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Abstract

We introduce and study γ′-realizable sequences. For a finite, simple graph G containing no
isolated vertices, I ⊆ V (G) is said to be an inverse dominating set if I dominates G and I is
contained by the complement of some minimum dominating set D. Define a sequence of posi-
tive integers (x1, . . . , xn) to be γ′-realizable if there exists a graph G having exactly n distinct
minimum dominating sets D1, . . . , Dn where for each i ∈ {1, . . . , n}, the minimum size of an
inverse dominating set in V (G)\Di is equal to xi. In this work, we show which sequences having
minimum entry 2 or less are γ′-realizable. We then detail a few observations and results arising
during our investigations that may prove useful in future research.

Keywords and phrases: domination, inverse domination, graph realizations

1 Introduction

All graphs considered in this work will be finite, simple, and contain no isolated vertices. All
sequences will be finite and contain as their entries positive integers only. For a guide to the
labyrinth of topics and avenues of exploration one may encounter in the subject of domination
theory, we refer our readers to [4], but for our needs, we can make do with the following basics.
For a graph G, a set D ⊆ V (G) is said to be a dominating set (or just dominating, for short) if
for each vertex v 6∈ D, v is adjacent to some vertex of D. The size of a minimum dominating set
is called the domination number of G and is denoted γ(G). The concept of inverse domination
is introduced in [5]. A set I ⊆ V (G) is said to be an inverse dominating set if I dominates G,
and I is contained in the complement of some minimum dominating set. The size of a minimum
inverse dominating set (considered over all possible minimum dominating sets) is called the inverse
domination number of G and is denoted γ′(G). A fundamental observation in domination theory
is that for a graph G containing no isolated vertices and having D as a minimum dominating set,
V (G) \D also dominates G. Therefore, for each minimum dominating set D of G, the minimum
size of an inverse dominating set I ⊆ V (G) \D is well-defined.

In this work, we introduce the idea of γ′-realizability. For a non-decreasing sequence of positive
integers x = (x1, . . . , xn), we say x is γ′-realizable if there exists a graph G having exactly n
distinct minimum dominating sets D1, . . . , Dn where for each i ∈ {1, . . . , n}, the minimum size
of an inverse dominating set in V (G) \ Di is equal to xi. For the sake of clarity, we offer the
following example. Consider the sequence (2, 2, 3). As it turns out, this sequence is γ′-realizable
and is realized by the path of length four, P5. To see this, label its vertex set V (P5) = {v1, . . . , v5}
where E(P5) = {v1v2, v2v3, v3v4, v4v5}, and note that γ(P5) = 2. Furthermore, P5 contains three
minimum dominating sets which we designate as D1 = {v1, v4}, D2 = {v2, v5}, and D3 = {v2, v4}.
For each i ∈ {1, 2, 3}, let Ii be a minimum inverse dominating set in V (P5) \ Di, and we have
I1 = {v2, v5}, I2 = {v1, v4}, and I3 = {v1, v3, v5}. As |I1| = |I2| = 2 and |I3| = 3, we have that P5

realizes (2, 2, 3).
Equipped with this definition, one may immediately ask which sequences are γ′-realizable. Al-

though our assessments indicate that this question may be difficult to answer in complete generality,
we make a beginning attempt in Section 2. There, we consider sequences whose smallest entry is
a 1 or 2, and determine exactly which of those are γ′-realizable. We then turn our attention to
a few related problems that have popped up along the way. In Section 3, we study the effect of
edge-deletion on the parameter γ′(G), ultimately showing that for any integer k, there exists a
graph G with e ∈ E(G), where γ′(G) − γ′(G − e) = k. In Section 4, we offer a few questions for
future study.
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2 Sequences with Small Entries

For a sequence containing a 1 as an entry, it is quite easy to decide if that sequence is γ′-realizable.

Theorem 2.1. A sequence containing a 1 is γ′-realizable if and only if it has length at least 2, and
each other entry in the sequence is also a 1.

Proof. Let x be a sequence with some entry being a 1. Since γ(G) ≤ γ′(G), for x to be realized
by a graph G, we must have γ(G) = γ′(G) = 1. In other words, there are two vertices of G, call
them v1 and v2, that dominate all of G. Thus x must have length at least two. Any minimum
dominating set D of G will have at least one of v1, v2 in V (G) \D, so any entry of x must be a 1.
Now supposing that x is a sequence of length n ≥ 2 whose every entry is a 1, we have that x is
realized by the complete graph Kn.

For the rest of this section, we will operate under the assumption that any sequence mentioned
contains no 1’s as entries.

Theorem 2.2. Let m ≥ 2 and let x = (m, . . . ,m) be a sequence length n. Then x is γ′-realizable.

