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[1] Geochemical data from closely spaced vertical
intervals in a hydrocarbon-impacted aquifer were used to
assess the relationship between bulk conductivity and zones
of enhanced microbial activity. The bulk conductivity was
measured using in situ vertical resistivity probes. Microbial
activity was verified using terminal electron acceptors
(nitrate, sulfate, iron, and manganese), dissolved inorganic
carbon (DIC), and major ion chemistry. Peaks in bulk
conductivity in the aquifer overlapped with zones where
nitrates and sulfates were depleted, total petroleum
hydrocarbon, iron, manganese, dissolved ions, and DIC
were elevated, suggesting a link between higher electrical
conductivity and zones of enhanced microbial activity
stimulated by the presence of hydrocarbon. Thus the
subsurface expression of microbial activity is apparently
recorded in the bulk conductivity measurements. Our results
argue for combining geophysics with biogeochemistry
studies to delineate subsurface zones of enhanced
microbial activity. INDEX TERMS: 0915 Exploration

Geophysics: Downhole methods; 0925 Exploration Geophysics:

Magnetic and electrical methods; 1831 Hydrology: Groundwater

quality; 5109 Physical Properties of Rocks: Magnetic and

electrical properties. Citation: Atekwana, E. A., E. Atekwana,

F. D. Legall, and R. V. Krishnamurthy (2004), Field evidence

for geophysical detection of subsurface zones of enhanced

microbial activity, Geophys. Res. Lett., 31, L23603, doi:10.1029/

2004GL021576.

1. Introduction

[2] Microorganisms are involved in a wide variety of
geologic processes and play an important role in altering the
chemical and physical properties of their environments
[Bennett et al., 1996; Chapelle and Bradley, 1997], and
may have significant ramification for near surface geophys-
ical investigations conducted at depths where microbial
communities are abundant and biological processes are
most active. There is interest in investigating biological
interactions with geologic media and the accompanying
changes in geophysical properties [e.g., Meju, 2000; Naudet
et al., 2003; Werkema et al., 2003; Atekwana et al., 2004a,
2004b]. Possible links between geophysics and microbial
processes come from recent laboratory experiments. Abdel
Aal et al. [2004] showed in a laboratory column contami-
nated with diesel and amended with bacteria that temporal

increases in real and imaginary conductivity were concur-
rent with temporal increase in microbial population numbers
and major ions, and decrease in diesel and terminal electron
acceptors (TEAs). In a mesocale experiment designed to
mimic field conditions, Atekwana et al. [2003] show that
dissolved ions in pore waters were higher in diesel contam-
inated columns compared to uncontaminated columns, and
that zones of higher bulk conductivity were concomitant
with zones of higher populations of alkane-degrading
microbes. Ntarlagiannis et al. [2004] show that when
bacteria were stimulated with fluids enriched in lactate
and sulfate in the presence of iron and zinc, intense
microbial growth and activity was accompanied by sulfide
and zinc precipitation and changes in the interfacial prop-
erties (imaginary conductivity). The above cited laboratory
experiments underscore the fact that geomicrobial activity
can be detected by geophysical methodologies.
[3] While previous work by Naudet et al. [2003] has

demonstrated a relationship between self potential and
redox potential, currently, little work exits assessing the
relationship between redox processes and geophysical sig-
natures at field settings. Here, we investigated the relation-
ship between TEAs (nitrate, sulfate, iron, and manganese)
and geophysical properties at a hydrocarbon-contaminated
aquifer. Hydrocarbon-contaminated sites are model labora-
tories to investigate microbial-geophysical relationships
because the excess organic substrate stimulates microbial
activity, hence microbial impact on geophysical properties
may be more readily assessed. We show that higher bulk
conductivity overlapped with discrete zones of TEAs,
suggestive of higher microbial activity. Thus geophysical
methodologies may play an important role in delineating
zones of enhanced microbial activity.

