Application of an Extremal Result of Erdős and Gallai to the ($\mathrm{n}, \mathrm{k}, \mathrm{t}$) Problem

Matt Noble
Middle Georgia State University, matthewhnoble@gmail.com
Peter Johnson
Auburn University Main Campus, johnspd@auburn.edu
Dean Hoffman
Auburn University, hoffmdg@auburn.edu
Jessica McDonald
Auburn University, mcdonald@auburn.edu

Follow this and additional works at: https:// digitalcommons.georgiasouthern.edu/tag
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Noble, Matt; Johnson, Peter; Hoffman, Dean; and McDonald, Jessica (2017) "Application of an Extremal Result of Erdős and Gallai to the (n,k,t) Problem," Theory and Applications of Graphs: Vol. 4 : Iss. 2 , Article 1.
DOI: 10.20429/tag. 2017.040201
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss2/1

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Abstract

An extremal result about vertex covers, attributed by Hajnal [4] to Erdős and Gallai [2], is applied to prove the following: If n, k, and t are integers satisfying $n \geq k \geq t \geq 3$ and $k \leq 2 t-2$, and G is a graph with the minimum number of edges among graphs on n vertices with the property that every induced subgraph on k vertices contains a complete subgraph on t vertices, then every component of G is complete.

Keywords and phrases: vertex cover, independent set, matching, (n, k, t) problem, Erdős-Stone Theorem, Turán's Theorem, Turán graph

1 Introduction

All graphs here will be finite, non-null, and simple. A vertex cover of a graph G is a set $S \subset V(G)$ that contains at least one endpoint of every edge in G. The vertex cover number of G is the minimum size of a vertex cover of G, and is denoted by $\beta(G)$. This parameter is monotone - that is, $\beta(H) \leq \beta(G)$ for all subgraphs H of G. Deleting a vertex or an edge of G causes the vertex cover number to go down by at most 1 . An edge or vertex of G whose removal causes such a decrease is said to be β-critical (or vertex-cover critical) for G. The graph G itself is said to be β-critical or vertex-cover critical if $\beta(H)<\beta(G)$ for every proper subgraph H of G. It is easy to see that G is β-critical if and only if G has no isolated vertices and every edge of G is β-critical for G. In particular, this means that if $\beta(G)>0$, then G has a vertex-cover critical subgraph H with $\beta(H)=\beta(G)$.
$S \subset V(G)$ is a vertex cover if and only if $V(G) \backslash S$ is independent: from this it is easy to see that, if $\alpha(G)$ is the vertex independence number of G, the size of a largest independent (mutually non-adjacent) set of vertices, then $\alpha(G)+\beta(G)=|V(G)|$. Therefore, a graph G is β-critical if and only if G has no isolated vertices and, for each $e \in E(G), \alpha(G-e)=\alpha(G)+1$. With this in mind, it is easy to verify that the following are β-critical; (i) K_{n} for $n \geq 2$; (ii) odd cycles; and (iii) matchings.

In conformity with the notation by which $G+H$ denotes the disjoint union of G and H, a matching with s edges will be denoted $s K_{2}=K_{2}+\cdots+K_{2}$. Clearly $\beta\left(s K_{2}\right)=s$.

If G is bipartite, the Kőnig-Egerváry Theorem ([1], [6]) says that $\beta(G)$ is the maximum number of edges in a matching in G. Therefore, a non-empty bipartite graph is vertex-cover critical if and only if it is a matching.

The extremal result of Erdős and Gallai [2] referred to in the title of this paper concerns the function f defined for $s=1,2, \ldots$ as

$$
f(s)=\max \{|V(G)|: G \text { is } \beta \text {-critical and } \beta(G)=s\} .
$$

The result is that $f(s)=2 s$. We have not been able to obtain a copy of [2]; we found an attribution to [2] of this result in [4], where Hajnal provides a short proof, suggesting that the proof in [2], a 23-page paper, is not very short. Later in [4], Hajnal, apparently without realizing it, provides an even shorter proof that supplies a stronger conclusion: not only is it true that $f(s)=2 s$, but, also, $s K_{2}$ is the only β-critical graph on $2 s$ vertices with vertex cover number s. We will give this proof here, in a form that the reader will not find in [4]. Hajnal there is driving toward a dual form of the result, based on the fact that S is a vertex
cover of G if and only if $V(G) \backslash S$ induces a complete graph in \bar{G}, the complement of G. Here is our translation of his second proof. The word "cover" will mean vertex cover. If $S \subset V(G), N_{G}(S)=\{u \in V(G): u v \in E(G)$ for some $v \in S\}$.

