improved, and the error 
envelope has been significantly reduced. It is interesting to 
study the effects of different control parameters on the perfor- 
mance of the controller. We will first look at the effect of a. 
Fig. 9 shows the tracking error for two different values of a, 
whereas other parameters remain the same as those used in 
Fig. 8. As expected, by increasing the value of a, the error 
envelope is made smaller. It is also important to study the 
effect of the size of the error bound imposed on the system, 
i.e., size of 4. For example, Fig. 10 shows the time histories 
of position error along the reference trajectory when 6q, and 
6q, have been enlarged from 0.35 to 0.75. It is apparent 
from the figure that by imposing excessive error bounds, 
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controllers using estimated acceleration measurements, - 40% error in 
payload inertia, and +30% error in motor resistance. The robust control 
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Fig. 9. Time histories of position error for the robust controller using 

estimated acceleration measurements, -40% error in payload inertia, and 
+30% error in motor resistance: (a) T = 1 ,  6q, = 6q, = 0.35, Af - 
A f 5  = 

- 
(b) T = lo'', 6q, = 6q, = 0.35, Af4 = A f 5  = 

although we are able to reduce the size of the tracking error 
envelope, the error function contains undesirable oscillations. 

VI. CONCLUSIONS 
We have studied a direct-drive robotic arm system directly 

coupled to a BLDCM, which is capable of producing large 
torques for high acceleration and deceleration rates. The 
complete dynamics of the motor and the arm have been 
combined in investigating the tracking control problem asso- 
ciated with the system. To guarantee the high-performance 
operation of the system, the effects of magnetic saturation 
and reluctance variations have been accounted for in the 
BLDCM mathematical model. Some experimental data were 
presented to demonstrate the validity of the model. A nonlin- 
ear control law was derived and was shown to behave well 
even when there were significant modeling and payload iner- 
tia uncertainties. The behavior of this control law, however, 
was shown to deteriorate when accurate measurements were 
not available. To alleviate this problem, a correction term 
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Afs = lo-*; (b) ?F = lo’’, 6q ,  = 6q, = 0.75, A f4 = A fs = lo-’. 

Fig. 10. 

was derived and appended to the nonlinear controller to 
improve the robustness of the system. It was demonstrated 
that by appropriately choosing maximum bounds on the 
uncertainties in the system, favorable results are accom- 
plished. Further investigation through computer simulations 
indicated that it is possible to create undesirable oscillations 
in the system if the controller law is not properly defined. 
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