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Investigation on Ti6Al4V-V-Cr-
Fe-SS316 Multi-layers Metallic 
Structure Fabricated by Laser 3D 
Printing
Wei Li   1, Frank Liou1, Joseph Newkirk2, Karen M. Brown Taminger3 & William J. Seufzer3

Joining titanium alloy and stainless steel is becoming an urgent need since their outstanding 
mechanical properties can be utilized integratedly. However, direct fusion joining of Ti6Al4V to SS316 
can cause brittle Ti-Fe intermetallics which compromise join bonds’ mechanical properties. In this 
research, Laser 3D Printing was applied to explore a new Ti6Al4V to SS316 multi-metallic structure. 
A novel filler transition route was introduced (Ti6Al4V → V → Cr → Fe → SS316) to avoid the Ti-Fe 
intermetallics. Two experimental cases were performed for comparison to evaluate this novel route’s 
effect. In the first case, SS316 layer was directly deposited on Ti6Al4V substrate by laser 3D printing, 
but the sample cracked in the printing process. Then fracture morphology, phase identification, and 
micro-hardness were analyzed. In the second case, a multi-metallic structure was fabricated via laser 3D 
printing following the transition route. Microstructure characterization and composition distribution 
were analyzed via scanning electron microscope(SEM) and energy dispersive spectrometry(EDS). 
x-ray diffraction(XRD) tests demonstrated the intermetallics were effectively avoided following the 
transition route. Vickers hardness number(VHN) showed no significant hard brittle phases in the 
sample. Comparing with directly depositing SS316 on Ti6Al4V, the usage of the novel transition route 
can eliminate the intermetallics effectively. These research results are good contributions in joining 
titanium alloy and stainless steel.

Titanium and Ti series alloys have acquired a lot of concerns because they are considered as some of the best 
engineering materials and biomaterials in the aerospace, nuclear, and chemical industries. These series alloys 
have excellent mechanical and metallurgical properties such as light weight, high strength-to-weight ratio, and 
superior heat resistance. In order to combine good mechanical and metallurgical properties of titanium alloys, 
and either good formability or economic prices of other alloys, there is an upsurge of interest to join Ti alloys 
with dissimilar structural steels or stainless steels. It is well known that stainless steel is good for weldability and 
is much more economic than costly Ti alloys, but there is a challenge to join Ti alloys and stainless steels1. The 
traditional heat fusion welding has not yet been technically capable of joining Ti alloy with stainless steel because 
of a metallurgical incompatibility between them2. Direct heat fusion welding of Ti alloy and stainless steel can 
result in the formation of a variety of intermetallic compounds such as TiFe, TiFe2, and so on. These intermetallic 
compounds are brittle and can embrittle the joint3. These brittle formations can reduce the strength of the bound 
and lead to failure. Cracking at the interface of dissimilar bond is the most common failure type. The above neg-
ative factors ultimately result in the risk of fatigue failure during usage and service, even failure may happen in 
the joining process.

Thus, many previous researchers sought the proper metal or alloy to insert as an interlayer in order to elim-
inate or relieve the influence of intermetallic compounds4–7. The frequently used interlayer metals are Cu8, 9, 
Ni10–13, Ag14, Al15, as well as other more complex alloys3, 16–18. The selection of the interlayer material depends on 
its metallurgical properties with Ti and Fe, especially if the interlayer material can form the intermetallic phase 
with Ti and Fe in the cooling process after experiencing high-temperature solution annealing. However, the 
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usages of above filler metals unavoidably form intermetallic phases with Ti or Fe in joining Titanium alloy and 
stainless steel.

Laser 3D printing is an advanced additive manufacturing technology which can directly produce fully dense, 
multi-metallic parts. In this study, the laser 3D printing is specialized as laser deposition with blown metal pow-
der. In this process depicted in Fig. 1, a laser beam is used as heat source to melt the metal powder create a melt 
pool. A powder stream is driven by argon gas flow and continuously conveyed into the melt pool following 
the powder feeder pipe. The substrate is attached to a three-axis stage, which is driven by computer numerical 
control system. By moving the substrate according to a desired route pattern, a 2D layer can be deposited, then, 
a 3D object can be formed through building successive layers on top of one another. With the advantages of 
high energy density, precise and flexible heating position, and laser beam radius, Laser 3D printing is the most 
frequently used fusion fabricating method19. In addition, laser 3D printing is able to produce a multi-materials 
part quickly with multi-nozzles by adjusting fed powder types and percentage. The Laser 3D printing process has 
demonstrated its ability in the area of rapid manufacturing, repairing, remanufacturing, and modification of the 
metallic components.

