
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mechanical and Aerospace Engineering Faculty 
Research & Creative Works Mechanical and Aerospace Engineering 

01 Jan 1988 

Characteristics and Optimal Design of Variable Airgap Linear Characteristics and Optimal Design of Variable Airgap Linear 

Force Motors Force Motors 

Ming-Chuan Leu 
Missouri University of Science and Technology, mleu@mst.edu 

E. V. Scorza 

D. L. Bartel 

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork 

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
M. Leu et al., "Characteristics and Optimal Design of Variable Airgap Linear Force Motors," Electric Power 
Applications, Institute of Electrical and Electronics Engineers (IEEE), Jan 1988. 
The definitive version is available at https://doi.org/10.1049/ip-b:19880037 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229154728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1049/ip-b:19880037
mailto:scholarsmine@mst.edu


Characteristics and optimal design of variable 
airgap linear force motors 

M.C. Leu 
E.V. Scorza 
D.L. Bartel 

Indexing terms: Linear motors, Power electronics, Optimisation, Computer application 

Abstract: An analytical model for predicting the 
characteristics of variable airgap linear force 
motors is developed. The model takes into 
account magnetic losses, including the leakage 
and fringing effects, and the reluctance existing at 
the contacts between permanent magnets and 
polepieces. The model is validated by comparing 
its predicted characteristics with the results 
obtained from experiments and a finite element 
program, With the use of the modelled character- 
istics, computer programs based on the method of 
constrained steepest descent with state equations, 
is developed for automating and optimising the 
design of linear force motors. Numerical studies 
are made for both minimisation of weight and 
minimisation of power consumption. 

List of symbols 

A,  
A,  
A ,  
AWG = American wire gauge 
B, 
B, 
B, 
Do 
D, 
F 
f = reluctance loss factor 
f’ 
G, = force gain 
H,, 
H ,  
I = current input 
K ,  = magnetic spring rate 
La 
L, 

L, 
Lo 

= cross-sectional area of constant airgap 
= cross-sectional area of working airgap 
= cross-sectional area of permanent magnet 

= flux density in working airgap 
= flux density in permanent magnet 
= residual flux density of permanent magnet 
= outside diameter of linear force motor 
= diameter of permanent magnet 
= force output from linear force motor 

= loss factor for leakage and fringing 

= coercive force of permanent magnet 
= magnetic intensity of permanent magnet 

= length of constant airgap 
=length of working airgap with armature in 

= length of permanent magnet 
= overall length of linear force motor 

central position 
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= coil section dimension in axial direction 
= coil section dimension in radial direction 
= length of polepiece section between permanent 

= permanent magnet magnetomotive force 
= number of turns of coil windings 
= power consumption 
= reluctance of constant airgap 
= reluctance of working airgap 
= shape ratio (Lo/Do) 
= thickness 
= perimeter of cross-section of working airgap 
= design variables 
= weight 
= armature position (X = 0 represents the central 

= state variables 
= parameter associated with loss factor 
= permeability of permanent magnet 
= permeability of free space 
= coil resistivity 
= density of polepiece and armature 
= density of permanent magnet 
= density of coil material 
= parameter associated with loss factor 
= magnetic flux 

magnets 

position) 

Introduction 

A variable airgap linear force motor is an electromag- 
netic device which creates a force from an electric input 
current. The current input generates magnetic control 
flux which interacts with the polarising flux generated at 
the working airgaps by the permanent magnets, thus cre- 
ating a force on the armature. The armature is movable 
in the working airgaps. The movement of the armature is 
in contrast to the movement of the coil in other electro- 
magnetic devices such as loudspeakers and vibration 
shakers. For this reason, the linear force motor is called a 
moving-iron actuator, instead of a moving-coil actuator 
[l]. The device is used in many applications, including 
latching and servo-actuation. 

With the discovery of rare earth magnetic materials 
such as samarium-cobalt based permanent magnets [2], 
the performance of linear force motors has been greatly 
increased in the recent past. The samarium<obalt 
material can be magnetised to higher flux density levels, 
and it has greater resistance to demagnetisation. The 
availability of this new magnetic material, however, also 
calls for a new design approach in order to maximise per- 
formance improvement without tedious and costly cut- 
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and-try experimentation. This critical need motivated this 
study. 

The study of linear force motor design presented in 
this paper started with modelling the characteristics of 
the device. The design problem was then formulated as a 
mathematical optimisation problem. A computer opti- 
misation program based on the method of steepest 
descent with state equations [3], which is capable of gen- 
erating a set of design parameters that satisfy a specified 
performance index and minimise either weight or power 
consumption, was developed. 

