
Theory and Applications of Graphs

Volume 5 | Issue 2 Article 2

July 2018

An Efficient Algorithm to Test Forcibly-
connectedness of Graphical Degree Sequences
Kai Wang
Georgia Southern University, kwang@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact
digitalcommons@georgiasouthern.edu.

Recommended Citation
Wang, Kai (2018) "An Efficient Algorithm to Test Forcibly-connectedness of Graphical Degree Sequences," Theory and Applications of
Graphs: Vol. 5 : Iss. 2 , Article 2.
DOI: 10.20429/tag.2018.050202
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229154383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


An Efficient Algorithm to Test Forcibly-connectedness of Graphical
Degree Sequences

Cover Page Footnote
We thank Georgia Southern University for the Talon cluster to conduct our computational experiments. We
are grateful to the reviewers for their suggestions on how to improve the paper.

This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Abstract

We present an algorithm to test whether a given graphical degree sequence is
forcibly connected or not and prove its correctness. We also outline the extensions of
the algorithm to test whether a given graphical degree sequence is forcibly k-connected
or not for every fixed k ≥ 2. We show through experimental evaluations that the algo-
rithm is efficient on average, though its worst case run time is probably exponential.
We also adapt Ruskey et al’s classic algorithm to enumerate zero-free graphical degree
sequences of length n and Barnes and Savage’s classic algorithm to enumerate graph-
ical partitions of an even integer n by incorporating our testing algorithm into theirs
and then obtain some enumerative results about forcibly connected graphical degree
sequences of given length n and forcibly connected graphical partitions of given even
integer n. Based on these enumerative results we make some conjectures such as: when
n is large, (1) almost all zero-free graphical degree sequences of length n are forcibly
connected; (2) almost none of the graphical partitions of even n are forcibly connected.

Keywords— graphical degree sequence, graphical partition, forcibly connected, forcibly
k-connected, co-NP

1 Introduction

A graphical degree sequence of finite length n is a non-increasing sequence of non-negative
integers d1 ≥ d2 ≥ · · · ≥ dn such that it is the vertex degree sequence of some simple graph
(i.e. a finite undirected graph without loops or multiple edges). Given an arbitrary non-
increasing sequence of non-negative integers a1 ≥ a2 ≥ · · · ≥ an, it is easy to test whether
it is a graphical degree sequence by using the Erdős-Gallai criterion [1] or the Havel-Hakimi
algorithm [2, 3]. Seven equivalent criteria to characterize graphical degree sequences are
summarized by Sierksma and Hoogeveen [4]. The notion of partitioning an integer is well
known in number theory, and is defined to be a non-increasing sequence of positive integers
whose sum is the given integer. An integer partition is called a graphical partition if it is the
vertex degree sequence of some simple graph. Clearly a zero-free graphical degree sequence
and a graphical partition are essentially the same.

It is often interesting to observe the properties of all graphs having the same vertex degree
sequence. A graph G with degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn) is called a realization
of d. Let P be any property of graphs (e.g. being bipartite, connected, planar, triangle-free,
Hamiltonian, etc). A degree sequence d is called potentially P-graphic if it has at least
one realization having the property P and forcibly P-graphic if all its realizations have the
property P [5]. In this paper, we only consider the property of k-connectedness (k ≥ 1
is fixed). Wang and Kleitman [6] give a simple characterization of potentially k-connected
graphical degree sequences of length n, through which we can easily test whether a given
graphical degree sequence is potentially connected. However, to the best of our knowledge no
simple characterization of forcibly k-connected graphical degree sequences has been found so
far and no algorithm has been published to test whether a given graphical degree sequence
is forcibly connected or forcibly k-connected with given k. Some sufficient (but unnecessary)
conditions are known for a graphical degree sequence to be forcibly connected or forcibly
k-connected [7, 8, 9].

1

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



In the rest of this paper, we will present a straight-forward algorithm to characterize
forcibly connected graphical degree sequences and outline the extensions of the algorithm to
test forcibly k-connectedness of graphical degree sequences for fixed k ≥ 2. We will demon-
strate the efficiency of the algorithm through some computational experiments and then
present some enumerative results regarding forcibly connected graphical degree sequences of
given length n and forcibly connected graphical partitions of given even integer n. Based on
these available enumerative results we make some conjectures about the relative asymptotic
behavior of considered functions and the unimodality of certain associated integer sequences.

2 The testing algorithm

2.1 Preliminaries

Based on a result of Wang and Kleitman [6], a graphical degree sequence d1 ≥ d2 ≥ · · · ≥ dn
is potentially k-connected if and only if dn ≥ k and

∑n
i=1 di ≥ 2n − 2

(
k
2

)
− 2 + 2

∑k−1
i=1 di.

Taking k = 1, we get that a zero-free graphical degree sequence d1 ≥ d2 ≥ · · · ≥ dn is
potentially connected if and only if

∑n
i=1 di ≥ 2n− 2.

Note that any graphical degree sequence with a 0 in it can be neither potentially nor
forcibly connected. We will design an algorithm to test whether a zero-free graphical de-
gree sequence d is forcibly connected based on the simple observation that d is forcibly
connected if and only if it is not potentially disconnected, i.e., it does not have any discon-
nected realization. Equivalently, we need to test whether d can be decomposed into two sub
graphical degree sequences. For example, 3,3,3,3,2,2,2 is a potentially connected graphical
degree sequence of length 7. It is not forcibly connected since it can be decomposed into two
sub graphical degree sequences 3,3,3,3 and 2,2,2. Note also that when a graphical degree
sequence can be decomposed into two sub graphical degree sequences, the terms in each
sub sequence need not be consecutive in the original sequence. For example, the graphical
degree sequence 4,4,3,3,3,2,2,2,1 can be decomposed into two sub graphical degree sequences
4,4,3,3,3,1 and 2,2,2 or into 4,4,3,3,2 and 3,2,2,1. We say that the graphical degree sequence
3,3,3,3,2,2,2 has a natural decomposition because it has a decomposition in which the terms
in each sub sequence are consecutive in the original sequence. The graphical degree sequence
4,4,3,3,3,2,2,2,1 is not forcibly connected but does not have a natural decomposition. On the
other hand, the graphical degree sequence 6,6,6,5,5,5,5,4,4 is forcibly connected since there
is no way to decompose it into two sub graphical degree sequences.

2.2 Pseudo-code and the proof of its correctness

In this section, we will present the pseudo-code to test forcibly-connectedness of a given
zero-free graphical degree sequence in Algorithm 1. We then give a proof why it correctly
identifies such graphical degree sequences.

We assume the input is a zero-free graphical degree sequence already sorted in non-
increasing order. In case an input that does not satisfy this condition is given, we can
still easily test whether it is graphical by the Erdős-Gallai criterion [1] or the Havel-Hakimi
algorithm [2, 3]. The output will be True if the input is forcibly connected and False

2

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



otherwise. The output can also include a way to decompose the input in case it is not
forcibly connected and such a decomposition is desired.