Joining Ti6Al4V and SS316 leads to the formation of the large amount of Ti-Fe intermetallic phases. The crit-
ical solution was to find an interlayer metal as a transition composition to prevent the formation of an interme-
tallic phase. However, there is no element that can directly prevent the formation of intermetallic phase with both 

Figure 1.  Laser 3D Printing Procedure.
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Ti6Al4V and SS31617. Therefore, multi-interlayer metals are necessary to fundamentally address the intermetallic 
phase and brittleness.

Vanadium (V) was first considered as a suitable transition metal since V exhibits an excellent ability to form 
stable solid solution with Ti as shown in the binary alloy phase diagram for the Ti-V system in Fig. 2(a). The 
beta-phase Ti forms a complete range of solid solutions with V20, 21, whereas the behavior of alpha-phase Ti is 
more limited in this respect. These promising properties of V as a transition metal are further enhanced by ther-
mal expansion coefficients which form a ratio (Ti:V) of 8.5:8.317. As shown in the binary alloy phase diagram for 
the V-Cr system in Fig. 2(b), V and Chromium (Cr) exhibit unlimited mutual solid solubility across the entire 
system beneath the solidus, so Cr could be a candidate metal as an adjacent transition composition.

Literature from previous studies22–24, has reported a brittle intermetallic sigma phase that is always observed 
in various series of Duplex stainless steels. The sigma phase often forms under an elevated temperature environ-
ment, such as casting, rolling, welding, forging, and aging25. In the Fe-Cr binary alloy system, a pure sigma phase 
exists between 472 °C and 830 °C if the mass percentage of Cr is more than 42.7 wt% and less than approximately 
48.2 wt%, as shown in the Fe-Cr binary system in Fig. 2(c). There is obviously no sigma phase formation beneath 
472 °C and close to room temperature.

After reviewing previous research and experiment results, the properties of the sigma phase in the Fe-Cr 
binary alloy system can be summarized as follows. Sigma phase exhibits a tetragonal structure26. It is a brittle 
phase and can decrease the toughness of the system22. Sigma phase forms in the cooling process from high tem-
peratures, which is a metaphase in Fe-Cr binary system. To avoid the formation of more than 1% sigma phase, the 
cooling rate must exceed 0.23 °C/s26.

Fe-Cr phase diagram reveals that in the cooling process, if the temperature is lower than around 472 °C, the 
dominant phases are the α phase and α’ phase. Moreover, the cooling rate is an important factor in controlling the 
sigma phase’s formation, since large cooling rates can greatly bypass the dangerous temperature range from 472 °C 
to 830 °C, and reduce the probability of the sigma phase formation. The previous researchers observed the cooling 
rate in laser 3D printing27. The minimum cooling rate value was guaranteed to be larger than 1 °C/s under the 
laser processing parameters in this study. Based on the above analysis, a new filler transition route was designed: 
Ti6Al4V → V → Cr → Fe → SS316, as shown in Fig. 2(d).

Figure 2.  Binary alloy phase diagram of (a) Ti-V32; (b) V-Cr33; (c) Fe-Cr34; and (d) composition route.
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In this research, to join Ti6Al4V and SS316 by Laser 3D printing, a novel filler transition route was designed 
to prevent the formation of the intermetallic phase. Two experimental cases were performed to evaluate the effect 
of this novel route by comparison. SS316 metallic powder was directly deposited on the Ti6Al4V substrate in the 
first case. The Ti-Fe intermetallic phases formed in this process were investigated through analyzing fracture mor-
phology, phase identification, and vickers hardness test. In the second case, a thin wall sample was fabricated via 
laser 3D printing following the transition composition route. Then, various material characterizations and analy-
sis were performed to evaluate the new filler transition route. This work sets the basis to fabricate the Ti6Al4V to 
SS316 multi-metallic structure.