2. Site Description

[4] The study site has been used for multidisciplinary
research since 1998. Atekwana et al. [2000], Cassidy et al.
[2002], Werkema et al. [2003], and Atekwana et al. [2004a,
2004b] provide details on the study site and describe
ongoing geophysical, microbiological, and geochemical
investigations at the site. Continuous hydrocarbon releases
(mostly crude oil, JP4 jet fuel, and diesel) from storage
facilities and pipelines resulted in seepage of petroleum
hydrocarbons into the subsurface, impacting sediments and
groundwater for more than 50 years. Contamination in this
aquifer occurs in the residual, free, and dissolved phases.
The aquifer is glacially derived unconsolidated fine to
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medium grained sands with some gravel overlying a clay
aquitard.

3. Methods

[5] In this study, we investigated locations in the aquifer
where the source of dissolved hydrocarbon contamination in
groundwater is from residual (VRP3/MLP3) and free phase
(VRP5/MLP5) hydrocarbon. We compare the contaminated
locations to a background location (VRP9/MLP9). The
locations investigated are instrumented with vertical resis-
tivity probes (VRPs) for measuring bulk conductivity and
multi-level piezometers (MLP’s) for sampling groundwater.
[6] Werkema [2002] and Atekwana et al. [2004a] provide

details of the VRP installation. Briefly, the VRPs consist of
3.8 cm inner diameter PVC dry wells with 1.3 cm long
stainless steel screws installed at 2.5 cm intervals. The
screw heads on the outside of the dry PVC wells serve as
electrode contact with the geologic formation and the
threaded ends inside the wells enable apparent resistivity
measurements. Vertical resistivity profiles at each location
were generated by incrementing the Wenner array every
5.0 cm with depth providing a resolution of 5 cm.
[7] The MLPs were constructed of 6.4 mm PVC tubing

fitted with a 15 cm screen, and were installed approximately
30 cm apart from the base of the aquifer into the vadose
zone using a Geoprobe1 drill rig. Groundwater from each
MLP was pumped to the surface using a peristaltic pump
and passed through a flow cell into which a HydroLab

TM

down hole Minisonde was immersed. Water temperature,
pH, and specific conductance were monitored. After stabi-
lization the readings were recorded and water samples were
collected for chemical analyses. Water samples analyzed
for total petroleum hydrocarbons (benzene+toluene+ethyl
benzene+xylenes) were collected without headspace in pre-
acidified 40 ml glass vials fitted with teflon-lined screw
caps, cooled to 4�C on ice, and transported to a commercial
laboratory for analysis using EPA Method 2020. Water for
major anions and cations analyses were filtered in the field
using a 0.45 mm pore size in-line filters (Gelman Sciences,
Inc.) prior to collection. Water was collected in 250 ml

polyethylene bottles (pre-acidified for cations), cooled to
4�C on ice, and transported to the laboratory. Nitrate,
sulfate, calcium, and magnesium were analyzed by ion
chromatography. Total iron (Fe(II)) and manganese (Mn(II))
were measured by Inductively Coupled Plasma-Atomic
Emission Spectrometer. Water for dissolved inorganic car-
bon (DIC) determination was collected and analyzed using
the technique described by Atekwana and Krishnamurthy
[1998].