Proof. We construct a graph G realizing x in the following fashion. Start with a copy of the
complete graph Kmn, designate by A its set of vertices, and partition A into n sets of m vertices
each. Label these disjoint sets D1, . . . , Dn, and for each i ∈ {1, . . . , n}, label the vertices of Di

as being ai,1, . . . , ai,m. When our construction is finished, these Di will form the n minimum
dominating sets that G requires.

For the next step in the construction of our graph G, place in G a set B of mn indepen-
dent vertices labeled b0, b1, . . . , bmn−1. We establish adjacencies between the vertices of A and
B with the following recursive relation. Beginning with the vertices of D1, let a1,1 be adjacent
to each of {b0, . . . , bn−1}, a1,2 be adjacent to each of {bn, . . . , b2n−1}, . . . , a1,m be adjacent to
each of {b(m−1)n, . . . , bmn−1}. For i ∈ {2, . . . , n}, supposing vertex ai−1,j is adjacent to each of
{bα, . . . , bα+n−1} for some positive integer α, let ai,j be adjacent to each of {bα+1, . . . , bα+n}, where
each subscript is computed modulo mn.

For i ∈ {1, . . . , n}, we now have that Di is a minimum dominating set, and since the Di are
disjoint from each other, we have the existence of an inverse dominating set of size m in each
V (G) \ Di. Our only issue of concern is that our construction did not accidentally result in G
having an (n+ 1)th minimum dominating set. We allay this concern by observing that each vertex
of A dominates exactly n vertices of B, and if m vertices of A were chosen without each of them
being members of the same set Di, then there must be some vertex of B dominated by two of the
selected vertices. This guarantees that G does in fact realize x.

We will now focus solely on sequences whose minimum entry is a 2, and through the next four
lemmas establish exactly which of those sequences are γ′-realizable.

Lemma 2.3. Let x be a sequence of length greater than two which has exactly one of its entries
being a 2. Then x is not γ′-realizable.

Proof. Let x be as described and suppose to the contrary that x is γ′-realizable. Let G be a graph
realizing x and note that G cannot have a minimum dominating set of size one as that would force
each entry of x to be a 1. It follows that there exists some minimum dominating set D of size two
along with an inverse dominating set I ⊆ V (G) \D with I of size two as well. However, I is also
a minimum dominating set with D as an inverse dominating set in its complement, and we have
that x must have at least two of its entries being a 2.
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Lemma 2.4. Let x be a sequence that contains at least one 2 as an entry and at least three entries
that are each greater than 2. Then x is not γ′-realizable.

Proof. Again, let x be as described and suppose to the contrary that G is a graph realizing x. We
must have γ(G) = 2, and by Lemma 2.3, G must have two disjoint minimum dominating sets which
we will designate {a1, a2} and {b1, b2}. Let x1, x2, x3 be three entries of x that are each greater
than two and label the minimum dominating sets corresponding to the inverse dominating sets of
these sizes as being D1, D2, D3. Since each of these D1, D2, D3 cannot have an inverse dominating
set of size two in their complement, we must have each of D1, D2, D3 intersecting both {a1, a2}
and {b1, b2} and also we must have that no two of D1, D2, D3 can be disjoint. Without loss of
generality, assume that D1 = {a1, b1} and D2 = {a1, b2}. There is then no way of constructing D3

to satisfy the above conditions.

Lemma 2.5. For n ≥ 3, let x be a sequence of length n that contains n− 1 2’s as entries and one
entry x for any x ≥ 3. Then x is γ′-realizable.

Proof. First, we consider the case n = 3, and create a graph G to realize (2, 2, x). Begin with a
copy of K4 with vertex set {a1, a2, b1, b2}. Now place a number of independent vertices v1, . . . , vr
for some large r. We will place edges to make each of a1, a2, b1, b2 adjacent to various vi, but instead
of just listing the adjacencies, it is easier to depict them visually. In the diagram below, suppose all
of the vi are situated on a line segment v1vr. The bars labeled a1, a2, b1, b2 will be used to indicate
which of these vi are adjacent to the respective a1, a2, b1, b2, with the stipulation that if a vertex
vi lies on the portion of the line segment above a bar, it is adjacent to the vertex corresponding
to that bar. As r can be made arbitrarily large, we can make those portions of the line segment
above the overlap of two different bars have as many vi vertices as we want, but as long as there
are x− 2 vertices not adjacent to either of a2 and b2, we have constructed the desired graph G.

v1 vr

x − 2 vertices in the gap
between a2 and b2

a1 b1

b2
a2

In the end, G has the following three minimum dominating sets and corresponding inverse
dominating sets: D1 = {a1, a2} with I1 = {b1, b2}, D2 = {b1, b2} with I2 = {a1, a2}, and D3 =
{a1, b1} with I3 equaling the union of {a2, b2} and the set of x− 2 vi’s not adjacent to either or a2
or b2.