Results and Discussion
Directly print SS316 layer on Ti6Al4V substrate.  In the first experimental case, SS316 metallic powder 
was directly deposited on the Ti6Al4V substrate by laser 3D printing. In this process, the stainless steel layer fell 
off from titanium substrate coupled with clear cracking sound (Fig. 3a). The Ti-Fe intermetallic phases formed in 
this process were investigated through analyzing fracture morphology, phase identification, and Vickers Hardness 
test.

Fracture morphology and phase identification.  It can be clearly observed the fracture morphology is relative 
smooth, as shown in Fig. 3(b). By observing this fracture morphology, the fracture mechanism is classic cleavage 
fracture, which is caused by disruption surface’s separating along some crystal plane. Cleavage fracture always 
happens in body-centered cubic (BCC) and hexagonal close-packed (HCP) metal or alloy. Its crack-evolution is 
very fast so that resulting in metallic component’s disastrous collapse. This phenomenon indicates that the formed 
phase in fracture area is very hard and brittle, and almost without any plasticity. XRD test was performed on the 
fracture area to identify the formed phase. The XRD pattern in Fig. 4 indicates that main intermetallic phases 
are Fe2Ti and FeTi, whose brittleness and hardness caused the direct fracture and clear cracking sound under 
thermal stress and excessive generation of strains at the interface arising from the thermal expansion difference 
of titanium and stainless steel alloys.

Vickers hardness number distribution on the joint.  Vickers hardness tests were conducted from Ti6Al4V side 
to SS316 side, as shown in Fig. 5. The VHN near crack region is much larger than the base alloys on both sides, 
which demonstrated that the compounds near crack region have poor plasticity. From the VHN distribution in 
Fig. 5, it turns out that VHN keeps approximately in Ti6Al4V substrate then starts to increase when close to the 

Figure 3.  Direct deposition of SS316 on Ti6Al4V substrate. (a) SS316 layer fell off from Ti6Al4V substrate; (b) 
Fracture morphology.

Figure 4.  XRD pattern on the fracture area.
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crack region, and reaches the maximum value of 1130 VHN, where perforative crack happened. The VHN dis-
tribution in Fig. 5 illustrates that the formation of intermetallic phases is the primary cause for the failure when 
directly laser depositing stainless steel powder on titanium alloy substrate.

Ti6Al4V to SS316 Multi-metallic Structure with novel filler transition route.  A 3D Ti6Al4V to 
SS316 Multi-metallic thin wall sample was fabricated layer by layer on the surface of Ti6Al4V substrate by laser 
3D printing, as shown in Fig. 6. A specimen (Fig. 7) was cut off along the cross section of thin wall sample for 
material characterization and tests.

EDS and SEM analysis.  EDS was used to analyze the element concentration distribution along the transition 
composition route. All the EDS point test data for composition curves was plot in Fig. 8. The element distribution 
curves along the transition composition route on the specimen surface show some interesting features such as 
intersection, immediate lift and dip, and stagger up and down. These kinds of phenomenon can demonstrate the 
clear element concentration tendency along the transition composition. Three ridges indicate three transition 
metals: V, Cr, Fe. V and Cr can diffuse to other metal layers easily. Element diffusion is obvious due to multiple 
heating and high temperature gradient in laser 3D printing. Another critical phenomenon for mass transfer is the 
Marangoni convection in the melt pool28. The Marangoni force drives the fluid flow near the melt pool surface 
to flow outward then a convection forms in the melt pool. Due to the convection flow, the bottom material will 
be lifted upward, on the other hand, the material near the melt pool surface will be transferred downward. The 

Figure 5.  Vickers hardness number distribution along weld joint.

Figure 6.  Thin wall multi-metallic sample.

Figure 7.  The specimen prepared from cross section of the printed part.
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Marangoni convection improves the mass transfer and furthermore improves the diffusion in the multi-metallic 
structure.

Figure 9 depicted the heat affected zone (HAZ) in the Ti6Al4V substrate, whose depth was 2.674 mm and the 
width of HAZ was 7.872 mm. To observe the microstructure, SEM tests were done on four sample sites which 
were selected along the route. The four sites positions were determined by the maximum weight percentage of 
Ti, V, Cr, Fe, which were indicated with signs (a), (b), (c), and (d) in the Fig. 8. Figure 10 shows the microscopic 
images of microstructure at the four sample sites.