7 

DO 

2 Modeling of motor characteristics 

A schematic diagram of linear force motor is shown in 
Fig. 1. The device has a rotational symmetry about its 
axis of action. There are two cylindrically shaped per- 
manent magnets in contact with the polepieces. The 
movable armature is in the form of a circular ring. The 
polepieces channel the flux generated by the permanent 
magnets from the ends of the magnets to the airgaps. 
There are two types of airgap: one is a fixed airgap which 
has a constant gap length, and the other is a working 
airgap which has a variable gap length. An input current 
to the coil creates a magnetic control flux which interacts 
with the flux generated by the permanent magnets at the 
working airgaps, thus creating a force on the armature. 
Reversing the polarity of the input current reverses the 
direction of the control flux across the working airgap, 
thereby reversing the direction of the force on the arma- 
ture. When the control flux is not equal to zero, the flux 
balance produced by the two permanent magnets is 
upset, and the armature moves in the direction of the net 
flux. 

1 
LO 1 

Fig. 1 Schematic representation of linear force motor 
polepiece permanent magnet 

armature 0 coil windings 

-+ directions of permanent magnent fluxes 
- -+  direction of control flux for an assumed input current polarity ( 0 and 63 ) 

By using an equivalent magnetic circuit technique, an 
analytical model for studying the characteristics of the 
linear force motor was established. The equivalent circuit 
for the device is shown in Fig. 2, which consists of (a) the 
reluctances R ,  and R ,  which are associated with the 
working airgaps, and Ra which is associated with the 
constant airgap; (b) the magnetic sources M ,  and M ,  
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which are associated with the permanent magnets, and 
NZ which is associated with the coil turns and the current 
input; and (c) the ‘effective’ (i.e. with magnetic losses 
taken into consideration) fluxes 41, 4,, and d3 passing 

ii;) 

4- 

or 
+ - 

Fig. 2 Equivalent magnetic circuit for linear force motor 

through the magnetic source fields. The reluctances due 
to the polepieces and the armature were neglected 
because the permeability of the soft-iron material is three 
orders of magnitude larger than the permeability of air 

Applying the equivalent Kirchhoffs voltage law to 
~ 4 ~ 5 1 .  

each of the three magnetic loops in Fig. 2 yields 

( R I  + Ra) -Ra - R ,  

- R ,  (Rl  + R,) 

where the reluctances are 

L, + x 
Po A,  

R ,  = 

L, - x 
Po A, 

R2 = 

La 
PO Aa 

Ra = - 

For the samariumsobalt permanent magnet, the B/H 
relationship in the second quadrant is linear as shown in 
Fig. 3. Thus: 

( 5 )  

The flux densities in the two permanent magnets can be 
expressed as follows : 

- 4; B,, =- 
A m  

(7) 

I E E  PROCEEDINGS, Vol.  135, Pt. B, No.  6 ,  NOVEMBER 1988 



The ‘prime’ symbol is imposed to acknowledge the fact 
that the magnetic flux leaving the permanent magnet 
reduces its magnitude when it reaches the airgap, owing 

BOT 
f 

HC M 

Fig. 3 
magnet 

Second quadrant of BIH plane of samarium-cobalt permanent 

H,, = 7.3232 x 10’ B, = 0.94 

to the existence of leakage and fringing losses [SI. These 
losses can be accounted for by introducing a loss factor 
f ‘, defined as 

4; 4; 
-41 4 2  

f ‘  -- and f ;  =- 

In addition to leakage and fringing effects, the contacts 
between the permanent magnets and the polepieces 
create reluctances at the joints which can be included by 
using a reluctance factor f defined as 

f = -  - -Hm L m  
M (9) 

By substituting eqns. 6-9 into eqn. 5,  the magneto- 
motive forces of the permanent magnets can be expressed 
as 

Substituting the above two equations into eqn. 1 yields 

--R, - R2 

H c m  L m  
f 

Values of the reluctance loss factor f are usually 
between 1.0 and 1.5, depending upon the condition of 
contact between permanent magnets and polepieces; 
values off’, however, vary widely and often cannot be 
determined with a high degree of accuracy [l]. Empirical 
equations have been developed by several researchers [S, 
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6, 71 to estimate the values off’ for magnetic devices of 
various configurations. Nevertheless, those devices have 
geometries significantly different from the one being 
studied, and thus the empirical equations were not 
directly applicable to this study. A technique for estimat- 
ing f ’  is to construct a magnetic field plot by sketching 
the flux distribution and equipotential lines of the entire 
magnetic field [SI. This may be done most effectively by 
incorporating finite element methods. 