Algorithm 1: Pseudo-code to test forcibly-connectedness of a graphical degree se-
quence

Input: A zero-free graphical degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn)
Output: True or False, indicating whether d is forcibly connected or not

1 if d1 ≥ n− 2 or dn ≥ bn/2c then
2 return True
3 if d1 = dn then
4 return False
5 su ← max{s : s < n− ds+1}; // 2 ≤ su ≤ n− dn − 1
6 if there exists an s such that d1 + 1 ≤ s ≤ su and d1 = (d1 ≥ d2 ≥ · · · ≥ ds) and

d2 = (ds+1 ≥ ds+2 ≥ · · · ≥ dn) are both graphical then
7 return False
8 for l← dn + 1 to min{bn/2c, n− d1 − 1} do
9 if dn+1−l < l then

10 m← min{i : di < l}; // 1 ≤ m ≤ n− l + 1
11 if l ≤ n−m then
12 Form all candidate decompositions of d into s1 and s2 such that s1 is taken

from dL = (dm ≥ dm+1 ≥ · · · ≥ dn) of length l and s2 = d− s1 is of length
n− l and both with even sum. If both s1 and s2 are graphical, return
False

13 return True

Now, we show why Algorithm 1 correctly identifies whether d is forcibly connected or
not. The conditional test on line 1 works as follows.

• If d1 ≥ n− 2, then in any realization G of d the vertex v1 with degree d1 will be in a
connected component with at least n−1 vertices, leaving at most 1 vertex to be in any
other connected component should the input d be non forcibly connected. However, a
graph with a single vertex has the degree sequence 0, which contradicts the assumption
that d is zero-free. Thus, in this case d must be forcibly connected.

• If dn ≥ bn/2c, then the vertex vn with degree dn will be in a connected component with
at least 1 + bn/2c vertices. Should the input d be non forcibly connected, there will
be another connected component not containing vn and also having at least 1 + bn/2c
vertices since each vertex in that connected component has degree at least dn ≥ bn/2c.
This will result in a realization with at least 2 + 2bn/2c > n vertices, a contradiction.
Thus, in this case d must also be forcibly connected.

The conditional test on line 3 works as follows. Let d1 = dn = d. Note that dn must be
even for this regular sequence to be graphical.

• If n is odd, then d must be even. When we reach line 3, we must have d < bn/2c.
Now, d can be decomposed into two sub graphical degree sequences of length n−1

2
and

n+1
2

respectively since d < n−1
2

= bn/2c. Thus, it is not forcibly connected.

3

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



• If n is even, we consider two cases.

Case (A): n/2 is even, i.e. n ≡ 0 mod 4. In this case, d can be decomposed into
two graphical degree sequences of length n/2 since d < bn/2c = n/2. Thus, it is not
forcibly connected.

Case (B): n/2 is odd, i.e. n ≡ 2 mod 4. Further, consider two sub cases. (B1): if d is
odd, then d can be decomposed into two graphical degree sequences of length n/2− 1
and n/2 + 1 respectively since d < n/2 − 1 as a result of d and n/2 being both odd
and d < n/2. (B2): if d is even, then d can be decomposed into two graphical degree
sequences of length n/2 since d < n/2. Thus, in this case d is not forcibly connected.

Lines 5 to 7 try to find if d can be decomposed into two sub graphical degree sequences
such that each sub sequence contains terms consecutive in the original sequence d, i.e. if
the input d has a natural decomposition. For each given s, the two sub sequences d1 =
(d1 ≥ d2 ≥ · · · ≥ ds) and d2 = (ds+1 ≥ ds+2 ≥ · · · ≥ dn) can be tested whether they
are graphical by utilizing a linear time algorithm [10] that is equivalent to the Erdős-Gallai
criterion. The smallest s that need to be tested is d1 + 1 since d1 can only be in a graphical
degree sequence of length at least d1 + 1 and d1 has length s. The largest s that needs to be
tested is at most n− dn− 1 since dn can only be in a graphical degree sequence of length at
least dn +1 and d2 has length n−s. Actually, the upper bound of the tested s can be chosen
to be at most the largest s such that s < n − ds+1 since ds+1 can only be in a graphical
degree sequence of length at least ds+1 + 1. Let su be the largest integer that satisfies this
inequality. Note su ≥ 2 since s = 2 satisfies the inequality at the point of line 5. Also, note
that su ≤ n − dn − 1 because if su ≥ n − dn then n − dn ≤ su < n − dsu+1, which leads
to dsu+1 < dn, a contradiction. Therefore, the upper bound of tested s is chosen to be su.
Additional data structures can be maintained to skip the tests of those s for which each of
the two sub sequences d1 and d2 has odd sum. Clearly, a necessary condition for the input
d to have a natural decomposition is su ≥ d1 + 1. A weaker necessary condition which is
easier to check is n− dn − 1 ≥ d1 + 1, i.e. d1 + dn ≤ n− 2.

The for loop starting from line 8 is to test whether the input d can be decomposed
into two sub graphical degree sequences of length l and n − l respectively, whether the
decomposition is natural or not. At first glance, we need to test the range of l in 2 ≤ l ≤ n−2
since the shortest zero-free graphical degree sequence has length 2. By symmetry we do not
need to test those l beyond bn/2c. Actually, we only need to test the range of l from dn + 1
to min{bn/2c, n−d1−1}. We can start the loop with l = dn +1 since, should the input d be
decomposable, dn must be in a sub graphical degree sequence of length at least dn + 1 and
the other sub graphical degree sequence not containing dn must also be of length at least
dn + 1 due to all its terms being at least dn. There is no need to test those l > n − d1 − 1
since, should the input d be decomposable, d1 must be in a sub graphical sequence of length
at least d1 + 1 and the other sub graphical sequence not containing d1 must have length at
most n− d1 − 1.

The condition tested on line 9 (dn+1−l < l) is necessary for d to be decomposable into
two sub graphical degree sequences of length l and n− l respectively. A zero-free graphical
degree sequence of length l must have all its terms less than l. If d is decomposable into
two sub graphical degree sequences of length l and n − l respectively, d must have at least
l terms less than l and n − l terms less than n − l. Therefore, the l smallest terms of d

4

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



(dn−l+1 ≥ dn−l+2 ≥ · · · ≥ dn) must be all less than l and the n − l smallest terms of d
(dl+1 ≥ dl+2 ≥ · · · ≥ dn) must be all less than n − l. These translate to the necessary
conditions dn−l+1 < l and dl+1 < n− l for d to be decomposable. The condition dl+1 < n− l
has already been satisfied since d1 < n− l based on the loop range of l on line 8.