Figure 10(a) depicts the microstructure close to the Ti6Al4V substrate, where Ti concentration is highest. It is 
clear to observe the interface between substrate and V layer. On the below side of interface, the Ti6Al4V region 
exhibits an elongated lamellar-type microstructure. This is caused by the high cooling rate during laser 3D print-
ing process and undergoes rapid solidification. Closer to the interface, thinner and smaller of the microstructure 
is. From the interface to the Ti6Al4V, it is clear to find the grain’s epitaxial growth in solidification. On the above 
side of interface, close to V region, some pores are observed which formed in the laser 3D printing process. 
Figure 10(b) depicts the microstructure with maximum V concentration, which exhibits an equiaxed microstruc-
ture. Due to the high cooling rate in rapid solidification, the equiaxed microstructure is elongated approximately 
along the cooling direction. In the process of laser 3D printing, the powder was carried by argon gas flow then 
sprayed out into melt pool through powder feeder nozzle. Some gas was dissolved and entrapped in the melt pool, 
but may not have sufficient time to escape from the melt pool due to rapid solidification in the laser 3D printing. 
It can be noticed that some spherical pores were observed in V layer. Figure 10(c) depicts the microstructure in 
the region with highest Cr concentration, which exhibits an equiaxed-type microstructure in this region. Gas 
porosity is again found in the Cr-rich layer. Figure 10(d) depicts the microstructure where Fe concentration is 
highest. In this region the microstructure exhibits classic ferrite and austenite grain. High cooling rate in rapid 
solidification caused the columnar and elongated lamellar-type microstructure.

XRD analysis.  To identify the formed phase in the sample, XRD test was performed on the surface of sample 
cut from a central cross section of the printed part. Four sites with the maximum weight percentage of Ti, V, Cr, 

Figure 8.  The EDS point test result for composition curve.

Figure 9.  Heat affected zone (HAZ) in the substrate.
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Fe were selected for XRD test. The positions of the four XRD test sites were same with the positions of four SEM 
test sites in Fig. 10. The XRD patterns are shown in Fig. 11. On the first site, dot is used to represent α-Ti; dia-
mond indicates β-Ti; inverted triangle indicates Ti3Al; all of which above were the primary phases in Ti6Al4V. 
In addition, (V, Cr) solid solution has strong intensity. Another β-Ti with bcc structure can be detected, which is 

Figure 10.  The microscopic images of microstructure at the four sites: (a) with maximum wt% of Ti; (b) with 
maximum wt% of V; (c) with maximum wt% of Cr; (d) with maximum wt% of Fe.

Figure 11.  XRD patterns in the four observation sites.
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the solid solution between Ti and Cr. Multiple heating and high temperature gradient in laser 3D printing causes 
Cr diffuse in V layer and even near Ti6Al4V. Diffused Cr forms into solid solution with V and Ti respectively. 
Some bcc peaks are lost in XRD pattern, which is mainly caused by preferred orientation. When the specimen 
is prepared for XRD test, grinding and polishing may cause the multi crystal’s grain directions to be oriented. In 
addition, in the process of laser 3D printing, metal powders were melted and then re-crystallized. High cooling 
rate in laser 3D printing results in lathy and tiny grains in the sample. This kind of re-crystallized grain distortion 
from typical grain structure may cause the missing peaks at least in some specific directions. The XRD pattern on 
site-2 is similar with site-1. The intensity of α-Ti and β-Ti is weakening, but still obvious. The intensity of (V, Cr) 
is stronger than site-1, which is basically caused by the higher concentrations of Cr and V on site-2. On the site-3, 
the α-Ti and β-Ti are not detected, while the intensities of (αFe, V) and (αFe, Cr) keep increasing. (αFe, V) is bcc 
solid solution of Fe and diffused V. (αFe, Cr) is the solid solution of Fe and Cr, which is also called ferrite with bcc 
structure. Austenitic fcc solid solution (γFe, Ni) is detected, which may be in SS316 layer, just detected by larger 
XRD sample area. There are two kinds of Fe-Cr solid solutions α and α’. The (α’Fe, Cr) is high concentration Cr 
bcc, while (αFe, Cr) is low concentration Cr bcc. Both of them precipitate from the segregation of ferritic solid 
solution α(δ). In the XRD pattern on site-4, the ferrite bcc has strong intensity, while austenite (γFe, Ni) fcc can 
also be detected. The phase detected through XRD pattern on site-4 is close to the phase in SS316.

