
Theory and Applications of Graphs

Volume 5 | Issue 1 Article 4

2018

A General Lower Bound on Gallai-Ramsey
Numbers for Non-Bipartite Graphs
Colton Magnant
Georgia Southern University, cmagnant@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact
digitalcommons@georgiasouthern.edu.

Recommended Citation
Magnant, Colton (2018) "A General Lower Bound on Gallai-Ramsey Numbers for Non-Bipartite Graphs," Theory and Applications of
Graphs: Vol. 5 : Iss. 1 , Article 4.
DOI: 10.20429/tag.2018.050104
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol5/iss1/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229154374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss1?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss1/4?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol5/iss1/4?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol5%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Abstract

Given a graph H and a positive integer k, the k-color Gallai-Ramsey number
grk(K3 : H) is defined to be the minimum number of vertices n for which any k-coloring
of the complete graph Kn contains either a rainbow triangle or a monochromatic copy
of H. The behavior of these numbers is rather well understood when H is bipartite but
when H is not bipartite, this behavior is a bit more complicated. In this short note,
we improve upon existing lower bounds for non-bipartite graphs H to a value that we
conjecture to be sharp up to a constant multiple.

Keywords: Gallai-Ramsey numbers, non-bipartite graphs, rainbow triangle

1 Introduction

The structure of edge-colored complete graphs containing no rainbow triangle is well under-
stood through the following fundamental result.

Theorem 1 ([1, 7, 10]). In any colored complete graph containing no rainbow triangle, there
exists a partition of the vertices (called a Gallai partition) such that there are at most two
colors on the edges between the parts and only one color on edges between each pair of parts.

In honor of this result, colored complete graphs with no rainbow triangle are called Gallai
colorings (or G-colorings for short) and for simplicity, the Gallai partition is often called a
G-partition. Given a G-coloring with a corresponding G-partition P, the reduced graph
Q = Q(G,P) of this partition is constructed by arbitrarily removing all but one vertex from
each part of the partition. By Theorem 1, the reduced graph is a 2-colored complete graph.

Given two graphs G and H , the Ramsey number R(G,H) is the minimum number of
vertices n such that any red-blue coloring of Kn contains either a red copy of G or a blue
copy of H . Given a graph H and a positive integer k, the k-color Gallai-Ramsey number
grk(K3 : H) is defined to be the minimum number of vertices n for which any k-coloring of
Kn contains either a rainbow triangle or a monochromatic copy of H . Since every 2-colored
complete graph clearly contains no rainbow triangle, we immediately get gr2(K3 : H) =
R(H,H).

The general behavior of the Gallai-Ramsey numbers, as a function of k, is given by the
following result.

Theorem 2 ([9]). Let H be a fixed graph with no isolated vertices. If H is not bipartite,
then grk(K3 : H) is exponential in k. If H is bipartite, then grk(K3 : H) is linear in k.

For bipartite graphs, there is a lower bound that is conjectured to be sharp (see Conjec-
ture 6). For this result, let s(H) denote the order of the smaller part of the bipartite graph
H .

Theorem 3 ([13]). Given a positive integer k ≥ 2 and a connected bipartite graph H with
Ramsey number R(H,H) = R, we have

grk(K3 : H) ≥ R + (s(H)− 1)(k − 2).

If H is a non-bipartite graph, by Theorem 2, we know grk(K3 : H) is an exponential
function of k but the specifics of this are not yet known in general. The goal of this work is
to determine the base of this exponential.
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2 Lower bound on Gallai-Ramsey numbers

In this section, for any given non-bipartite graph H , we produce a lower bound on the
Gallai-Ramsey number grk(K3 : H), the main result being Theorem 4. We begin with some
discussion about colorings of large G-colored complete graphs containing no monochromatic
copy of H and present some definitions.

Since, by Theorem 1, every G-coloring of a complete graph has a partition of the vertices
that forms a blow-up of a 2-coloring, it is important to consider colorings that avoid a
monochromatic copy of H while still forming a blow-up of a 2-coloring. A very natural
approach would be to consider a blow up of the sharpness example for R(H,H), an example
of which displayed in Figure 1. Here we assume we have constructed a coloring Gk−2 on some
number of vertices using k − 2 colors, then make 5 copies of Gk−2 and insert these copies
into a blow-up of the sharpness example for R(K3, K3) using two new colors, to produce a
new graph Gk on k colors.