Lines 10 to 12 first find out the sub sequence dL of d consisting exactly of those terms
less than l and then exhaustively enumerate all sub sequences s1 of dL with length l and
even sum, trying to find a valid decomposition of d into s1 and s2 = d− s1 with length n− l,
consisting of the terms of d not in s1. Note that the l terms of s1 need not be consecutive
in dL. The motivation for the construction of m and dL = (dm ≥ dm+1 ≥ · · · ≥ dn) is that,
should the input d be decomposable into two sub graphical degree sequences of length l and
n − l respectively, the sub graphical degree sequence with length l must have all its terms
coming from dL. For each such sub sequence s1 of dL with length l (we can always choose
such an s1 since dL has length n − m + 1 ≥ l due to the definition of m on line 10), let
the remaining terms of d form a sub sequence s2 = d − s1 of length n − l. If both s1 and
s2 are graphical degree sequences, then the input d is not forcibly connected since we have
found a valid decomposition of d into s1 and s2 and we may return False on line 12. The
conditional test on line 11 (l ≤ n−m) is added because at this point we know d cannot be
naturally decomposed and we can therefore exclude the consideration of l = n−m+ 1 since
under this condition there is only one possible choice of s1 from dL and consequently only
one possible decomposition of d into two sub sequences of length l and n − l respectively,
which is also a natural decomposition. If we remove the natural decomposition test from
lines 5 to 7 and also remove the conditional test on line 11, the algorithm would obviously
still be correct. If in the for loop from lines 8 to 13 we never return False on line 12, this
means there is no way to decompose the input d into two sub graphical degree sequences
whatsoever and we should return True on line 14. If we return False on line 4, 7, or 12, then
a valid decomposition can also be returned if desired.

Later, we will show that there is a computable threshold M(n) given the length n of the
input d such that if d1 is below this threshold the algorithm can immediately return False
without any exhaustive enumerations. However, our computational experiences suggest that
if the input satisfies d1 < M(n) then Algorithm 1 already runs fast and it might not be
worthwhile to add the computation of the additional threshold M(n) into it.

2.3 Extensions of the algorithm

In this section, we show how to extend Algorithm 1 to perform additional tasks such as
listing all possible decompositions of a graphical degree sequence and testing forcibly k-
connectedness of a graphical degree sequence for fixed k ≥ 2.

2.3.1 Enumeration of all possible decompositions

Algorithm 1 can be easily extended to give all possible decompositions of the input d into
two sub graphical degree sequences in case it is not forcibly connected. We simply need to
report a valid decomposition found on line 3, 6 and 12 and continue without returning False
immediately. Such an enumerative algorithm to find all valid decompositions of the input d
can be useful when we want to explore the possible realizations of d and their properties.

5

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



2.3.2 Testing forcibly k-connectedness of d when k ≥ 2

It is also possible to extend Algorithm 1 to decide whether a given graphical degree sequence
d is forcibly biconnected or not. We know that a connected graph is biconnected (non-
separable) if and only if it does not have a cut vertex. This characterization leads us to
observe that if in any forcibly connected graphical degree sequence d, the removal of any
term di and the reduction of some collection dS of di elements from the remaining sequence
d − {di} by 1 each results in a non forcibly connected graphical degree sequence d′ then
d is not forcibly biconnected. If no such term and a corresponding collection of elements
from the remaining sequence can be found whose removal/reduction results in a non forcibly
connected graphical degree sequence, then d is forcibly biconnected. We give a pseudo-code
framework in Algorithm 2 to decide whether a given graphical degree sequence d is forcibly
biconnected or not. To simplify our description, we call the above mentioned combination
of removal/reduction operations a generalized Havel-Hakimi (GHH) operation, notationally
d′ = GHH(d, di,dS). We remark that if the d′ obtained on line 4 of Algorithm 2 is not
a graphical degree sequence, then the condition on line 5 is not satisfied and the algorithm
will not return False at the moment.

Algorithm 2: Pseudo-code to test whether a graphical degree sequence is forcibly
biconnected (See text for the description of GHH operation)

Input: A zero-free graphical degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn)
Output: True or False, indicating whether d is forcibly biconnected or not

1 if d is not potentially biconnected or forcibly connected then
2 return False
3 for each di and each collection dS of size di from d− {di} do
4 d′ ← GHH(d, di,dS);
5 if d′ is a non forcibly connected graphical degree sequence then
6 return False

7 return True

Similarly, we can test whether a given graphical degree sequence d is forcibly k-connected
or not for k ≥ 3 iteratively as long as we already have a procedure to test whether a graphical
degree sequence is forcibly (k − 1)-connected or not. Suppose we already know an input d
is potentially k-connected and forcibly (k − 1)-connected. We can proceed to choose a term
di and a collection dS of size di from the remaining sequence d− {di} and perform a GHH
operation on d. If the resulting sequence d′ is a graphical degree sequence and is non forcibly
(k − 1)-connected, then d is not forcibly k-connected. If no such term and a corresponding
collection of elements from the remaining sequence can be found whereby a GHH operation
can be performed on d to result in a non forcibly (k−1)-connected graphical degree sequence,
then d is forcibly k-connected. We give a pseudo-code framework in Algorithm 3 to decide
whether a given graphical degree sequence d is forcibly k-connected or not.

6

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



Algorithm 3: Pseudo-code to test whether a graphical degree sequence is forcibly
k-connected (See text for the description of GHH operation)

Input: A zero-free graphical degree sequence d = (d1 ≥ d2 ≥ · · · ≥ dn) and an integer
k ≥ 2

Output: True or False, indicating whether d is forcibly k-connected or not
1 if d is not potentially k-connected or forcibly (k − 1)-connected then
2 return False
3 for each di and each collection dS of size di from d− {di} do
4 d′ ← GHH(d, di,dS);
5 if d′ is a non forcibly (k − 1)-connected graphical degree sequence then
6 return False

7 return True

3 Complexity analysis

We conjecture that Algorithm 1 runs in time polynomial in n on average. The worst case
run time complexity is probably still exponential in n. We are unable to provide a rigorous
proof at this time, but we will later show through experimental evaluations that it runs fast
on randomly generated long graphical degree sequences most of the time.

Now, we give a discussion of the run time behavior of Algorithm 1. Observe that lines
1 to 4 take constant time. Lines 5 to 7 take O(n2) time if we use the linear time algorithm
from [10] to test whether an integer sequence is graphical. Lines 9 to 11 combined take O(n)
time and they are executed O(n) times. So, the overall time complexity is O(n2) excluding
the time on line 12.