From site-1 to site-3, α-Ti and β-Ti decrease and disappear. On the other hand, ferrite and austenite start to 
appear from site-3, and increase to the major phases on site-4. Since V, Cr and Fe are added as intermediate metal, 
some solid solutions are detected in the transition layers. The XRD patterns can verify the material transition 
design from Ti6Al4V to SS316. In addition, the XRD patterns on the four sites indicate that there is not interme-
tallic phase.

Test for the existence of sigma phase.  Referring to the transition route and binary phase diagrams in Fig. 2, sigma 
phase is only possible intermetallic phase, therefore the test for sigma phase’s existence is necessary. Two SEM 
images were obtained between Cr layer and Fe layer. As can be seen in these two micrographs (Fig. 12a and b), 
two phases formed in the solidification process. Light gray phase was embedded in the continuous dark phase. 
The dark phase is the primary phase at the interface of Cr and Fe. In the micrograph with 12000x magnification, 
two point EDS tests were done at these two different phases. The element compositions are shown in Fig. 12(c). 

Figure 12.  Micrographs at Cr/Fe interface (a) and (b), and element compositions (c).
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Two primary metals, Fe and Cr, are detected in the dark phase, whose weight percentages are 58.8% and 34.8 
respectively. A small amount of V is another composition in the dark phase. The light gray phase has four metal 
elements: Fe, Cr, V, and Ni. Fe is the primary element with weight percentage of 72.4%. The Cr composition is 
less, with the weight percentage of 20.4%. V and Ni weight percentages are less than 5%. Focusing on the region 
in Fig. 12, one more XRD test was done to detect the primary phase at the interface of Cr and Fe. The XRD pat-
tern is shown in Fig. 13. It is clear to be observed that ferrite and austenite are two phases, in which the ferrite is 
much more primary. The XRD pattern of sigma phase is also shown in Fig. 13, which was provided by Garin and 
Mannheim29. By comparing the sigma XRD pattern and the detected XRD pattern, there is no formation of sigma 
phase at the interface of Cr and Fe.

To further detect the sigma phase, the Cr/Fe interface was etched with the reagent (10 g NaOH, 10 g potassium 
ferricyanide, and 100 ml distilled water), used at room temperature. If the sigma phase formed in the Cr/Fe inter-
face, it was supposed to be colored orange-brown after 60s etched with above reagent30. An optical micrograph 
(Fig. 14) depicted the microstructure morphology in the Cr/Fe interface. An important observation was that, 
there was not orange-brown region. Long and narrow lathy microstructure was the most primary microstructure 
in the observation area. Comparing with Lippold and Kotecki’s research31, this type of lathy morphology is ferrite 
microstructure. The lathy morphology forms in the super cooling solidification because of restricted diffusion 
with high cooling rate. No sigma phase was found with color etching technology.

Figure 13.  (a) XRD pattern at Cr/Fe interface and (b) sigma phase XRD patter in the ref. 29.

Figure 14.  Microstructure morphology at Fe/Cr interface with color etching.
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Vickers hardness analysis.  Figure 15 shows the Vickers hardness test values along with indications of what mate-
rial region these values belong to. The hardness values were stabilized throughout the SS316 region at 281 ± 19 
HV. The highest hardness values were observed around the Fe-Cr interface followed by a slight decrease in hard-
ness value at the Cr-V interface, and then a slight increase in hardness value at the Fe-V interface. The subsequent 
increase in the Ti6Al4V region was stabilized at 375 ± 16 HV. In the total Vickers hardness number (VHN) distri-
bution, the maximum hardness value was 425.3 HV. There is no obvious area with high VHN in the distribution. 
All the VHN gradients were slight instead of steep changes. The Vickers hardness result reveals that there is no 
obvious formation of hard brittle phases in the pure regions of candidate materials or at the interfaces. Figure 16 
shows the Vickers hardness value at the interfaces. It can be observed that there is not remarkable high VHN 
values. All the VHNs are less than 450 at the interfaces.