Lemma 1.1 Suppose that G is β-critical and $I \subset V(G)$ is an independent set of vertices. Then $|I| \leq\left|N_{G}(I)\right|$.

Proof The proof will be by induction on $|I|$. Since G has no isolated vertices, the conclusion holds when $|I|=1$.

Suppose $|I|>1$, and suppose that $|I| \geq\left|N_{G}(I)\right|+1$. We will deduce a contradiction. Let $v \in I$ and $I^{\prime}=I \backslash\{v\}$. By the induction hypothesis, $\left|N_{G}(I)\right| \leq|I|-1=\left|I^{\prime}\right| \leq\left|N_{G}\left(I^{\prime}\right)\right| \leq$ $\left|N_{G}(I)\right|$. Therefore, $\left|I^{\prime}\right|=\left|N_{G}\left(I^{\prime}\right)\right|=\left|N_{G}(I)\right|$, so $N_{G}\left(I^{\prime}\right)=N_{G}(I)$. Now let H be the induced subgraph of G with vertex set $V(H)=I^{\prime} \cup N_{G}(I)$. Also by induction, for every $J \subset I^{\prime}$, $|J| \leq\left|N_{G}(J)\right|$. Therefore, by Hall's Theorem, H has a perfect matching M.

Since v is not an isolated vertex, $v w \in E(G)$ for some $w \in N_{G}(I)$. Since G is β-critical, $G-v w$ has a cover C of size $\beta(G)-1$. Let $C^{\prime}=C \backslash\left(I \cup N_{G}(I)\right)$ and $C^{\prime \prime}=C \cap\left(I \cup N_{G}(I)\right)$. Since all edges of $G-v w$ having both ends in $I \cup N_{G}(I)$ must be covered by $C^{\prime \prime}, C^{\prime \prime}$ must cover M, so $\left|C^{\prime \prime}\right| \geq|M|=\left|N_{G}(I)\right|$. Thus $\left|C^{\prime} \cup N_{G}(I)\right|=\left|C^{\prime}\right|+\left|N_{G}(I)\right| \leq\left|C^{\prime}\right|+\left|C^{\prime \prime}\right|=$ $\left|C^{\prime} \cup C^{\prime \prime}\right|=|C|=\beta(G)-1$.

But C^{\prime} covers all edges of G with neither end in $I \cup N_{G}(I)$, and $N_{G}(I)$ covers each edge of G with at least one end in $I \cup N_{G}(I)$, because I is independent, so $C^{\prime} \cup N_{G}(I)$ is a cover of G. Therefore, $\left|C^{\prime} \cup N_{G}(I)\right| \leq \beta(G)-1$ is a contradiction.

Theorem 1.2 If G is vertex-cover critical then $|V(G)| \leq 2 \beta(G)$, with equality if and only if G is isomorphic to $\beta(G) K_{2}$.

Proof Let S be a minimum cover of $G ;|S|=\beta(G)$. Let $I=V(G) \backslash S$, an independent set; since S is a cover, $N_{G}(I)=S$. By Lemma 1.1, $|I| \leq|S|$, so $|V(G)=|I|+|S| \leq 2| S \mid=2 \beta(G)$. If $|V(G)|=2 \beta(G)$, then $|I|=|S|$. By Lemma 1.1, $|J| \leq\left|N_{G}(J)\right|$ for all $J \subset I$. Therefore, by Hall's Theorem, there is a perfect matching M in $G ; M$ is isomorphic to $\beta(G) K_{2}$. Since $\beta(M)=\beta(G)$ and G is β-critical, it must be that $M=G$.