Next, consider all candidate decompositions of d into s1 and s2 on line 12. The sub
sequence s1 is taken from dL = (dm ≥ dm+1 ≥ · · · ≥ dn) whose length could be as large as
n and the length l of s1 could be as large as bn/2c. Therefore, in the worst case we may
have up to

(
n

n/2

)
candidate decompositions, which could make the run time of Algorithm 1

exponential in n.
A careful implementation of Algorithm 1 will help reduce running time by noting that

dL is a multi-set and provides us an opportunity to avoid duplicate enumerations of s1
because different l combinations of the indices (m,m + 1, · · · , n) could produce the same
sub sequence s1. For this purpose, we can assume the input d is also provided in another
format (e1, f1), (e2, f2), · · · , (eq, fq) where d contains fi copies of ei for i = 1, · · · , q and
e1 > e2 > · · · > eq > 0. (Clearly d1 = e1 and dn = eq.) Now, enumerating s1 of length l from
dL can be equivalently translated to the following problem of enumerating all non-negative
integer solutions of Equation (1) subject to constraints (2),

k∑
i=1

xi = l, (1)

0 ≤ xi ≤ fq−k+i, for i = 1, · · · , k, (2)

where k is the number of distinct elements in dL = (dm ≥ dm+1 ≥ · · · ≥ dn) which can
also be represented as (eq−k+1, fq−k+1), (eq−k+2, fq−k+2), · · · , (eq, fq) and k satisfies k ≤ q and

7

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



k ≤ l − dn since all the elements of dL are < l and ≥ dn. In this context, m and k vary
with l as the for loop from lines 8 to 12 progresses. Each solution of Equation (1) represents
a candidate choice of s1 out of dL with length l by taking xi copies of eq−k+i. Further
improvement could be achieved by noting the odd terms among eq−k+1, eq−k+2, · · · , eq since
we must have an even number of odd terms in s1 for it to have even sum. We can categorize
the xi variables of Equation (1) into two groups based on the parity of the corresponding ei
and enumerate only its solutions having an even sum of the xi’s belonging to the odd group.

The number of solutions of Equation (1) can be exponential in n. For example, let
l = n/2, k = n/4 and let fj = 4 for j = q − k + 1, · · · , q. Then, the number of solutions of

Equation (1) will be at least
(
n/4
n/8

)
by taking half of all x1, · · · , xk to be 4 and the remaining

half to be 0. However, in practice we rarely find such a large number of solutions are actually
all enumerated before Algorithm 1 returns.

To the best of our knowledge, the computational complexity of the decision problem of
whether a given graphical degree sequence is forcibly connected is unknown. The problem is
clearly in co-NP since a short certificate to prove that a given input is not forcibly connected
is a valid decomposition of the input sequence. But is it co-NP-hard? As far as we know,
this is an open problem.

The time complexity of the extension Algorithms 2 and 3 to test whether a given graphical
degree sequence d is forcibly k-connected or not for k ≥ 2 is apparently exponential due to
the exhaustive enumeration of the candidate collection dS of size di from the remaining
sequence d− {di} and the ultimate calls to Algorithm 1 possibly an exponential number of
times.

The computational complexity of the decision problem of whether a given graphical
degree sequence is forcibly k-connected (k ≥ 2) is also unknown to us. Clearly, the problem
is still in co-NP when k is fixed; to prove that a graphical degree sequence d is not forcibly
k-connected is as easy as using a sequence of k − 1 certificates each consisting of a pair
(di,dS) and a kth certificate being a valid decomposition to show that the final resulting
sequence is decomposable after a sequence of k − 1 GHH operations on d, but we do not
know if it is inherently any harder than the decision problem for k = 1.

4 Computational results

In this section, we will first present some results on the experimental evaluation for the
performance of Algorithm 1 on randomly generated long graphical degree sequences. We
will then provide some enumerative results about the number of forcibly connected graphical
degree sequences of given length and the number of forcibly connected graphical partitions
of a given even integer. Based on the available enumerative results, we will make some
conjectures about the asymptotic behavior of related functions and the unimodality of certain
associated integer sequences.

4.1 Performance evaluations of Algorithm 1

In order to evaluate the efficiency of Algorithm 1, we aim to generate long testing instances
with length n in the range of thousands and see how Algorithm 1 performs on these instances.

8

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



Our experimental methodology is as follows. Choose a constant ph in the range [0.1,0.95]
and a constant pl in the range of [0.001,min{ph − 0.01, 0.49}] and generate 100 random
graphical degree sequences of length n with largest term around phn and smallest term
around pln. Each such graphical degree sequence is generated by first uniformly random
sampling integer partitions with the specified number of parts n and the specified largest
part and smallest part and then accept it as input for Algorithm 1 if it is a graphical
degree sequence. We run Algorithm 1 on these random instances and record the average
performance and note the proportion of them that are forcibly connected. Table 1 lists the
tested ph and pl. The largest tested pl is 0.49 since any graphical degree sequence of length
n and smallest term at least 0.5n will cause Algorithm 1 to return True on line 2.

Table 1: Chosen ph and pl in the experimental performance evaluation of Algorithm 1.

ph pl

0.10 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.09
0.20 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.19
0.30 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.29
0.40 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.39
0.50 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.55 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.60 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.65 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.70 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.75 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.80 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.85 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.90 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49
0.95 0.001,0.002,0.003,...,0.01,0.02,0.03,...,0.49

Table 2: Transition interval It of pl for each ph (for n = 1000).

ph It of pl

0.55 0.30 to 0.40
0.60 0.20 to 0.30
0.65 0.15 to 0.24
0.70 0.09 to 0.17
0.75 0.05 to 0.12
0.80 0.03 to 0.09
0.85 0.01 to 0.07
0.90 0.003 to 0.04
0.95 0.001 to 0.03

We implemented our Algorithm 1 using C++ and compiled it using g++ with optimiza-
tion level -O3. The experimental evaluations are performed on a common Linux workstation.

9

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



We summarize our experimental results for the length n = 1000 as follows.
1. For those instances with ph in the range from 0.1 to 0.5, Algorithm 1 always finishes

instantly (run time < 0.01s) and all the tested instances are non forcibly connected. This
does not necessarily mean that there are no forcibly connected graphical degree sequences
of length n = 1000 with largest term around phn with ph in this range. It only suggests that
forcibly connected graphical degree sequences are relatively rare in this range.

2. For each ph in the range from 0.55 to 0.95, we observed a transition interval It of pl for
each fixed ph. See Table 2 for a list of observed transition intervals. All those instances with
pl below the range It are non forcibly connected and all those instances with pl above the
range It are forcibly connected. Those instances with pl in the range It exhibit the behavior
that the proportion of forcibly connected among all tested 100 instances gradually increases
from 0 to 1 as pl increases in the range It. For example, based on the results of Table 2,
the proportions of forcibly connected graphical degree sequences of length 1000 with largest
term around 850 (ph = 0.85) and smallest term below around 10 (pl = 0.01) are close to
0. If the smallest term is above around 70 (pl = 0.07) then the proportion is close to 1.
When the smallest term is between 10 and 70 (pl in the range from 0.01 to 0.07) then the
proportion transitions from 0 to 1. Again, these results should be interpreted as relative
frequency instead of absolute law.