The approach utilised in this study for estimating f ’  
was to propose a relationship taking into account the 
lengths and cross-sectional areas of the airgaps plus the 
armature displacement. The relationship is a modifi- 
cation of the formulae presented in Reference 6 and 7 for 
devices with similar geometric features, and is 

f ’ = 1 +  (Lg;gux + L  aU 

where the two parameters a and u can be determined 
from, for example, plotting of flux field or experimental 
measurement. In this study, values of a and a were 
chosen so that the flux densities in the airgaps predicted 
by the analytical model can best match that obtained 
from a finite element program. The comparison will be 
given in the next Section. 

4 2 ,  and 43.  
The flux in the working airgaps can then be calculated as 

Eqn. 12 can be easily solved to obtain 

4,l = 41 - 4 3  

4 9 2  = 4 2  - 4 3  

(14) 

(15) 
The force output can then be computed using the fol- 
lowing equation 

From the forces computed for different armature dis- 
placements and input currents, the magnetic spring rate 
( d F / d X )  and the force gain ( d F / d l )  can be computed. 

3 

The analytical model presented in the previous section 
was verified by comparing its predicted values of motor 
characteristics with the results obtained from a finite 
element program and from experimental measurement. 
Table 1 shows a comparison of the values predicted by 
the model with those obtained from the finite element 
program AOS/MAGNETIC [8]. The actual data have 
been nondimensionalised for ease of comparison. In the 
predicted characteristics, the values of f ,  a and o! were 
determined so as to provide the best match between the 
results of the analytical model and those obtained from 
the finite element program. Despite the simplicity of the 

Comparison of analytical results with FEM and 
experimental results 

Table 1 : Comparison between results of analytical model 
and that of AOS/MAGNETIC program 

L, 
0.83 
0.92 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 

X I  

0 0  
0 0  
0 0  
0.33 0 
0.38 0 
0.42 0 
0.42 1.0 
0.42 -1.0 

AOS/MAGN ET1 C 
4 1  4 7 2  F 

-1.00 1.00 0 
-9.97 0.97 0 
-0.94 0.94 0 
-0.66 1.31 0.21 
-0.63 1.36 0.24 
-0.60 1.43 0.28 

0.20 2.47 1.00 
-1.43 0.27 0.33 

Analytical model 
%l 4 2  

-1.00 1.00 0 
-0.97 0.97 0 
-0.94 0.94 0 
-0.67 1.32 0.21 
-0.64 1.38 0.24 
-0.60 1.43 0.28 

0.28 2.44 0.97 
-1.40 0.31 0.31 
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analytical model, Table 1 shows that an excellent agree- 
ment has been achieved. 

The predicted characteristics were also compared with 
experimental results. Fig. 4 shows the force-current-dis- 
placement relationship of the device for a typical working 

l o o k  50 

current 

-300- 

-0.4 -03 - 0 2  - 0 1  0 01  0 2  03 0 4  

armature displacement, mm 

Fig. 4 Force-current-displacement relationship of linear force motor 

airgap length using the analytical model. From this 
relationship, the magnetic spring rate and the force gain 
were computed. The values of these parameters and the 
predicted flux density were compared with those meas- 
ured experimentally. The comparisons are: 

(a) magnetic spring rate (with zero current input) 

dF/dX (measured) = 236 N/mm 

dF/dX (predicted) = 227 N/mm 

(b) force gain (at central plunger position) 

dF/al (measured) = 289 N/A 

dF/al (predicted) = 268 N/A 

(c) flux density in working airgap (with zero current 

B, (measured) = 0.680 T 

B, (predicted) = 0.655 T 

input and at central plunger position) 

The above comparisons show a good agreement between 
the predicted and the measured characteristics. It should 
be noted that a closer agreement with the measured 
results could have been obtained if values for the loss 
factors in the analytical model had been selected to 
match the measured results, instead of matching the finite 
element results as was done. 

4 Optimal design problem formulation 

An optimal design problem may be formulated as 
follows: choose u to minimise fo(x, u),subject to h(x, u) 
= 0, and 4(x, u) < 0. u is the vector of design variables, x 

is the vector of state variables,fo is the objective function, 
h represents equality constraint functions, and 4 rep- 
resents inequality constraint functions. 

