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Abstract 

A variant of Hopfield neural network called 
modified Hopfield network is formulated in this 
study. This class of networks consists of par- 
allel recurrent networks which have variable di- 
mensions that can be changed to fit the problem 
under consideration. It has a structure to imple- 
ment an inverse transformation that is essential 
for embedding optimal control gain sequences. 
Equilibrium solutions of this network are dis- 
cussed. The robustness of this network and the 
classical Hopfield network are carried out in the 
frequency domain using describing functions. 

1 INTRODUCTION 
A neural network is a parallel, distributed informa- 
tion processing structure consisting of processing ele- 
ments 111. Artificial neural networks (ANN) represent an 
emerging technology rooted in many disciplines. Con- 
trol theory is not only gaining benefits from ANN, but 
also contributing to the development of ANN [2]. 

In this paper, a variation of the Hopfield network 
(HN) called Modified Hopfield neural network (MHNN) 
is proposed [3]. Based on the equilibrium analysis, 
these networks can perform an inverse transformation 
on matrices and other auxiliary mathematical opera- 
tions. This feature allows the networks to produce op- 
timal control gain sequences. Unlike any other existing 
ANN [4, 5, 61, inputs to the networks are the parame- 
ters of system dynamics and control matrices, and the 
outputs are gain matrices [7, 81. 

In control field, stability and robustness are two ba- 
sic concerns for any controller design. The stability and 
robust property of MHNN will be investigated in this 
study. Due to the nonlinearity of the activation function 
in ANN, proper definition and measurement of robust- 
ness are needed. A linear equivalence of the nonlinear 
activation function will be obtained using the describing 
function technique and the Bode diagram of the whole 

2 MHNN AND ITS STABILITY 
The Modified Hopfield Neural Network (MHNN) is a 
variant of the classical HN. Its dynamical model is shown 
in Fig. 1. 

Since it is derived from HN, MHNN keeps the ben- 
eficial characteristic of the former; it is stable in the 
Lyapunov's sense. 

2.1 Stability 
The stability of MHNN will be demonstrated by ana- 
lyzing its dynamics and using the energy function. The 
network has two clusters of neurons. The right part of 
the network is characterized by outputs q51,#2, . . . , & 
which are transformed by nonlinear functions f from 
their states ui, u2, . .  . ,urn; m is the number of outputs 
of neurons in the right part. 

#j = f j (u j )  (1) 

with bj the input current and w, the output of the left 
cluster of amplifiers. The conductance wb connects the 
output of the j t h  neuron in the left part to the input 
of the ith neuron in the right part, which is indicated 
in Fig. 1 as U. The superscript T indicates the location 
of weight wij in the right part of the network; n is the 
number of outputs of neurons in the left part. 

Now, by Kirchhoff 'S law 

~ . ( t )  d Z j ( t )  
m 

- C w i i 4 i ( t )  - a .  - L + q -  dt j = 1, ... ,n. 
(2) ' - Rj 

i=l 

Now define the following function as an energy func- 
tion E for MHNN as in [SI 

system is drawn based on a sigmoidal input. The robust- 
ness properties of the recurrent ANN in the frequency 
domain can be established based on the Bode diagram. 

The time derivative of the energy function is 
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2 
In terms of the Ricatti variable s k ,  now (4) 

dE - = - 2 cjg-1 (.j) (2) . 
dt j = 1  

s k  = A:Sk+1 (Ak - BkKk) + Q k  (10) 
after some algabra. By the same arguement in [ 6 ] ,  the 
model is stable in accordance with Lyapunov’s theorem. 

This means that the evolution of dynamic system in 
state space always seeks the minima of the energy sur- 
face E. 

2.2 Solution 

In the application where the control interval is finite, 
SN will be given. Alternatively use Eqns (9) and (lo), 
we will get a series of Kk. 

3.2 
The crucial operation here is the inverse to get the 

Network Solut ion/Implement at ion 

In order to obtain the analytic estimation for the con- 
verged value of the networks, it is assumed that the net- 
work signals are small, and that they work in the linear 
region of the amplifiers. These assumptions are reason- 
able because ANN signals are usually normalized.For 
those big signals, log sigmoid and tangent sigmoid func- 
tions will limit their outputs magnitude, and their effects 
are localized and will not be propagated. Assuming tan- 
gent sigmoid activation functions have equal amplifer 
gains, we get 

dX 
dt 

Lkf(WRkgX - B )  ( 5 )  C- = - A - G X - W  

= -(G + kfkgWLWR)X + k f W L B  - A 

When the networks reach equilibrium, dX/dt = 0, and 

V = ( W L W R +  L)-’ kf ( W L B -  $) ( 6 )  

3 OPTIMAL CONTROL APPLICATION 

3.1 Problem Formulation 
Let the plant to be 

xk+l = Akxk + Bkuk (7) 

with X k  E R” and U k  E R”. The associated perfor- 
mance index is the quadratic function 

defined over the time interval of interest [i,N]. We 
assume that Qk, Rk and SN are symmetric positive 
semidefinite matrices, and in addition that lRkl # 0 for 
all k. 