3. Algorithm 1 is efficient most of the time, but encounters bottlenecks every so often.
For ph from 0.80 to 0.95 and pl near the lower end of the transition interval It, Algorithm
1 does perform poorly on some of the tested instances with run time from a few seconds
to more than a few hours (time out). The exact range of pl near the lower end of It where
Algorithm 1 could perform poorly varies. We observed that this range of pl for which the
algorithm could perform poorly is quite narrow. For example, when n = 1000, ph = 0.9, the
observed range of pl is from 0.001 to 0.01. We also observed that the frequency at which the
algorithm performs poorly also varies. We believe that this is because among all possible
instances with given length and given largest and smallest terms, there is still great variety
in terms of difficulty of testing their property of forcibly connectedness using Algorithm 1.
In particular, some instances will trigger the exhaustive behavior of Algorithm 1 on line 12,
forcing it to enumerate a lot of candidate decompositions without returning.

We have also performed experimental evaluations of Algorithm 1 for the length n =
2000, 3000, ..., 10000 without being able to finish all the same ph, pl choices as for n = 1000
because of shortage of time. The behavior of Algorithm 1 on inputs of these longer lengths
is similar to the case of n = 1000 but with different transition intervals It and varied range
of pl near the lower end of the transition interval It for which it could perform poorly.

In summation, we believe that the average case run time of Algorithm 1 is polynomial.
We estimate that more than half of all zero-free graphical degree sequences of length n can
be tested in constant time on line 1. However, its worst case run time should be exponential.
As mentioned above, the computational complexity of the decision problem itself is unknown
to us.

Currently, we have a very rudimentary implementation of Algorithm 2 and do not have
an implementation of Algorithm 3 for any k ≥ 3 yet. Algorithm 2 can start to encounter
bottlenecks for input length n around 40 to 50, which is much shorter than the input lengths
Algorithm 1 can handle. We suspect that to handle input length n ≥ 100 when k = 3 will
be very difficult unless significant enhancement can be introduced to avoid many of those

10

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



exhaustive enumerations. We plan to investigate the possible improvements to Algorithms
2 and 3 in the future.

4.2 Enumerative results

In this section, we will present some enumerative results related to forcibly connected graph-
ical degree sequences of given length and forcibly connected graphical partitions of given
even integer. We also make some conjectures based on these enumerative results. For the
reader’s convenience, we summarize the notations used in this section in Table 3.

Table 3: Terminology used in this section

Term Meaning

D(n) number of zero-free graphical sequences of length n
Dc(n) number of potentially connected graphical sequences of length n
Df (n) number of forcibly connected graphical sequences of length n
Cn[N ] number of potentially connected graphical degree sequences

of length n with degree sum N
Fn[N ] number of forcibly connected graphical degree sequences

of length n with degree sum N
Ln[j] number of forcibly connected graphical degree sequences of

length n with largest term j
M(n) minimum largest term in any forcibly connected graphical

sequence of length n
g(n) number of graphical partitions of even n
gc(n) number of potentially connected graphical partitions of even n
gf (n) number of forcibly connected graphical partitions of even n
cn[j] number of potentially connected graphical partitions of

even n with j parts
fn[j] number of forcibly connected graphical partitions of

even n with j parts
ln[j] number of forcibly connected graphical partitions of n with largest term j
m(n) minimum largest term of forcibly connected graphical partitions of n

In a previous manuscript [11], we have presented efficient algorithms for counting the
number of graphical degree sequences of length n and the number of graphical degree se-
quences of k-connected graphs with n vertices (or graphical degree sequences of length n
that are potentially k-connected). It is proved there that the asymptotic orders of the
number D(n) of zero-free graphical degree sequences of length n and the number Dc(n)
of potentially connected graphical degree sequences of length n are equivalent. That is,
limn→∞

Dc(n)
D(n)

= 1. In order to investigate how the number Df (n) of forcibly connected

graphical degree sequences of length n grows compared to D(n) we conduct computations
to count such graphical degree sequences. We do not have any algorithm that can get the
counting result without actually generating the sequences. The fastest algorithm we know

11

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



of that can generate all zero-free graphical degree sequences of length n is from Ruskey et
al [12]. We adapted this algorithm to incorporate the test in Algorithm 1 to count those
that are forcibly connected. Since D(n) grows as an exponential function of n based on the
bounds given by Burns [13] (4n/(c1n) ≤ D(n) ≤ 4n/((log n)c2

√
n)) for all sufficiently large

n with c1, c2 positive constants), it is unlikely to get the value of Df (n) for large n using an
exhaustive generation algorithm. We only have counting results of Df (n) for n up to 26 due
to the long running time of our implementation. The results together with the proportion
of them in all zero-free graphical degree sequences are listed in Table 4. From the table it
seems reasonable to conclude that the proportion Df (n)/D(n) will increase when n ≥ 8 and
it might tend to the limit 1.

Table 4: Number of forcibly connected graphical degree sequences of length n and their
proportions in zero-free graphical degree sequences of length n.

n D(n) Df (n) Df (n)/D(n)

4 7 6 0.857143
5 20 18 0.900000
6 71 63 0.887324
7 240 216 0.900000
8 871 783 0.898967
9 3148 2843 0.903113
10 11655 10535 0.903904
11 43332 39232 0.905382
12 162769 147457 0.905928
13 614198 556859 0.906644
14 2330537 2113982 0.907079
15 8875768 8054923 0.907518
16 33924859 30799063 0.907861
17 130038230 118098443 0.908182
18 499753855 454006818 0.908461
19 1924912894 1749201100 0.908717
20 7429160296 6752721263 0.908948
21 28723877732 26114628694 0.909161
22 111236423288 101153550972 0.909356
23 431403470222 392377497401 0.909537
24 1675316535350 1524043284254 0.909705
25 6513837679610 5926683351876 0.909860
26 25354842100894 23073049582134 0.910006

Since our adapted algorithm from Ruskey et al [12] for computing Df (n) actually gener-
ates all forcibly connected graphical degree sequences of length n, it is trivial to also output
the individual counts based on the degree sum N or the largest degree ∆. That is, we can
output the number of forcibly connected graphical degree sequences of length n with degree
sum N or largest term ∆. In Table 5, we show itemized potentially and forcibly connected
graphical degree sequences of length 7 based on the degree sum N . The counts for N < 12

12

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



Table 5: Number of potentially (row C7[N ]) and forcibly (row F7[N ]) connected graphical
degree sequences of length 7 with given degree sum N .

N 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

C7[N ] 7 11 15 22 26 29 29 26 23 18 13 8 5 2 1 1
F7[N ] 3 5 10 19 25 28 29 26 23 18 13 8 5 2 1 1

Table 6: Number L15[j] of forcibly connected graphical degree sequences of length 15 with
given largest term j.

j 14 13 12 11 10 9 8 7 6

L15[j] 3166852 2624083 1398781 600406 201128 52903 9718 1031 21

are not shown because those counts are all 0. The highest degree sum is 42 for any graphical
degree sequence of length 7. From the table, we see that the individual counts based on the
degree sum N that contribute to Dc(7) (row C7[N ]) and Df (7) (row F7[N ]) both form a
unimodal sequence. Counts for other degree sequence lengths from 5 to 26 exhibit similar
behavior. Based on the available enumerative results, we find that for any given n the range
of even N for Cn[N ] and Fn[N ] to be nonzero are exactly the same (between 2n − 2 and
n(n− 1)). We prove this observation is true below.