Conclusions
The Ti6Al4V/SS316 multi-metallic structure with material route Ti6Al4V → V → Cr → Fe → SS316 was fabri-
cated by laser 3D printing. Some conclusions are generalized as follows:

The multi-metallic structure was fabricated successfully following the material route. The clear element con-
centration gradient along the transition composition was observed by EDS point tests. The SEM images taken 
from the sample indicate the elongated lathy microstructure and tiny epitaxial grains. The XRD patterns show 
that the detected phases exist in form of stable solid solution, and no intermetallic phase was found in the XRD 
pattern. Further analysis was performed at the interface of Cr/Fe, where the identified phases in XRD pattern 
were ferrite and austenite phases, but not sigma phase. This conclusion was also supported by color etching 
technique with light metallography. In the total VHN distribution, there is no obvious area with high VHN. The 
novel transition composition route design can be used to prevent the generation of intermetallic phases between 
Ti6Al4V and SS316 alloys.

Methods
Materials preparation.  Materials used in this experiment were Ti6Al4V, SS316, V, Cr, and Fe. Ti6Al4V and 
SS316 were regarded as the target materials to be joined together. V, Cr, and Fe were used as filler composition 

Figure 15.  Vickers hardness result along the route.

Figure 16.  Vickers hardness results at the interfaces.
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that transitions from Ti6Al4V to SS316 successively. The chemical compositions of Ti6Al4V and SS316 are given 
in Table 1.

The V, Cr, Fe, and SS316 are in the form of pure powder. The powder supplier is Atlantic Equipment Engineers. 
These powders were characterized to analyze particle shape and size distribution. Microscope images were 
taken by optical microscope (HIROX Digital Microscope KH-8700). The particles size distributions for all the 
four types of powder were displayed by the sieve analysis in Table 2. Figure 17 shows four optical micrographs 
acquired from the four types of powder. The V particles present irregular shape. The Cr particles present a very 
angular shape. The Fe particles have irregular shapes. SS316 powder particles have a mostly spherical shape when 
compared to the Fe and Cr powder particles.

The Ti6Al4V is prepared in the form of a 2 × 0.5 × 0.25 inch bar. In the process of laser 3D printing, the 
Ti6Al4V bar was used as a substrate. V, Cr, Fe, and SS316 powder were deposited on the top surface of the 
Ti6Al4V bar.

Directly print SS316 layer on Ti6Al4V substrate.  Laser 3D printing to join titanium alloy and stainless 
steel is hindered by the formation of interfacial intermetallics caused by metallurgical reactions. Ti-Fe interme-
tallics are the main obstructive. To investigate the Ti-Fe intermetallics in the process, SS316 metallic powder was 
printed on Ti6Al4V substrate directly by fiber laser, then analyzed fracture morphology, phase identification, and 
Vickers Hardness Number (VHN). The laser 3D printing operating parameters are shown in Table 3.

Materials C Mn Si P H S Cr Al V Mo O Ni N Fe Ti

Ti6Al4V 0.08 — — — 0.025 — — 6.76 4.5 — 0.2 — — 0.25 Balance

SS316 0.03 2 0.75 0.045 — 0.03 18 — — 3 — 14 0.1 Balance —

Table 1.  Chemical composition of the target materials (wt%).

Sieve type 70 mesh 100 mesh 120 mesh 140 mesh 200 mesh 325 mesh

Size (μm) >212 150–212 125–150 106–125 75–106 45–75

Percentage (%). V 1.3 4.0 8.4 23.7 27.4 35.2

Percentage (%). Cr 0.0 0.6 5.9 9.3 12.7 71.5

Percentage (%). Fe 3.1 9.2 22.4 35.1 21.8 8.4

Percentage (%). SS316 0.0 0.3 3.8 9.0 48.2 38.7

Table 2.  Sieve analysis of V, Cr, Fe, and SS316 powder.

Figure 17.  Optical Micrograph of the four types of powder.
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Print Ti6Al4V to SS316 Multi-metallic Structure with novel filler transition route.  A 3D thin 
wall sample was fabricated layer by layer on the surface of a Ti6Al4V substrate. V, Cr, Fe, and SS316 powder were 
deposited successively. The laser processing parameters are detailed in Table 4. A specimen was cut off from the 
thin wall sample using the Hansvedt Electric Discharge Machine (EDM). The specimen was then mounted on 
mounting pressure equipment (Simplimet 1000) using a phenolic resin powder. Then, the offcut cutting surface 
was grinded using abrasive papers from 180 Silicon Carbide Grit to 1200 Silicon Carbide Grit. After that, the spec-
imen was polished using colloidal silica with a median particle size of 0.05 μm. The prepared specimen is shown 
in Fig. 7. With this specimen, EDS and SEM tests were performed on Hitachi S-4700 Field Emission Scanning 
Electron Microscope coupled with an Oxford EDS extension. XRD tests were performed with XPERT Pro-type 
diffractometer to identify the phases in the sample. The Vickers hardness test was performed at room temperature 
using a Struers Duramin-5 hardness tester with a press load of 9.81 N and loading time of 10 seconds.