2 Application to the (n, k, t) Problem

Suppose $n \geq k \geq t$ are positive integers. An (n, k, t)-graph is a graph on n vertices such that every induced subgraph of order k contains a clique of order t. The (n, k, t) problem is to determine, for each triple (n, k, t), all the minimum (n, k, t)-graphs - that is, the (n, k, t) graphs with the fewest edges. When $t=1$ the only such graph is the graph with n isolated vertices, and when $t=2$, the problem can be seen as a complementary version of Turán's Theorem [7]; hence the unique minimum ($n, k, 2$)-graphs are $\bar{T}_{n, k-1}$, where $T_{n, r}$ denotes the Turán graph on n vertices with r parts. Other easy cases include $k=t \geq 2$ and $n=k$, where the unique extremal graphs are K_{n} and $(n-t) K_{1}+K_{t}$, respectively [5].

The (n, k, t) conjecture is that whenever $n \geq k \geq t$, some minimum (n, k, t)-graph has complete components. The strong (n, k, t) conjecture is that every minimum (n, k, t)-graph has complete components. If the strong (n, k, t) conjecture holds then the (n, k, t) problem is
essentially solved in [5] - the extremal graphs are all $a K_{1}+\bar{T}_{n-a, b}$ for particular non-negative integers a, b - although there is room for improvement in the determination of a and b given in [5].

Theorem 2.1 (Erdős and Stone [3]) Suppose \mathcal{F} is a family of graphs containing no empty graph, and let

$$
\begin{gathered}
g(n)=\max \{|E(G)|:|V(G)|=n \text { and no member of } \mathcal{F} \text { is a subgraph of } G\} . \\
\text { Let } \chi(\mathcal{F})=\min \{\chi(H): H \in \mathcal{F}\} \text {, and suppose that } \chi(\mathcal{F})>2 \text {. Let } r=\chi(\mathcal{F})-1 . \text { Then } \\
\frac{\left|E\left(T_{n, r}\right)\right|}{g(n)} \rightarrow 1 \text { as } n \rightarrow \infty .
\end{gathered}
$$

Explanation: The name \mathcal{F} was chosen to connote forbidden subgraphs. Clearly no graph with chromatic number $r=\chi(\mathcal{F})-1$ can contain a subgraph from \mathcal{F}, and clearly the Turán graph $T_{n, r}$ is the graph on n vertices of that chromatic number with the most edges, if $n \geq r$. Therefore, $\left|E\left(T_{n, r}\right)\right| \leq g(n)$, for $n \geq r$. The Erdős-Stone Theorem asserts that if \mathcal{F} contains no bipartite graph, then, asymptotically, $\left|E\left(T_{n, r}\right)\right| \sim g(n)$.

In the original Erdős-Stone Theorem, \mathcal{F} was a singleton; but the more general theorem follows easily from the original, by the following argument. Given \mathcal{F}, let $H \subset \mathcal{F}$ be such that $\chi(H)=\chi(\mathcal{F})>2$, and set $\mathcal{F}^{\prime}=\{H\}$. Let g^{\prime} be defined with reference to \mathcal{F}^{\prime} as g was defined with reference to \mathcal{F}. Clearly, $g^{\prime}(n) \geq g(n)$ for all n, so, for $n \geq r=\chi(\mathcal{F})-1$, $1 \geq \frac{\left|E\left(T_{n, r}\right)\right|}{g(n)} \geq \frac{\mid E\left(T_{n, r} \mid\right.}{g^{\prime}(n)} \rightarrow 1$ as $n \rightarrow \infty$.

To apply the Erdős-Stone Theorem to the (n, k, t) problem, we define an $(\overline{n, k, t})$-graph to be the complement of an (n, k, t)-graph. In other words, an $(\overline{n, k, t})$-graph is a simple graph on n vertices such that every subgraph H of order k has vertex independence number $\alpha(H) \geq t$. (Notice the absence of the word "induced" in this description.) Clearly the (n, k, t) problem is equivalent to the problem of describing the ($\overline{n, k, t}$)-graphs with the most edges.