Proposition 4.1. An even N has a potentially connected graphical partition with n parts if
and only if it has a forcibly connected graphical partition with n parts.

Proof. Sufficiency is obvious by definition. In the following we show the necessity.

Suppose an even N has a potentially connected graphical partition with n parts. From
the Wang and Kleitman characterization [6] we know that N must be between 2n − 2 and
n(n− 1) for it to have a potentially connected graphical partition of n parts. Now construct
a partition π of N with n parts as follows. Let the largest part be n − 1 and let the
remaining n − 1 parts be distributed as evenly as possible. That is, let b = bN−n+1

n−1 c and
a = N − (n− 1)(b+ 1). Then, the smallest n− 1 parts of π consist of a copies of b+ 1 and
n−1−a copies of b. With 2n−2 ≤ N ≤ n(n−1), we have 0 < b ≤ n−1 and 0 ≤ a < n−1.
Based on the Nash-Williams condition, it is easy to verify that π is a graphical partition of
N with n parts and it is forcibly connected since its largest part is n− 1. �

In Table 6, we show itemized numbers of forcibly connected graphical degree sequences
of length 15 based on the largest degree. The counts for largest degrees less than 6 are not
shown because those counts are all 0. From the table we can see that the counts decrease
with the largest degree. For other degree sequence lengths from 5 to 26 we observed similar
behavior. The table also indicates that there are no forcibly connected graphical degree
sequences of length 15 with largest degree less than 6. In fact, if we define M(n) to be the
minimum largest term in any forcibly connected graphical sequence of length n. This is,
M(n)

.
= min{∆: ∆ is the largest term of some forcibly connected graphical degree sequence

of length n}. Clearly, we have M(n) ≤ n/2 since for even n the sequence n/2, n/2, · · · , n/2
of length n is forcibly connected. We can show a lower bound of M(n) as follows.

13

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



Theorem 4.2. For M(n) defined above, we have M(n) = Ω(
√
n). That is, there is a

constant c > 0 such that M(n) > c
√
n for all sufficiently large n.

Proof. For the purpose of deriving a contradiction, assume there is a forcibly connected
graphical degree sequence ß = (d1 ≥ d2 ≥ · · · ≥ dn) of length n with the largest term
d1 = M(n) = o(

√
n).

Let us first consider the case that n is even. Let ßH be the higher half (of length n/2)
of ß and ßL be the lower half (of length n/2) of ß. If both ßH and ßL have even sums, then
they can be shown to be graphical degree sequences based on the Nash-Williams condition
[14, 15, 4] as follows. Suppose the Durfee square size of ß is s, where s ≤ d1 = M(n) by the
definition of Durfee square. Since ß is graphical, it satisfies the Nash-Williams condition,
which can be represented as s inequalities:

j∑
i=1

(d′i − di) ≥ j, j = 1, · · · , s,

where d′1, · · · , d′s are the largest s parts of the conjugate partition of the partition ß (d′1 = n).
Now ß and ßH have the same Durfee square size by our assumption that s = o(

√
n) and they

have the same s largest parts. Let the s largest parts of the conjugate of ßH be d′′1, · · · , d′′s
with d′′1 = n/2 by our construction. To show that ßH is graphical, we only need to show that
the following s inequalities hold:

j∑
i=1

(d′′i − di) ≥ j, j = 1, · · · , s. (3)

The first of these inequalities d′′1 − d1 = n/2 −M(n) ≥ 1 is clearly satisfied since M(n) =
o(
√
n). We also have the following inequalities,

d′′j ≥ s and dj ≤M(n), j = 2, · · · , s,

so we have d′′j − dj ≥ s −M(n), j = 2, · · · , s. Even if d′′j − dj, j = 2, · · · , s are all negative,
their sum will be of order o(n) since s ≤M(n) = o(

√
n). Clearly, the s inequalities in (3) are

all satisfied since d′′1 − d1 = n/2−M(n) is of order Ω(n). This shows that ßH is graphical.
By the same argument ßL is graphical and we have found that ß can be decomposed into
two sub graphical degree sequences ßH and ßL. This contradicts our assumption that ß is
forcibly connected.

If both ßH and ßL have odd sums (we cannot have one of them having even sum and
the other having odd sum since the sum of all the terms of ß is even), then it must be the
case that both ßH and ßL have an odd number of odd terms. Construct two new sequences
ß′H and ß′L from ßH and ßL by removing the largest odd term from ßL and adding it to ßH.
Now, clearly ß′H and ß′L is a decomposition of ß into two sub sequences of length n/2+1 and
n/2− 1 respectively and both having even sums. Again they are guaranteed to be graphical
degree sequences by the Nash-Williams condition using a similar argument as above, which
contradicts the assumption that ß is forcibly connected.

The case for n odd can be proved in a similar way. The conclusion that M(n) cannot be
of lower order than

√
n then follows. �

14

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



We do not have any theory or algorithm to efficiently obtain M(n) for any given n. Other
than recording the minimum largest term while enumerating all forcibly connected graphical
degree sequences of length n, a naive approach would be to let ∆ start from 3 upward and
test if there is a forcibly connected graphical degree sequence of length n with largest term ∆
and stop incrementing ∆ when we have found one. Obviously, this works, but is not efficient.
Any efficient algorithm for M(n) might be worthwhile to be added into Algorithm 1 so that
it can immediately return False if d1 < M(n). However, while we conduct performance
evaluations of Algorithm 1 we do find that a random graphical degree sequence of length n
with d1 ≤ n/2 most likely can be decided instantly by Algorithm 1. Therefore we believe
that an efficient algorithm for M(n) will not help much on average. We show the values of
M(n) based on our enumerative results in Table 7. The fact that M(15) = 6 agrees with the
results of Table 6 where the counts L15[j] = 0 for all j < 6. As a side note, the minimum
largest term in any potentially connected graphical sequence of length n is clearly 2 since the
degree sequence 2, 2, · · · , 2 (n copies) is potentially connected while 1, 1, · · · , 1 (n copies) is
not potentially connected.