The objective is to find the control sequence 
U * ,  u ~ + I ,  . . . , U N - 1  to minimize Ji. 

The solutions [3] are given by 

tLk = -KkXk, k < N 

Kalman gain. The MHNN contain both invariant and 
variable parameters. Invariant parameters are fixed in 
the neuron-computing model, while variable parameters 
can be modified. By comparing Eqns. (9) and (10) with 
the stable output of the network Eqn. (6 ) ,  the network 
will produce the Kalman sequence if set W L  = BTSk+l, 
W R  = Bk, & = Rk, and B = Ak, A = 0. 

4 
Since the potential of ANN come from their nonlinear 
transformation [7], how to deal with and analyze the 
nonlinearity in ANN becomes an important part of this 
study. In general, two philosophical approaches can be 
used in dealing with the nonlinearities in the networks. 
One is the “macro” analysis, which treats ANN collec- 
tively as black boxes and pays attention only to their 
input-output reactions regardless of how complex their 
inner structures are. The other one is the “micro” anal- 
ysis, which studies mathematically or biologically the 
potential of every neuron so that the whole cluster of 
neurons will have a summation effect of every contribut- 
ing element. In this study, a mixed approach is taken. 

Since the whole mechanism of ANN derives from the 
functions of its basic unit - a neuron, the study of 
neurons will contribute to the research of the whole net- 
works. After the understanding of the individual ele- 
ment, the overall system is synthesized or analyzed. 

HN & MHNN BLOCK DIAGRAMS 

4.1 Open-loop Hopfield Network 
HN is a feedback system in nature. In order to see the 
effect of the feedback mechanism, the open-loop charac- 
teristic is analyzed first. Referring to Fig. 3(a) with the 
loop broken at H. which is indicated by “w”, one can 
obtain Fig. 2(a). By Kirchhoff’s Law, one can have 

Equation (11) can be regarded as a state equation while 
Eqn. (12) an output equation. The corresponding block 
diagram is shown in Fig. 2(b). The transfer function is 
obtained as 

1 
h(s)  = - . f (s). cs + g 
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In order to maintain the simplicity of description, 
for the time being, it is assumed that f (s) is a constant. 
(Later it can be seen, f ( s )  is equivalent to a varying 
constant.) Then h(s)  can be written as 

(14) 
f h(s)  = - 

cs+g’ 

4.2 Closed-loop Hopfield Network 
Similar to the open-loop analysis, the Kirchhoff’s Law 
produces 

du 
d t  

c- = a + wu - u g  

21 = f ( u ) .  (16) 

The activation function f is again treated as a con- 
stant, and from the block diagram shown in Fig. 3, the 
whole system transfer function h(s)  from U to a can be 
expressed as 

(17) 
1 

h(s)  = . f (SI c s - w f + g  

4.3 Open-loop MHNN 
While HN only has a linear weight in the feedback loop, 
MHNN has an exogenous input b and an extra nonlin- 
ear transformation f2 in the feedback loop. When the 
feedback loop of MHNN is broken, MHNN degenerates 
to the open-loop HN. 

4.4 Closed-loop MHNN 
The analysis of MHNN is interesting. First, there are 
two sets of input-output relations will be available 

(18) 

211 = f I ( U 1 )  (19) 
0 = b + W 2 ( U l  -u2)  (20) 

212 = f 2  (4. (21) 

d U l  

d t  
c- = U + W l U : !  -u1g 

Though this is a scalar system, it can have two in- 
puts and two outputs. As done with HN, it is assumed 
f1 and f 2  as constants weight. 

5 EQUIVALENCE OF THE ACTIVA- 
TION FUNCTION 

Based on the information contained in Fig. 3(b) and 
4(b), the following general nonlinear control block dia- 
gram as in Fig. 5 can be abstracted. In the figure, L1, 
LZ and L3 are linear blocks and N is a nonlinear element 
which can represent an activation function in the ANN 
context. HN block digram falls into this category. 

5.1 Linear Estimation of Nonlinearity 
In this subsection, a “macro’’ approach is taken to ap- 
proximate the given nonlinear element N by a linear 
time-invariant element L in the input-output sense. 

The symbol Lr is used to  indicate the output of sys- 
tem L when it is excited by input r [9]. A measure of 
how well the linear system L approximates the nonlinear 
system N is provided by the error criterion 

i rT 
E ( L )  = lim - [ N r ( t )  - Lr(t)]’dt (23) 

T+oo /o 

assuming the indicated limit exists. Thus the objective 
is to choose the linear system L in such a way that the 
error criterion E(L)  is minimized. The function L min- 
imizes the error criterion E of (23), if and only if, their 
cross-correlation functions are equal, i.e. 