Fix $k>t>2$. For $n \geq k$, an $(\overline{n, k, t})$-graph is a graph on n vertices with no subgraph from $\mathcal{F}=\{H:|V(H)|=k$ and $\alpha(H) \leq t-1\}$. Since $\chi(H) \geq \frac{|V(H)|}{\alpha(H)}$ for any graph $H, \chi(\mathcal{F}) \geq\left\lceil\frac{k}{t-1}\right\rceil$. On the other hand, there exists a complete multipartite graph H with $\left\lceil\frac{k}{t-1}\right\rceil \geq 2$ parts on k vertices with maximum part size $t-1$. Clearly $H \in \mathcal{F}$ and $\chi(H)=\left\lceil\frac{k}{t-1}\right\rceil$. Therefore, $\chi(\mathcal{F})=\left\lceil\frac{k}{t-1}\right\rceil$.

Consequently, if $\frac{k}{t-1}>2, r=\left\lceil\frac{k}{t-1}\right\rceil-1$, and $g(n)$ is defined as in Theorem 2.1 with reference to \mathcal{F}, then $\frac{\mid E\left(T_{n, r} \mid\right.}{g(n)} \rightarrow 1$ as $n \rightarrow \infty$. Therefore, the minimum number of edges in an (n, k, t)-graph, for k and t satisfying $k>t>2$ and $k>2 t-2$, is asymptotically equivalent, as $n \rightarrow \infty$, to $\left|E\left(\bar{T}_{n, r}\right)\right|$, where $r=\left\lceil\frac{k}{t-1}\right\rceil-1$. This conclusion by no means proves that $\bar{T}_{n, r}$ is a minimum (n, k, t)-graph for all n sufficiently large, which is a good thing, because that conclusion would be false. For example, if $t=3, k=6$, so $\left\lceil\frac{k}{t-1}\right\rceil=3$, by applying the main result of [5] it can be seen that for all $n \geq 8$ the unique ($n, 6,3$)-graph with the fewest edges among those with all components complete is $K_{1}+\bar{T}_{n-1,2}$. In this case, and in many others, $\bar{T}_{n, r}$ is an (n, k, t)-graph with number of edges (asymptotically as $\left.n \rightarrow \infty\right)$ close to smallest, but not smallest, among (n, k, t)-graphs.

However, the application of the Erdős-Stone Theorem to the (n, k, t) problem is intriguing. For those sharing our prejudices, the asymptotic result reinforces a belief in the truth of the (n, k, t) conjecture. It also points out the following, a nice result that we neglected to include in [5].

Theorem 2.2 Suppose that $k>t>2$ are integers, $\frac{k}{t-1}>2, r=\left\lceil\frac{k}{t-1}\right\rceil-1$, and $a=$ $k-1-r(t-1)$. For all sufficiently large n, the unique (n, k, t)-graph with the fewest number of edges among those with every component complete is $a K_{1}+\bar{T}_{n-a, r}$.

Proof By Corollary 1 of [5], for $n \geq k+r-1$ an (n, k, t)-graph having only complete components and with as few edges as possible will be one of $(k-1-b(t-1)) K_{1}+\bar{T}_{n-(k-1-b(t-1)), b}$ for $1 \leq b \leq r$. In [5], $r=\left\lfloor\frac{k-1}{t-1}\right\rfloor$; but this is equal to $\left\lceil\frac{k}{t-1}\right\rceil-1$. Since, for each fixed pair (s, b) with $s \geq 0$ and $b \geq 0,\left|E\left(\bar{T}_{n-s, b}\right)\right| \sim \frac{n^{2}}{2 b}$, for n sufficiently large the choice of b must be $b=r$.

The application of Theorem 1.2 to the (n, k, t) problem concerns values of k and t such that $\frac{k}{t-1} \leq 2$, the values about which the Erdős-Stone Theorem has nothing to say.

The join of two graphs G and H, denoted $G \vee H$, is the graph obtained from the disjoint union of G and H by adding a complete bipartite graph between $V(G)$ and $V(H)$.