For n > 3, we start with the graph G constructed above and place independent vertices
u1, . . . un−3, making all of them adjacent to each of a1, a2, b1, b2. Our goal will be to place edges
between the uj ’s and vi’s so that each {a1, uj} is a minimum dominating set. Note also that each
{a1, uj} has {b1, b2} as a corresponding minimum inverse dominating set. The only precaution we
need to take is to make sure that we do not interfere with {a1, b1} having a corresponding mini-
mum inverse dominating set of size x. This is easily done by making each of the uj adjacent to
the same vi’s, that is, if the vertices in uj are adjacent to vz, vz+1, . . . , vr then uj+1 is adjacent to
vz, vz+1, . . . , vr, and uj+2 is adjacent to vz, vz+1, . . . , vr, and so on – enough to ensure that {a1, uj}
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is dominating, but at the same time a proper subset of those vi’s that are adjacent to a2. Our
diagram will now look like the one given below.

v1 vr

x − 2 vertices in the gap
between a2 and b2

a1 b1

b2
a2

uj

This completes the proof.

Lemma 2.6. For n ≥ 4, let x be a sequence of length n that contains n− 2 2’s along with entries
x and y for any x, y ≥ 3. Then x is γ′-realizable.

Proof. We begin by considering the sequence (2, 2, x, y) and proceed in a fashion similar to Lemma 2.5.
Form a graph G by starting with a copy of K4 whose vertices are labeled a1, a2, b1, b2. When our
construction is complete, the four minimum dominating sets of G will be {a1, a2}, {b1, b2}, {a1, b1},
and {a1, b2}. The first two of these four sets of vertices are disjoint and therefore have correspond-
ing minimum inverse dominating sets of size two, while the last two of these four will end up having
corresponding minimum inverse dominating sets of size x and y, respectively. As in the proof of
Lemma 2.5, for some large r, place independent vertices v1, . . . , vr, and place edges between these
vertices and a1, a2, b1, b2 as stipulated by the figure below. We just need to arrange the vertices
v1, . . . , vr on the line segment so that there are x− 2 vi’s in the gap between a2 and b2 and y − 2
vi’s in the gap between a2 and b1.

v1 vr

a1
b1

b2
a2

b2
a2

For n > 4, we start with the graph G constructed above and place independent vertices
u1, . . . un−4, making all of them adjacent to each of a1, a2, b1, b2. As in the previous lemma, we
again want to place edges between the uj ’s and vi’s so that each {a1, uj} is a minimum dominating
set. Note that each {a1, uj} has {b1, b2} as a corresponding minimum inverse dominating set. Here
we only need to take care that {a1, b1} still has a corresponding minimum inverse dominating set
of size x and that {a1, b2} has a corresponding minimum inverse dominating set of size y. To do
this, just make each of the uj adjacent to the same vi’s as given in the figure below.
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v1 vr

a1
b1

b2
a2
uj

b2

uj

a2

Summarizing the results of the previous lemmas, we have the main result of this section.

Theorem 2.7. Let x be a sequence having minimum entry 2. Then x is γ′-realizable if and only if
x consists of a single entry or x contains at least two 2’s and at most two entries that are not 2’s.

3 Inverse Domination and Edge-Deletion

In this section we detail the behavior of the inverse domination number of a graph with regard to
edge-deletion. It is shown that for any integer k, there exists a graph G and e ∈ E(G) such that
γ′(G)− γ′(G− e) = k. The interesting (and perhaps unexpected) result is that, unlike γ(G) or say,
the independence number α(G), we have that γ′(G) can actually increase as a result of the deletion
of an edge.

Theorem 3.1. For any k ≥ 0, there exists a graph G and e ∈ E(G) such that γ′(G)−γ′(G−e) = k.

Proof. Consider the graph G given below, noting that each of the vertices v1, . . . , vk is adjacent to
both a and b.

u2

u1

u3

a b

u4 u5
v1 v2 vk−1 vk

e

It is clear that γ(G) = 2 with {a, b} being the only minimum dominating set of G. It is also
straightforward to see that the only minimum inverse dominating set is {u1, u4, u5, v1, . . . , vk}, and
so γ′(G) = k + 3. Letting e = au2, we have that {a, b} is no longer dominating in G − e. This
means that γ(G − e) = 3, and in fact {a, u1, u5} and {b, u2, u4} are disjoint minimum dominating
sets in G− e. This gives us γ′(G− e) = 3, and thus γ′(G)− γ′(G− e) = k.