For the device studied, the design and state variables 
were (refer to Fig. 1 )  

u = CLm 9 Dm 9 Lg 9 t3 9 La 9 AWG, L1, L21 

x = CN, L3 7 t , ,  t ,  9 Lo,  0 0 1  
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4.1 Objective functions 
Two objective functions were considered : weight and 
power consumption. The weight of the device is the sum- 
mation of the weights of polepieces, coils, armature, and 
permanent magnets. It can be expressed as 

W = p , ~ { L o D ; / 4  - 2Lqt3(D, + 2La + t3) 

- L1L2(D0 - 2t1 - L2)) + (Pm - Pp)(n/2)LmDi 
+ pc z(D$/4)N(Dm + 2La + 2t3 + L,) (17) 

The power consumption is essentially the rate of heat 
generated due to the coil resistance. It relates to coil 
current and coil resistance simply as P = Z2R, which can 
be expressed in terms of design and state variables as 

P = 4Z2p(2La + 2t3 + D, + L,)N/D$ (18) 

4.2 .Equality constraints 
The equality constraints arise from the relationships 
among the variables which represent the dimensions of 
the device. First, the number of coil turns depends upon 
the coil wire diameter and the space available for the 
coils. This relationship can be expressed as* 

where 

The exponents ci , i = 1 - 6, are empirical constants. 
Second, the capacity of the polepiece in channeling 

magnetic flux is limited by its minimum cross-sectional 
area. To save material, the cross-sectional area of the 
polepiece should be kept constant at critical locations. 
This imposes the following relationships: 

2t3(D, + 2L, + t 3 )  L3  = 
2 0 ,  

Finally, the variables as designated (Fig. 1) must satisfy 
the following geometric relationships: 

(23) 

(24) 

Lo = L ,  + 2t,  

Do = D,  + 2(La + t ,  + L2 + t i )  

4.3 Inequality constraints 
There are two types of inequality constraints : one associ- 
ated with performance requirements and the other associ- 
ated with geometric dimensions. First, the values of 
magnetic spring rate K ,  (= dF/aX), force gain G, (= dF/ 
dl), and shape factor S (=Lo/Do)  should lie within 
desired ranges, i.e. 

* Private communication with Hans Toews of Moog Inc., East Aurora, 
New York. U.S.A. 
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Second, the geometry of the device naturally imposes 
the following constraints: 

Lg Q L ,  (26) 
2Lm + L3 Q L ,  (27) 

Finally, the values of the design variables should not 
exceed specified upper and lower bounds, i.e. 

5 

The method of constrained steepest descent with state 
equations [3] was used as the basis for developing a 
computer program for the optimal design study. Starting 
with an initial estimate of the design, this method deter- 
mines a set of design parameters which optimises an 
objective function and satisfies equality and inequality 
constraints. In this study, the initial estimates for the 
design variables were the parameter values obtained from 
actual device units. 

The optimisation process involves many iterations. In 
each iteration, the optimisation algorithm computes a 
small change in values of the design variables so as to 
reduce the objective function and simultaneously direct 
the solution search toward the feasible region. This com- 
putation involves the checking of violation against 
inequality constraints, and computing the gradients of 
objective and equality constraint functions with respect 
to design and state variables. The iteration process con- 
tinues until a stopping criterion has been met. Particu- 
larly worth noting in the computation is the procedure of 
determining whether K ,  and G ,  are within constrained 
ranges. To do this, first the values of design and state 
variables are used in eqns. 2-4 to compute reluctances, 
then in eqns. 12-15 to compute fluxes, and finally in eqn. 
16 to compute forces. K ,  and G ,  are then obtained by 
varying armature positions and input currents, also using 
this set of equations. 

The results of the optimisation study are summarized 
in Table 2, where the actual data have been non- 
dimensionalised with respect to the values of the para- 
meters in the existing design. The Table shows that the 
unit being studied can be reduced by 30% in weight or 
by 45% in power consumption, with the performance 
characteristics represented by #, , G ,  and S remaining 
unchanged. 

In addition to being able to minimise weight or power 
consumption while keeping the same performance char- 

Results of optimal design study 

Table 2: Summary of design optimisation study 

initial Optimal design 
design 

minimisation of weight minimisation of power 

1 2 3 1 2 3 4  
Test number Test number 

K, 1.00 1.00 0.46 1.00 1.00 2.30 1.00 1.00 
G, 1.00 1.00 1.00 1.00 1.00 1.00 1.84 1.00 
S 1.00 1.00 1.00 1.47 1.00 1.00 1.00 0.66 
W 1.00 0.70 0.86 1.00 1.29 1.30 2.11 1.53 
P 1.00 1.37 2.06 1.51 0.55 0.43 1.11 0.70 

acteristics, the optimisation program can also be used to 
design units of the device with different performance 
characteristics from the existing units. This is also illus- 
trated in Table 2 which shows that the values of K , ,  G ,  
and Scan be varied. 

6 Conclusions 

An analytical model describing the characteristics of 
linear force motors has been developed. The model is 
capable of predicting the force-current-displacement 
relationship, and other motor characteristics. The pre- 
dicted characteristics agree well with both experimental 
and finite element results. 

A computer program based on an optimisation algo- 
rithm has been developed for automating and optimising 
the motor design. The program is capable of generating 
an optimal set of design parameters for minimising 
weight or power consumption, while satisfying specified 
performance characteristics. 
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