4. Results and Discussions

4.1. Bulk Conductivity Distribution in Contaminated
and Uncontaminated Locations

[8] In situ resistivity measurements are presented as
conductivity (the inverse of resistivity) to allow for direct
comparison with geochemical data. The bulk conductivity
values presented in Table 1 are averaged values measured
over an interval of 15 cm corresponding to that sampled for
groundwater at each MLP, while the bulk conductivity
plotted on Figure 1 are the actual values measured at 5 cm
resolution. The bulk conductivity was generally greater
(10–49 mS/m) at the contaminated locations at VRP3 and
VRP5 compared to background values of 4–18 mS/m at
VRP9 (Figure 1). Within the contaminated aquifer, peak
conductivity values occur about 50 cm below the water
table, within a zone 50–100 cm thick (area enclosed in
dashed lines; Figure 1). The bulk conductivity is controlled
by variations in lithology (grain size), mineralogy of the
aquifer, percent water saturation, and the electrolytic prop-
erties of the pore fluids. The grain size data (Figure 1)
shows vertical variation in grain size. However, the zones of
enhanced bulk conductivity for contaminated locations are
not entirely related to lithologic variations, especially in-
crease in silt+clay. The positive conductivity bulge at VRP3
begins (�225.3 m) before silt+clay content in the sediments
increase, and does not remain constant despite nearly
constant values for the silt+clay with depth. Also, at
VRP5, the highest bulk conductivity values occur at depths
(�224.5 m) with higher sand content compared to lower
depths with higher silt + clay (Figure 1).

Table 1. Multi Level Piezometer (MLP) Location, Bulk Conductivity, Total Petroleum Hydrocarbon, Temperature, Specific Conductance,

NO3
�, SO4

2�, Fe(II) and Mn(II), DIC, Ca2+, and Mg2+ From Hydrocarbon Contaminated and Uncontaminated Groundwatera

Well ID Elevation (m)

Bulk
Conductivity

(mS/M)

Total Petroleum
Hydrocarbons

(mg/l)
Temperature

(�C) pH

Specific
Conductance
(mS/cm)

NO3
�

(mg/l)
SO4

2�

(mg/l)
Fe

(mg/l)
Mn
(mg/l)

DIC
(mg C/l)

Ca2+

(mg/l)
Mg2+

(mg/l)

MLP-9 225.00 3.6 ND 13.5 7.1 470 5.6 18.9 20 5 29.9 62.2 15.3
224.55 18.4 ND 12.4 7.3 772 5.8 40.5 18 5 71.2 106.9 29.2
224.07 16.1 ND 11.7 7.1 852 2.0 44.4 18 161 84.7 129.3 39.5
223.78 - ND 13.7 7.0 875 2.0 45.4 17 42 87.3 131.6 41.2

MLP-3 225.58 10.4 0.30 16.4 6.3 256 0.1 23.5 1571 212 30.1 7.4 1.7
225.13 23.6 12.22 15.3 6.4 948 0.8 46.8 14539 1466 170.6 189.9 19.5
224.68 25.4 14.78 14.4 6.5 1064 0.1 5.4 11904 1031 206.3 258.1 32.6
224.23 21.3 0.78 14.2 6.7 1030 ND ND 4222 333 153.3 191.0 37.5
223.77 21.2 0.14 13.1 6.8 920 ND 36.8 3382 226 107.7 154.5 35.3
223.30 22.2 0.01 13.7 6.5 910 21.0 83.3 164 79 86.7 149.5 48.1

MLP-5 224.96 15.2 19.30 19.1 6.1 185 33.1 ND 4077 328 45.0 20.2 2.4
224.51 23.2 481.00 - 6.4 318 0.1 1.6 9639 601 89.9 103.9 7.1
224.06 18.2 3.61 15.9 6.4 931 1.1 ND 8539 145 165.4 189.7 23.2
223.61 17.7 0.92 17.1 6.7 891 0.9 ND 7298 90 126.2 153.1 32.5
223.13 - 0.76 17.0 7.1 885 ND 2.0 7491 97 130.0 151.5 32.4

aBulk conductivity data is from the saturated zone. - = No data, ND = below detection limits.
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[9] The bulk conductivity values reported are from the
saturated zone, thus saturation is not expected to be an
important factor. The mineralogy of the aquifer is predom-
inantly quartz with minor carbonates, gypsum, and sodium
and calcium plagioclase. Although the true vertical distri-
bution of the mineralogy at sub-cm scale is not known, it is
unlikely that this controls the bulk conductivity as evidence
for hydrocarbon degradation and enhanced mineral weath-
ering will later show. We believe that the vertical conduc-
tivity distribution is due to higher microbial activity
stimulated by the presence of hydrocarbon contamination
and the accompanying biogeochemical changes resulting
from microbial degradation.