Theorem 3.2. For any k ≥ 0, there exists a graph H and e ∈ E(H) such that γ′(H−e)−γ′(H) = k.

Proof. Let G be the graph given in the proof of the previous theorem, and form H by placing an
edge between vertices u1 and u4. This graph is given in the figure below.
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u2

u1

u3

a b

u4 u5
v1 v2 vk−1 vk

e

We have that γ(H) = 2, but in contrast to G, there are two minimum dominating sets of H, which
we denote D1 = {a, b} and D2 = {b, u1}. The smallest size of an inverse dominating set of H
is 3, and is evidenced by I = {a, u3, u5}. Letting e = u1u4, we have H − e = G, and from the
observations in the proof of the previous theorem, γ′(H−e) = k+3. So γ′(H−e)−γ′(H) = k.

4 Further Work

In this section we collect a few problems that seem (to the authors at least) like fertile ground for
future investigation. The most immediate is the question below.

Question 1. Determine in general which sequences are γ′-realizable.

It may also be worthwhile to examine which γ′-realizable sequences have a unique graph G
leading to their realization. However, to make this question interesting, we must first elaborate on
what we mean by the word “unique”. We do this with a toy example. Consider the sequence x of
length one whose only entry is a 2, which is realized by the path of length 2, P3. There are other
graphs that realize x as well, and in fact, an infinite family of them can be constructed by, for any
positive integer n, starting with P3 and then placing n independent vertices and making each of
them adjacent to all three of the vertices of P3. However, any graph realizing x must contain P3 as
a subgraph. To see this, note that a graph G with no isolated vertices and not containing subgraph
P3 must simply be a collection of independent edges (or in other words, a matching) and will have
more than one minimum dominating set. Thus G cannot realize x. Along these lines, we define a
sequence x to be uniquely γ′-realizable if x is γ′-realizable, and there exists a graph G realizing x
such that any graph realizing x contains G as a subgraph. Our question is now the following.

Question 2. Determine which sequences are uniquely γ′-realizable.

The most widely known open problem in the realm of inverse domination concerns the rela-
tionship between the inverse domination number and vertex independence number of a graph G.
Define the independence number α(G) to be the maximum size of an independent set of vertices in
G.

Question 3. For an arbitrary graph G containing no isolated vertices, is it true that γ′(G) ≤ α(G)?

This question is answered in the affirmative as a theorem in [5], although the proof given in [5]
was later found to have an irreparable hole. In the years since, Question 3 has been presented as
a conjecture in [1], and shown to be true for various families of graphs (most notably, see [2]). In
general, however, it is still open.

In Section 3, we showed the existence of a graph where the deletion of an edge causes the inverse
domination number to decrease. With this in mind, formally define a graph G to be γ′-reducible if
there exists e ∈ E(G) such that γ′(G) > γ′(G− e).
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Question 4. For a γ′-reducible graph G, is it true that γ′(G) ≤ α(G)?

We present Question 4 because its resolution could offer a new avenue of attack for Question 3.
Of course, if a γ′-reducible graph G is produced to answer Question 4 in the negative, that same G
answers Question 3 in the negative as well. So let’s suppose that through some amount of ingenuity
and luck, Question 4 is proven to have a positive answer. Assume that Question 3 possesses a
negative answer – that is, there exists some graph G satisfying α(G) < γ′(G). Furthermore, we
may assume that this graph G is minimum and also that it is connected.

Since G is minimum, for every e ∈ E(G), the graph G′ formed by deleting e does not satisfy
α(G′) < γ′(G′). This could occur for two reasons. Either α(G′) ≥ γ′(G′), in which case e must be
critical to the independence number of G, or γ′(G′) is undefined as G′ may have an isolated vertex.
However, it turns out that the latter option cannot occur. To see this, first note that G cannot
be a star as any star has its independence and inverse domination numbers being equal. Letting
e = ab be a pendant edge of G, we must then have that G contains the path P4 as a subgraph,
whose edges we will label ab, bc, cd. The edge bc must be critical to α(G). Therefore, any maximum
independent set I of G− bc must have b, c ∈ I. However, I ′ = I \ {b} ∪ {a} is also an independent
set with |I| = |I ′|. This contradiction completes the claim that α(G′) ≥ γ′(G′) and guarantees that
each edge of G is critical.

The reason we call attention to this line of inquiry is that so-called α-critical graphs – that is,
graphs G satisfying α(G) < α(G− e) for every e ∈ E(G) – have been extensively studied (see [3],
[6], and many others). Perhaps some already established properties of such graphs could be used
to eventually resolve Question 3.
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