Table 7: Minimum largest term M(n) of forcibly connected graphical sequences of length n.

n 3 4 5 6 7 8 9 10 11 12 13 14
M(n) 2 2 2 3 3 3 4 4 5 5 5 6

n 15 16 17 18 19 20 21 22 23 24 25 26
M(n) 6 6 7 7 7 7 8 8 8 8 8 9

We also investigated the number gf (n) of forcibly connected graphical partitions of a
given even integer n. There is a highly efficient Constant Amortized Time (CAT) algorithm
of Barnes and Savage [16] to generate all graphical partitions of a given even n. And there
are efficient counting algorithms of Barnes and Savage [17] and Kohnert [18] to count the
number g(n) of graphical partitions of even n without generating them. It is known from
Erdős and Richmond [19] that the number gc(n) of potentially connected graphical partitions

of n and g(n) are of equivalent order, i.e. limn→∞
gc(2n)
g(2n)

= 1. It is also known from Pittel

[20] that the proportion of graphical partitions among all partitions of an integer n tends to
0. Although the order of the number p(n) of unrestricted partitions of n is long known since
Hardy and Ramanujan [21], the exact asymptotic order of g(n) is still unknown. We know
of no algorithm to count the number gf (n) of forcibly connected graphical partitions of n
without generating them. Using a strategy similar to that we employed in computing Df (n),
we adapted the algorithm of Barnes and Savage [16] and incorporated the test of forcibly
connectedness from Algorithm 1 and counted those that are forcibly connected. The growth
of g(n) is quick and we only have numerical results of gf (n) for n up to 170. The results
together with the proportion of them in all graphical partitions are listed in Table 8. For
the purpose of saving space, we only show the results in increments of 10 for n. From the
table it seems reasonable to conclude that the proportion gf (n)/g(n) will decrease when n
is beyond some small threshold and it might tend to the limit 0.

Like the situation for Df (n), the adapted algorithm from Barnes and Savage [16] to
compute gf (n) actually generates all forcibly connected graphical partitions of n, so it is
trivial to also output the individual counts based on the number of parts or the largest part.

15

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



Table 8: Number of forcibly connected graphical partitions of n and their proportions in all
graphical partitions of n

n g(n) gf (n) gf (n)/g(n)

10 17 8 0.470588
20 244 81 0.331967
30 2136 586 0.274345
40 14048 3308 0.235478
50 76104 15748 0.206927
60 357635 66843 0.186903
70 1503172 256347 0.170537
80 5777292 909945 0.157504
90 20614755 3026907 0.146832
100 69065657 9512939 0.137738
110 219186741 28504221 0.130045
120 663394137 81823499 0.123341
130 1925513465 226224550 0.117488
140 5383833857 604601758 0.112299
150 14555902348 1567370784 0.107679
160 38173235010 3951974440 0.103527
170 97368672089 9714690421 0.099772

Table 9: Number of potentially (row c20[j]) and forcibly (row f20[j]) connected graphical
partitions of 20 with given number of parts j.

number of parts j 5 6 7 8 9 10 11

c20[j] 1 9 26 38 37 36 30
f20[j] 1 9 25 22 10 9 5

Table 10: Number l20[j] of forcibly connected graphical partitions of 20 with given largest
term j.

largest part j 3 4 5 6 7 8 9 10

l20[j] 1 14 26 20 12 5 2 1

Table 11: Minimum largest term m(n) of forcibly connected graphical partitions of n.

n 10 20 30 40 50 60 70 80 90 100

m(n) 2 3 4 5 5 6 6 6 7 7

In Table 9, we show the individual counts of potentially and forcibly connected graphical
partitions of 20 based on the number of parts. Counts for the number of parts less than 5 or
greater than 11 are not shown since those counts are all 0. The ranges of the number of parts
j for which the number cn[j] of potentially connected graphical partitions of n with j parts

16

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



and the number fn[j] of forcibly connected graphical partitions of n with j parts are nonzero
are exactly the same based on Proposition 4.1. The smallest number of parts j for which cn[j]
and fn[j] are both nonzero is the smallest positive integer t(n) such that t(n)(t(n)− 1) ≥ n
and this is also the smallest number of parts for which a partition of n with this many parts
might be graphical. The largest number of parts j for which cn[j] and fn[j] are both nonzero
is n/2 + 1 based on the Wang and Kleitman characterization [6]. In Table 10, we show the
individual counts of forcibly connected graphical partitions of 20 based on the largest part.
Counts for the largest part less than 3 or greater than 10 are not shown since those counts are
all 0. Clearly, n/2 is the maximum largest part of any forcibly connected graphical partition
of n since n/2, 1, 1, · · · , 1 (n/2 copies of 1) is a forcibly connected graphical partition of n
and no graphical partition of n has its largest part greater than n/2. However, similar to the
case of M(n), the minimum largest part, m(n), of any forcibly connected graphical partition
of n does not seem to be easily obtainable. Clearly, m(n) grows at most like

√
n since for

every large even n, it has a graphical partition with about
√
n parts and all parts about√

n − 1 and this graphical partition is forcibly connected. In Table 11, we show several
values of m(n). They are obtained while we exhaustively generate all graphical partitions
of n and keep a record of the minimum largest part. The fact that m(20) = 3 agrees with
the results of Table 10 where l20[j] = 0 for all j < 3. As a side note, the minimum largest
part of any potentially connected graphical partition of n is clearly 2 since 2, 2, · · · , 2 (n/2
copies) is a potentially connected graphical partition of n while 1, 1, · · · , 1 (n copies) is not.

4.3 Questions and conjectures

Based on the available enumerative results, we ask the following questions and make certain
conjectures:

1. What is the growth order of Df (n) relative to D(n)? Note that the exact asymptotic
order of D(n) is still unknown. (Some upper and lower bounds of D(n) are known. See

Burns [13]). We conjecture limn→∞
Df (n)

D(n)
= 1. That is, almost all zero-free graphical degree

sequences of length n are forcibly connected. If this is true, then it is a stronger result than
the known result (see [11]) limn→∞

Dc(n)
D(n)

= 1 since Df (n) ≤ Dc(n) ≤ D(n). Furthermore,

we conjecture that Df (n)/D(n) is monotonically increasing when n ≥ 8. Let Dc k(n) and
Df k(n) denote the number of potentially and forcibly k-connected graphical degree sequences

of length n, respectively. It is already known from [11] that limn→∞
Dc k(n)
D(n)

6= 1 when k ≥ 2.

Clearly we also have limn→∞
Df k(n)

D(n)
6= 1 when k ≥ 2. What can be said about the relative

orders of Dc k(n), Df k(n) and D(n) when k ≥ 2?
2. What is the growth order of gf (2n) relative to g(2n)? Note that the exact asymptotic

order of g(2n) is unknown yet. We conjecture limn→∞
gf (2n)

g(2n)
= 0. That is, almost none

of the graphical partitions of 2n are forcibly connected. Furthermore, we conjecture that
gf (2n)/g(2n) is monotonically decreasing when n ≥ 5. Let gc k(n) and gf k(n) denote the
number of potentially and forcibly k-connected graphical partitions of n, respectively. What
can be said about the relative orders of gc k(n), gf k(n) and g(n) when k ≥ 2?