4.2. Relationship Between Bulk Conductivity and
Enhanced Microbial Activity

4.2.1. Microbial Activity, Terminal Electron
Acceptors (TEAs) and CO2 Production
[10] Enhanced microbial activity in the subsurface

requires a carbon source and TEAs that are utilized by
microbes to mineralize carbon. Microbes capable of degrad-
ing hydrocarbon have been isolated from sediments and
groundwater in the study aquifer [Cassidy et al., 2002;
Atekwana et al., 2004a]. For carbon source and distribution
of TEAs, our results show that maximum concentrations of
total petroleum hydrocarbons (TPH) at VRP3 and VRP5
often occurred at depth intervals coincident with peaks in
bulk conductivity (Figure 1). Depth intervals with higher
TPH show depletion of NO3

� (Table 1) and SO4
2� (e.g.,

MLP3; Figure 1). At MLP5 both NO3
� and SO4

2 were
depleted from the aquifer. Zones of lower NO3

� and SO4
2�

result from their utilization during microbial mineralization
of the hydrocarbon [e.g., Vroblesky and Chapelle, 1994].
TPH at the base of the aquifer was low and may have
limited consumption of NO3

� and SO4
2�, hence the higher

values at the base of the aquifer at MLP3. Since SO4
2�

concentrations observed at the base of the aquifer at MLP3
were higher than at the background location (MLP9), this
may suggest additional SO4

2� input from the weathering of
gypsum.
[11] Fe(II) (Figure 1) and Mn(II) (Table 1) are elevated

in contaminated locations compared to the background

location at MLP9 and indicates that both are being released
to groundwater through the reduction of Fe(III) and
Mn(IV) coating mineral grains in the aquifer [e.g., Jensen
et al., 1998]. The zones with higher Fe(II) and Mn(II) are
coincident with zones of elevated TPH, depleted NO3

� and
SO4

2�, and higher bulk conductivity (Figure 1). This
suggests to us that the bulk conductivity magnitude in
contaminated locations is higher due to effects of the redox
processes accompanying microbial carbon mineralization.
[12] During microbial mineralization of hydrocarbon the

CO2 produced increases the DIC concentration in ground-
water [e.g., Aggarwal and Hinchee, 1991]. DIC was higher
in the contaminated groundwater (30–206 mg C/l) com-
pared to background (30–87 mg C/l) and zones with peak
concentrations of DIC are the same zones with peak con-
centrations of TPH and higher bulk conductivity (Figure 1).
The increased DIC in the contaminated locations is reflected
in pH values that range between 7.1–6.1 compared to 7.3–
7.0 for uncontaminated groundwater (Table 1). Thus the
presence of an organic source, consumption of NO3

� and
SO4

2�, reduction of Fe(III) and Mn (IV), and the production
of CO2 in the contaminated aquifer suggest higher microbial
activity in zones of hydrocarbon contamination.
4.2.2. Evidence for Microbe-Mineral//Rock Interaction
Via Mineral Weathering
[13] Higher microbial activity is related to bulk conduc-

tivity of sediments through enhanced mineral weathering
[Sauck, 2000]. Bacterial mineralization of hydrocarbons
augments CO2 in the aquifer and produces organic acids
that increase mineral weathering [e.g., Hiebert and Bennett,
1992]. Based on the aquifer mineralogy, we expect enrich-
ment of Si, Ca, Mg, and Na resulting from enhanced
weathering by aggressive CO2-rich and organic acids-
rich groundwater at contaminated locations [Stumm and
Morgan, 1995]. Ionic ratios provide a reasonable approach
to evaluate enhanced mineral weathering, rather than the
total ion concentrations because water-rock interactions that
govern uptake or release of ions in aquifers are not strictly
controlled by mineral solubility [Stumm and Morgan,
1995]. The Ca/Mg ratio in the groundwater in the contam-
inated portions of the aquifer ranged between 3.1–14.6 com-
pared to uncontaminated portions with values of 3.2–4.1