Gk−2

Gk−2 Gk−2

Gk−2

Gk−2

Gk

Figure 1: An example of this construction

Given a graph H , call a graph H ′ a reduction of H if H ′ can be obtained from H by
identifying sets of non-adjacent vertices (and removing any resulting repeated edges). Let
H be the set of all possible reductions of H . For the sake of the following main definition, let
R2(H ) be the minimum integer n such that every 2-coloring ofKn contains a monochromatic
copy of some graph in the set H . Since this quantity is bounded above by the Ramsey
number R(H,H), its existence is obvious. Now the main definition of this work.

Definition 1. If H is the set of all reductions of a given graph H, define the function m(H)
to be

m(H) = R2(H ).

For example, if H = Kn, then the only reduction of H is H itself so m(Kn) = R2(H ) =
R(Kn, Kn). As a slightly less trivial example, consider the complete graph minus one edge
H = Kn − e, say with e = uv. Then the only nontrivial reduction of Kn − e is Kn−1 so
H = {Kn−1, Kn − e}. Since Kn−1 ⊆ Kn − e, it is clear that

R2({Kn−1, Kn − e}) = R(Kn−1, Kn−1)
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so m(Kn − e) = R(Kn−1, Kn−1).
First an easy general fact about the value of m(H).

Fact 1. For every graph H,
m(H) ≤ R(Kχ(H), Kχ(H)).

Proof. Certainly Kχ(H) is a reduction of H , so Kχ(H) ∈ H . Then we get

m(H) = R2(H ) ≤ R(Kχ(H), Kχ(H)),

as claimed.

We now present our main result, a general lower bound on the Gallai-Ramsey number
for any non-bipartite graph H .

Theorem 4. For a connected non-bipartite graph H and an integer k ≥ 2, we have that
grk(K3 : H) is at least

{

(R(H,H)− 1) · (m(H)− 1)(k−2)/2 + 1 if k is even,

(χ(H)− 1) · (R(H,H)− 1) · (m(H)− 1)(k−3)/2 + 1 if k is odd.

Proof. This result is proven by an inductive construction. For the base of the induction, let
G2 be a 2-colored complete graph on n2 vertices, where n2 = R(H,H) − 1, containing no
monochromatic copy of H . Such a coloring exists by the definition of the Ramsey number.

We first consider the case when k is even. Suppose that 2i < k and there is a 2i-coloring
G2i of Kn2i

on
n2i = (R(H,H)− 1) · (m(H)− 1)(2i−2)/2

vertices containing no rainbow triangle and no monochromatic copy of H .
Let D be a 2-coloring of Km(H)−1 using colors i+1 and i+2 which contains no monochro-

matic copy of any graph in H . Blow-up D by making n2i copies of each vertex (also copying
all edges with their colors) and inserting a copy of G2i into each independent set, the set of
copies of each vertex. See Figure 1 for an example of this construction. Since D contains
no monochromatic copy of any graph in H , this blow-up of D contains no monochromatic
copy of H . This means that the resulting graph, G2i+2 is a (2i+ 2)-coloring of Kn2i+2

on

n2i+2 = (R(H,H)− 1) · (m(H)− 1)(2i−2)/2 · (m(H)− 1)

= (R(H,H)− 1) · (m(H)− 1)(2i)/2

vertices containing no rainbow triangle and no monochromatic copy of H . By induction,
this proves the desired result for even values of k.

Finally suppose k is odd. In this case, construct Gk by making χ(H)− 1 copies of Gk−1

(note that k−1 is even) and inserting all edges between the copies in color k. Any subgraph
of the graph induced on the edges of color k has chromatic number at most χ(H) − 1 so
there is no copy of H in color k. This means that the resulting graph Gk is a k-coloring of
Knk

on
nk = (χ(H)− 1) · (R(H,H)− 1) · (m(H)− 1)(2i−2)/2

vertices containing no rainbow triangle and no monochromatic copy of H , completing the
proof of Theorem 4.
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3 Finding m(H)

Given a graph H with a pair of nonadjacent vertices u and v, let Huv be the reduction of H
obtained from H by identifying u and v to a single vertex (removing any multiple copies of
edges that were created in the process). A very natural question about a relationship between
this reduction operation and Ramsey numbers was suggested by Graham, Rothschild, and
Spencer.