The printing atmosphere was argon gas atmosphere to avoid oxidization. For each material, 10 layers were 
printed for each material, with the thickness for each layer about 0.3~0.5 mm. Since melting temperatures for the 
four metal powders are different (V:1910 °C; Cr:1907 °C; Fe:1538 °C; and SS316:1370 °C), different heat inputs 
were needed to melt the metal powder to take both efficiency and cost into account. For printing each material, 
a pre-heating step was designed to heat substrate or previous printed part to form melt pool more quickly. Then 
a maximum laser power was used to melt the metal powder exiting from powder nozzle. Due to the heat accu-
mulation in the printed part, the maximum laser powder was controlled to decrease gradually. The accumulated 
heat in the part and decreased heat input can keep the melt pool with approximately stable size, otherwise the 
melt pool would increase and finally cause the printed part to collapse if keep using the maximum laser power. 
The maximum laser power for the four metal powders were detailed in Table 4. The printing process was paused 
for 10 mins to change another metal powder after printing each material. That means the printed part will cool 
during this powder-changing period. The whole thermal history was depicted in detail in Fig. 18.

Laser Fiber laser CW

Output power (W) 550

Beam diameter (mm) 2

Scan speed (mm/min) 200

Shielding gas Argon

Table 3.  The operating parameters in printing SS316 on Ti6Al4V by laser.

Parameter

Value

V Cr Fe SS316

Maximum laser power (W) 1000 1000 700 550

Beam diameter (mm) 2

Scan speed (mm/min) 200

Shielding gas Argon

Powder feed rate (g/min) 5.1 6.3 7.6 7.2

Table 4.  The laser processing parameters in laser 3D printing.

Figure 18.  Thermal history in whole 3D printing process.
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Since the four types of powders have different powder morphology, different size distribution, and different 
densities, the powder feed rates are different under the same argon gas flow rate. The powder flow rates were 
quantified in Table 4. With the argon gas flow rate of 6 m/s, the powder feed rates for all the powders were consist-
ent over the entire printing process.

The laser 3D printer set-up used in this study consists of the following units: a laser system which provides 
the heat source, a powder feeding system with a ceramic nozzle, and a linear motor system. (1). an IPG Photonics 
continuous wave (CW) fiber laser system with a 1.064 μm wavelength was used as the laser heat source. The laser 
system can provide at most 1000 W laser output power. (2). A commercial powder feeder (Bay State Surface 
Technologies, Inc, Model-1200) was employed to supply powder in this study. The inert Argon gas was used to 
carry the powder through the pipeline system, then sprayed through an Al2O3 ceramic nozzle. (3). Three linear 
motors (AEROTECH, Inc, Model-100SMB2) were employed to generate moving path so that the thin wall sample 
could be fabricated layer by layer.

Material characterizations and tests.  Microstructure characterization was analyzed via scanning elec-
tron microscope(SEM) and optical microscope. Energy dispersive spectrometry (EDS) was used to analyze the 
element concentration distribution along the transition composition route. 115 sample points uniformly dis-
tributed along the route. The bottom of first point is aligned with surface of substrate. The interval between two 
adjacent points is 0.1 mm. Dwell time for each point is 5 s. X-ray diffraction(XRD) tests detected the formed phase 
and analyze if the intermetallics formed in the printed sample. The XRD analysis sample was cut from a central 
cross section of Ti6Al4V/SS316 multi-metallic part. The XRD test was performed on the surface area of cross 
section, as shown in Fig. 7. Based on the EDS points test results, four sites with the maximum weight percentage 
of Ti, V, Cr, Fe, were selected for XRD test. The positions of the four XRD test sites were same with the positions 
of four SEM test sites in Fig. 10. Vickers hardness number(VHN) showed hardness distribution in the sample. All 
the material characterization and test instruments were detailed in Table 5.
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