Figure 1. Vertical profiles of bulk conductivity (sb) measured at 5 cm intervals, % fraction of silt + clay, sand, and gravel,
total petroleum hydrocarbon (TPH), SO4

2�, Fe(II), DIC, and Ca/Mg ratios in groundwater for uncontaminated location
(VRP9/MLP9) and contaminated locations (VRP3/MLP3; VRP5/MLP5).
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(Figure 1). The higher Ca/Mg ratios in the contaminated
groundwater are indicative of higher production of Ca
relative to background, and consistent with weathering of
feldspars. Depth intervals of higher Ca/Mg ratios are
coincident with zones of elevated TPH, Fe(II), Mn(II),
and higher bulk conductivity, the same intervals where
depletion of NO3

� and SO4
2� was occurring. Hence, com-

pared to uncontaminated locations, groundwater in con-
taminated portions of the aquifer show evidence of
enhanced mineral weathering related to microbial hydro-
carbon mineralization.

4.3. Microbe Induced Mineral Weathering and
Implications for Bulk Conductivity

[14] The overall picture of microbial processes presented
in this study is similar to results from other hydrocarbon
contaminated aquifers [e.g., Cozzarelli et al., 2001; Smith et
al., 1991]. Observations of the vertical distribution of bulk
conductivity, TPH, NO3

�, SO4
2�, Fe(II), Mn(II), and the

production of CO2 (DIC) are significant because together
they provide evidence for the various redox processes
operative in the contaminated aquifer and suggest that redox
zones are reflected in the bulk conductivity signature.
[15] The ionic content of groundwater is related to the

fluid conductivity because most dissolved solutes in natural
waters are ionic and conduct electricity [Stumm and
Morgan, 1995]. The specific conductance of groundwater
in the uncontaminated aquifer at MLP9 increases continu-
ously with depth. In contrast, the groundwater specific
conductance in contaminated locations shows peak values
in the same zones as the bulk conductivity (Table 1). Given
that groundwater specific conductance is a bulk measure-
ment of the fluid property, its enhancement due to microbial
induced mineral weathering can serve as an indirect link
between the bulk electrical properties of the sediment and
microbial activity.
[16] From the results of this study, we suggest that

microbial activity alters the physical environment directly
as seen in higher groundwater temperatures in the contam-
inated locations relative to uncontaminated locations
(Table 1). Indirectly, microbial activity enhances mineral
weathering which increases the ionic content of groundwa-
ter. Thus, the bulk conductivity is an intrinsic property of
the sediment media and is ideally suited for discerning
changes in bulk water chemistry and physical changes
imparted to the aquifer from microbial processes.

5. Summary and Conclusions

[17] In-situ high resolution bulk conductivity and geo-
chemical data from closely spaced vertical sampling inter-
vals in a hydrocarbon-contaminated aquifer were used to
investigate the relationship between bulk conductivity and
microbial activity. We provide the first field evidence link-
ing geophysical parameters to specific redox processes.
Major negative and positive peaks in geochemical param-
eters (e.g., redox sensitive parameters, DIC, and ionic
ratios) in contaminated locations are coincident with posi-
tive peaks in the vertical profiles of bulk conductivity. No
such relationship between bulk conductivity and geochem-
ical parameters was observed at the uncontaminated
location. Thus bulk conductivity measurements record
an integrated summary of process-driven biogeochemical

changes reflected in the changing pattern of redox zonation.
We conclude that zones of higher bulk conductivity in
contaminated aquifers are indicative of higher microbial
activity stimulated by the presence of excess organic carbon
source and available TEAs. Accordingly, zones of higher
conductivity may be used to guide sediment and water
sampling for microbiological and geochemical investiga-
tions such that microbial processes may be more effectively
studied.
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Consortium, The University of Missouri Research Board, and the American
Chemical Society-Petroleum Research Fund Grant (PRF No. 31594-AC2)
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Werkema as part of his Ph.D. dissertation. We thank two anonymous
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