3. We conjecture that the numbers of forcibly connected graphical partitions of N with
exactly n parts, when N runs through 2n− 2, 2n, · · · , n(n− 1), give a unimodal sequence.

4. Let t(n) be the smallest positive integer such that t(n)(t(n)− 1) ≥ n. We conjecture

17

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



that the numbers of forcibly connected graphical partitions of n with j parts, when j runs
through t(n), t(n) + 1, · · · , n/2 + 1, give a unimodal sequence.

5. What is the growth order of M(n), the minimum largest term in any forcibly connected

graphical sequence of length n? Is there a constant C > 0 such that limn→∞
M(n)
n

= C? Is
there an efficient algorithm to compute M(n)?

6. What is the growth order of m(n), the minimum largest term in any forcibly connected

graphical partition of n? Is there a constant C > 0 such that limn→∞
m(n)√

n
= C? Is there an

efficient algorithm to compute m(n)?

7. We conjecture that the numbers of forcibly connected graphical partitions of an even n
with largest part exactly ∆, when ∆ runs through m(n),m(n) + 1, · · · , n/2, give a unimodal
sequence.

8. We showed all these decision problems to test whether a given graphical degree
sequence is forcibly k-connected to be in co-NP for fixed k ≥ 1. Are they co-NP-hard?
Is the decision problem for k + 1 inherently harder than for k?

5 Conclusions

In this paper, we presented an efficient algorithm to test whether a given graphical degree
sequence is forcibly connected or not and its extensions to test forcibly k-connectedness of
graphical degree sequences for fixed k ≥ 2. Through performance evaluations on a wide range
of long random graphical degree sequences, we demonstrate its average case efficiency and
we believe that it runs in polynomial time on average. We, then, incorporated this testing
algorithm into existing algorithms that enumerate zero-free graphical degree sequences of
length n and graphical partitions of an even integer n to obtain some enumerative results
about the number of forcibly connected graphical degree sequences of length n and forcibly
connected graphical partitions of n. We proved some simple observations related to the
available numerical results and made several conjectures. We are excited that there are
many avenues for further investigation in this line of research.

References

[1] P. Erdős and T. Gallai, “Graphs with given degree of vertices,” Mat. Lapok, vol. 11,
pp. 264–274, 1960.

[2] V. Havel, “A remark on the existence of finite graphs,” Časopis pro pěstováńı matem-
atiky, vol. 80, no. 4, pp. 477–480, 1955.

[3] S. L. Hakimi, “On realizability of a set of integers as degrees of the vertices of a linear
graph. I,” Journal of the Society for Industrial and Applied Mathematics, vol. 10, no. 3,
pp. 496–506, 1962.

[4] G. Sierksma and H. Hoogeveen, “Seven Criteria for Integer Sequences Being Graphic,”
Journal of Graph Theory, vol. 15, no. 2, pp. 223–231, 1991.

18

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202



[5] S. B. Rao, A survey of the theory of potentially P-graphic and forcibly P-graphic degree
sequences, pp. 417–440. Springer Berlin Heidelberg, 1981.

[6] D. L. Wang and D. J. Kleitman, “On the Existence of n-Connected Graphs with Pre-
scribed Degrees (n≥2),” Networks, vol. 3, no. 3, pp. 225–239, 1973.

[7] G. Chartrand, S. F. Kapoor, and H. V. Kronk, “A sufficient condition for n-
connectedness of graphs,” Mathematika, vol. 15, no. 1, pp. 51–52, 1968.

[8] F. T. Boesch, “The strongest monotone degree condition for n-connectedness of a
graph,” Journal of Combinatorial Theory, Series B, vol. 16, no. 2, pp. 162–165, 1974.

[9] S. A. Choudum, “On forcibly connected graphic sequences,” Discrete Mathematics,
vol. 96, no. 3, pp. 175–181, 1991.

[10] A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, “Parallel enumeration of degree
sequences of simple graphs II,” Acta Universitatis Sapientiae, Informatica, vol. 5, no. 2,
pp. 245–270, 2013.

[11] K. Wang, “Efficient counting of degree sequences,” https://arxiv.org/abs/1604.04148,
Under Review.

[12] F. Ruskey, R. Cohen, P. Eades, and A. Scott, “Alley CATs in search of good homes,”
in 25th S.E. Conference on Combinatorics, Graph Theory, and Computing, vol. 102,
pp. 97–110, Congressus Numerantium, 1994.

[13] J. M. Burns, The Number of Degree Sequences of Graphs. PhD thesis, Massachusetts
Institute of Technology. Dept. of Mathematics, 2007.

[14] E. Ruch and I. Gutman, “The Branching Extent of Graphs,” Journal of Combinatorics,
Information and System Sciences, vol. 4, no. 4, pp. 285–295, 1979.

[15] C. C. Rousseau and F. Ali, “A Note on Graphical Partitions,” Journal of Combinatorial
Theory, Series B, vol. 64, no. 2, pp. 314–318, 1995.

[16] T. M. Barnes and C. D. Savage, “Efficient generation of graphical partitions,” Discrete
Applied Mathematics, vol. 78, no. 13, pp. 17–26, 1997.

[17] T. M. Barnes and C. D. Savage, “A Recurrence for Counting Graphical Partitions,”
Electronic Journal of Combinatorics, vol. 2, 1995.

[18] A. Kohnert, “Dominance Order and Graphical Partitions,” Electronic Journal of Com-
binatorics, vol. 11, no. 1, 2004.

[19] P. Erdős and L. B. Richmond, “On graphical partitions,” Combinatorica, vol. 13, no. 1,
pp. 57–63, 1993.

[20] B. Pittel, “Confirming Two Conjectures About the Integer Partitions,” Journal of Com-
binatorial Theory, Series A, vol. 88, no. 1, pp. 123–135, 1999.

19

Wang: Algorithm to Test Forcibly-connectedness

Published by Digital Commons@Georgia Southern, 2018



[21] G. H. Hardy and S. Ramanujan, “Asymptotic formulae in combinatory analysis,” Proc.
London Math. Soc., vol. 17, pp. 75–115, 1918.

20

Theory and Applications of Graphs, Vol. 5 [2018], Iss. 2, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol5/iss2/2
DOI: 10.20429/tag.2018.050202


	Theory and Applications of Graphs
	July 2018

	An Efficient Algorithm to Test Forcibly-connectedness of Graphical Degree Sequences
	Kai Wang
	Recommended Citation

	An Efficient Algorithm to Test Forcibly-connectedness of Graphical Degree Sequences
	Cover Page Footnote


	Introduction
	The testing algorithm
	Preliminaries
	Pseudo-code and the proof of its correctness
	Extensions of the algorithm
	Enumeration of all possible decompositions
	Testing forcibly k-connectedness of d when k2


	Complexity analysis
	Computational results
	Performance evaluations of Algorithm 1
	Enumerative results
	Questions and conjectures

	Conclusions
	Acknowledgments