Lemma 2.3 Suppose that $n>s \geq 1$ are integers. The unique graph of order n with vertex cover number s with the most edges is $K_{s} \vee \bar{K}_{n-s}$.

Proof Suppose $|V(G)|=n$ and $\beta(G)=s$, and let $S \subset V(G)$ be a minimum vertex cover. Then $V(G) \backslash S$ is an independent set of vertices; clearly G can have no more edges than the copy of $K_{s} \vee \bar{K}_{n-s}$ obtained by putting in all $S-S$ edges and all $S-(V(G) \backslash S)$ edges.

On the other hand, $G=K_{s} \vee \bar{K}_{n-s}$ has order n and vertex cover number $n-\alpha(G)=$ $n-(n-s)=s$.

Lemma 2.4 Let $n>k>t>2$ be integers, and let G be a graph on n vertices. G is an (n, k, t)-graph if and only if \bar{G} contains no β-critical subgraph X such that $|V(X)| \leq k$ and $\beta(X)=k-t+1$.

Proof If G is an (n, k, t)-graph then \bar{G} is an $(\overline{n, k, t})$-graph; so for every subgraph Y of \bar{G} of order $k, \alpha(Y) \geq t$, so $\beta(Y)=k-\alpha(Y) \leq k-t$. Therefore, every subgraph of \bar{G} on k or fewer vertices has vertex cover number less than $k-t+1$.

However, if G is not an (n, k, t)-graph then G has an induced subgraph H on k vertices with clique number $\omega(H) \leq t-1$. Then \bar{H} is a subgraph of \bar{G} of order k with $\alpha(\bar{H})=$ $\omega(H) \leq t-1$; we have that $\beta(\bar{H})=k-\alpha(\bar{H}) \geq k-t+1$. Hence we can find a β-critical subgraph X of \bar{H} with $\beta(X)=k-t+1$.

Theorem 2.5 Suppose that $k>t>2$. If $k \leq 2 t-2$, then for every $n>k$ the unique (n, k, t)-graph with the fewest edges is $(k-t) K_{1}+K_{n-k+t}$.

Proof Suppose that $k \leq 2 t-2, n>k$, and G is an (n, k, t)-graph with the minimum number of edges possible. Then \bar{G} is an $(\overline{n, k, t})$-graph with the maximum number of edges possible. By Lemma $2.4, \bar{G}$ has no β-critical subgraph X on k or fewer vertices such that $\beta(X)=k-t+1$. As Theorem 1.2 gives $f(k-t+1)=2(k-t+1) \leq k$, it follows that \bar{G} has no β-critical subgraph X with $\beta(X)=k-t+1$, because such an X could have no more than $f(k-t+1) \leq k$ vertices.

Therefore, $\beta(\bar{G}) \leq k-t$. By Lemma 2.3, \bar{G} can have no more edges than does $K_{k-t} \vee$ \bar{K}_{n-k+t}, and, if \bar{G} has as many edges as that graph, then $\bar{G}=K_{k-t} \vee \bar{K}_{n-k+t}$. Since $K_{k-t} \vee \bar{K}_{n-k+t}$ is an $(\overline{n, k, t})$-graph, it follows that $\bar{G}=K_{k-t} \vee \bar{K}_{n-k+t}$, so $G=\bar{K}_{k-t}+$ $K_{n-k+t}=(k-t) K_{1}+K_{n-k+t}$.

References

[1] E. Egerváry, On combinatorial properties of matrices (in Hungarian with German summary), Math. Lapok 38 (1931), 16-28.
[2] P. Erdős and T. Gallai, On the minimal number of vertices representing the edges of a graph, Publ. Math. Inst. Hung. Acad. Sci. 6 (1961), 181-203.
[3] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[4] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965), 720-724.
[5] D. G. Hoffman, P. Johnson, and J. McDonald, Minimum (n, k, t) clique graphs, Congr. Numer. 223 (2015), 199-204.
[6] D. Kőnig, Graphen und Matrizen, Math. Lapok 38 (1931), 116-119.
[7] P. Turán, On an extremal problem in graph theory (in Hungarian), Matematikai ès Fizikai Lapok 48 (1941), 436-452.