Question 1 ([8]). Is it true that

R(H,H) ≥ R(Huv, Huv)?

In particular, if c = χ(H), then is R(H,H) ≥ R(Kc, Kc)?

By Fact 1, if the answer to Question 1 was “yes”, then for any graph H with chromatic
number c, m(H) would essentially equal R(Kc, Kc). As observed above, the answer to
this question is clearly yes for a complete graph and for a complete graph minus an edge,
i.e. H = Kn − e, since c = n − 1 and Kc ⊆ H . Unfortunately, the answer to Question 1 is
“no” in general since the wheel on 6 vertices provides a counterexample. Let H = W6, the
wheel W6 = C5 + v. Then χ(H) = 4 so set c = 4.

Fact 2.

R(W6,W6) = 17 < 18 = R(K4, K4).

There are, however, many graphs that yield an affirmative answer to Question 1. Recall
a graph H is called perfect if for every induced subgraph H ′ ⊆ H , the clique number ω(H ′)
equals the chromatic number χ(H ′).

Proposition 1. If H is a perfect graph with ω(H) = χ(H) = c, then m(H) = R(Kc, Kc).

Proof. Suppose H is a perfect graph with ω(H) = χ(H) = c. By Fact 1, we have m(H) ≤
R(Kc, Kc) so it suffices to prove thatm(H) ≥ R(Kc, Kc). Since Kc ⊆ H , it is clear thatKc ⊆
H ′ for every reduction H ′ ∈ H . This means R2(H ) ≥ R(Kc, Kc) so m(H) = R(Kc, Kc), as
desired.

Proposition 1 immediately determines m(H) for several classes of graphs.

Corollary 5. The following hold:

• If Bn is the book Bn = K2 +Kn, then m(Bn) = 6.

• If Fn is the fan Fn = (nK2) + {v}, then m(Fn) = 6.

• If K−

n is the complete graph minus an edge, then m(K−

n ) = R(Kn−1, Kn−1).

• If H is a complete multipartite graph with chromatic number c = χ(G), then m(H) =
R(Kc, Kc).

On the other hand, there are certainly non-perfect graphs for which the conclusion of
Proposition 1 is false. Consider the cycle C5 for example. Up to isomorphism, the only
proper reductions of C5 are K+

3 (the triangle with the addition of a pendant edge), and the
triangle. Although R(K3, K3) = R(C5, C5) = 6, the unique sharpness example for R(K3, K3)
on 5 vertices contains monochromatic copies of C5. This means that

m(C5) = R2({C5, K
+
3 , K3}) ≤ 5 < 6 = R(K3, K3) = R(Kχ(H), Kχ(H)).
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4 Conclusion

In light of Theorem 4, a natural question is whether or not this bound might be sharp in
some sense.

Conjecture 1. For a connected non-bipartite graph H and an integer k ≥ 3, there exist
constants c1 and c2 such that

grk(K3 : H) =

{

c1 · (m(H)− 1)k/2 + 1 if k is even,

c2 · (m(H)− 1)(k−1)/2 + 1 if k is odd.

For all known sharp Gallai-Ramsey numbers of non-bipartite graphs, the answer to this
question is “yes”.

In particular, Conjecture 1 is a generalization of the following recent conjecture about
the complete graphs.

Conjecture 2 ([3]). For k ≥ 1 and p ≥ 3,

grk(K3 : Kp) =

{

(R(Kp, Kp)− 1)k/2 + 1 if k is even,

(p− 1)(R(Kp, Kp)− 1)(k−1)/2 + 1 if k is odd.

Other related results can be found in [2, 4, 11, 12]. We refer the interested reader to [5]
for a survey of Gallai-Ramsey numbers, with a dynamic version available at [6]. We also
state the corresponding conjecture for bipartite graphs.

Theorem 6 ([13]). Given a positive integer k ≥ 2 and a connected bipartite graph H with
Ramsey number R(H,H) = R, we have

grk(K3 : H) = R + (s(H)− 1)(k − 2).
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