Consequently, the network nonlinearity can be re- 
placed with a linear gain to produce similar responses 
of the nonlinearity and its approximation, in some sense, 
to the same sinusoidal input. In this vein it is observed 
that, if a nonlinearity y(r ,+)  is excited by a sinusoidal 
input ($ = ut), T = A sin $, then the output can be ex- 
pressed by a Fourier series and the corresponding non- 
linear transfer function, denoted by N(A,u), is 

5.2 Equivalence of Neural Hard-limit 
Nonlinearity 

In the frequency domain, since only the input-output re- 
lations count, a replacement of nonlinear element with 
a linear element will not affect the rest of the system 
so that the overall system properties are preserved. In 
the following, it will be shown how this equivalence can 
be found for a typical ANN nonlinearity. A hard-limit 
describing function is selected for this purpose [9]. Let 

mx, 0 < $ <$I 

ms, $1 < $ 5  - 
%- (26) { 2 

f ( X I  = 

L is found through equating q5r,yr ( T )  and dr,y,, ( T ) .  

Since the characteristics of ANN nonlinearities are 
single-valued, memory-less, static and odd, using sinu- 
soidal input in Eqn. (25), one can get 

N ( A , u )  = N ( A )  = - y(Asin$)sin$d$. (27) %-I 6”’” 
A < 6  - - m  
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As can be seen, the transfer function of a nonlinear 
element is also a function of the magnitude of the refer- 
ence input. When the input signal is small, the nonlinear 
element acts like a linear element; but if the input sig- 
nal is large, the gain of the nonlinear element decreases 
almost in proportion to the magnitude of input. 

6 BODE DIAGRAMS OF NETWORKS 
The objective of this section is to show how the theory 
in the last section can be applied to the analysis of a 
control loop with a nonlinear element and to reach con- 
clusions about the robustness of recurrent ANN based 
on the stability margin concepts. 

6.1 Frequency Response of Non-limit- 
cycling Nonlinear Systems 

As shown in Eqn. (27), N ( A ,  w )  is a function of both A 
and w. Referring to Fig. 5, let r ( t )  represent the simple 
harmonic excitation with a magnitude U If one assumes 
z( t )  to be sinusoid of amplitude A and frequency w ,  the 
transfer function from c ( t )  to r ( t )  becomes 

C L1 ( j w ) N ( A ,  W ) L 2 ( j W )  

1 + Ll(jw)N(A,w)L2(jw)L3(jw) (28) 
,(jw,A) = 

and consider A and w as independent variables. By 
inspection, 181 should be equal to 8 .  So, this 
equation will yield the solution to A correspond- 
ing to some fixed w. Let w vary and the desired 
A’s will be obtained. 
will yield a frequency response. 

6.2 Bode Diagram of HN 
Knowing the property of an individual element in the 
control loop, the system property can be obtained by 
putting them together. The block diagram for HN has 
L I ( s )  = &, L2(s)  = 1, L3(s) = w ,  and N ( A , w )  = 
N ( A ) ,  is real. One can suppose that U = 1 for the 
worst situation because most of the signals in ANN are 
normalized. The other parameters are set at w = 1, 
g = 10, c = 1, m = 1, 6 = 1, for illustration. 

Substituting the A’s into 

By simple algebra, one can obtain 

Therefore, the ratio of the output to the input is 

(29) 

The above equation can be solved to  obtain A and 
be represented in a Bode diagrams as in Fig. 6. 

From the Bode of HN, it is seen that HN is robust 
and has an infinite stability margin. Though HN con- 
tains a nonlinearity, it is beneficial. The nonlinearity 
delivers a smaller gain for the larger signal and a larger 
gain for the smaller signal so that the whole system does 
not become unstable. The maximum gain of nonlinear- 
ity is bounded and occurs around zero. For ANN non- 
linearity, the tangent of the activation function around 
zero is very critical since the maximum gain of the sys- 
tem is near zero. 

7 CONCLUSIONS 
A new mutually recurrent ANN has been formulated. 
We have presented a frequency domain method to ex- 
amine the ANN nonlinearity. This “micro” approach 
presented a fundamental concept about the functional- 
ity of nonlinear activation function in ANN. Form the 
approximate analytical results in this section, it is ob- 
served that the nonlinearity in an ANN is nothing but a 
“varying constant’’ changing with the magnitude of its 
input signal. The nature of this change is beneficial and 
favors the stability of the system. 
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Figure 1: Modified Hopfield Neural Network 
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Figure 3: Closed-loop Hopfield Network and 
Its Block Diagram 
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Figure 4: Closed-loop MHNN and Its Block 
Diagram 

Figure 5: General Nonlinear Control Blocks 

Figure 6: Nonlinear System Bode Diagram 
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