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Introduction
Logistic regression and its corresponding odds ratio(s) (OR) 

are the most popular measure of association between a continuous 
or categorical variable with a binary outcome in epidemiology. 
For example, in epidemeology, we would be interested in the 
association between health status and life style measures. For 
a significantly associated predictor of a binary outcome, we can 
estimate the probability of a random observation being in one 
category and classify the observation into two groups based on 
the value of the predictor. For example, it is believed that arsenic 
exposure is associated with blackfoot disease. Such exposure can 
be continuous, i.e., the level of chronic arsenic exposure through 
drinking water, or binary, i.e., exposed versus non-exposed. 
However, using logistic regression and the odds ratio sometimes 
produces results that are puzzling and misleading: Kraemer 
and Pepe et al. [1,2] provided very good discussions about the 
paradoxical situations about the odds ratio, especially in the 
presence of strongly associated predictors. 

The odds ratio is the ratio between the odds of an outcome event 
of interest in one category of the predictor variable versus the 
odds of the same event in the other category of the predictor. For 
example, the odds ratio of arsenic exposure for blackfoot disease 
is defined as the ratio between the odds of getting the blackfoot 
disease in the exposed group versus the odds in the non-exposed 
group. Commonly, a variable associated with a binary outcome is 
interpreted as a rule for classification or prediction of the binary 
outcome. In order to predict or classify subjects into two categories, 
a cut-off point/threshold is needed if the predictor is continuous. 
Similarly, if the predictor is categorical with more than two levels, 
then a grouping of neighboring categories is needed. For example, 
in the field of medical diagnostics, some continuous biomarkers 
that are associated with the disease outcome are used to identify 
the sub-clinical diseased individuals. In medical diagnostics, it is 
common to assume that the diseased subject generally has a larger 
biomarker value than the healthy subject. In practice, sometimes 
a transformation of the biomarker values is necessary in order to 

meet such assumption. For example, HIV patients generally have 
lower CD4 cell counts, so we can transform the biomarker values 
as the reciprocal of the CD4 cell counts. An individual receives a 
positive diagnosis if his/her biomarker value of the diagnostic 
test is greater than the threshold; otherwise the diagnosis is 
considered “negative”. Generally, physicians determine the true 
disease status by the long-established reference standard, which 
is sometimes called the “gold standard”. Finally, for evaluation of 
the prediction accuracy of a biomarker/diagnostic test for the 
true disease status, a two-by-two association table is formed as 
in Table 1. 

In practice, the diseased and the healthy population 
distributions generally overlap, which means there exist 
diagnostic errors. The false negative (FN) is “those who have 
disease and are diagnosed as negative” and the false positive (FP) 
is “those who do not have disease and are diagnosed as positive”. 
The corresponding correct cases are the true positive (TP) and 
the true negative (TN), which are “those who have disease and are 
diagnosed as positive” and “those who do not have disease and 
are diagnosed as negative”, respectively. The proportion of true 
positives among the diseased population is commonly referred 
as the sensitivity and the proportion of true negatives among the 
healthy population as the specificity. The sensitivity and specificity 
characterize the diagnostic accuracy under the diseased and the 
healthy populations, respectively. Mathematically, the sensitivity 
and specificity are 

The odds ratio in medical diagnostic setting is referred as 
the diagnostic odds ratio (DOR), which is defined as the ratio of 
the odds of a positive result of a diagnostic test in the diseased 
population relative to that in the non-diseased population [3]. 
Equivalently, the DOR is the ratio of the odds of the disease among 
the test positives versus that in the test negatives: 
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Abstract

This review article addresses the ROC curve and its advantage over the odds ratio 
to measure the association between a continuous variable and a binary outcome. 
A simple parametric model under the normality assumption and the method 
of Box-Cox transformation for non-normal data are discussed. Applications of 
the binormal model and the Box-Cox transformation under both univariate and 
multivariate inference are illustrated by a comprehensive data analysis tutorial. 
Finally, a summary and recommendations are given as to the usage of the binormal 
ROC curve.

Keywords: Odds ratio; Box-Cox transformation; Binormal ROC; AUC; Youden 
index
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Generally, an odds ratio of 1 indicates no association between 
the predictor and the outcome. Therefore, a DOR=1 means that 
the diagnostic test does not discriminate better than random 
chance between the diseased patients and those without the 
disease. The DOR rises steeply when one of the pair (sensitivity, 
specificity) becomes nearly perfect, while the other one of the 
pair may stay unsatisfactory. For example, when 0.99sensitivity =
and 0.5specificity = , 99DOR = . However, the total correct 
classification rate is 1.49sensitivity specificity+ =  which indicates 
a moderate predictor for diagnosis. Furthermore, a large value 
of the DOR sometimes have very wide confidence intervals. 
Additionally, for a continuous predictor, in order to make a 
prediction or a classification for a binary outcome, a cut-off point 
or threshold value is needed which is usually estimated by some 
optimization criteria. Bohning et al. [4] found that determining an 
optimal cut-off value via maximizing the DOR might lead to optimal 
cut-off estimates on the boundary of the parameter range, which 
clearly is not an “optimal” cut-off value to use for classification. In 
summary, a predictor with a large DOR does not necessarily yield 
good prediction. Therefore, we need alternative approaches for 
evaluating associations. In this paper, we recommend the use of 
the Receiver Operating Characteristic (ROC) curve. 
Table 1: Contingency table of reference standard versus diagnostic test 
result

Reference standard

Diseased Healthy

Diagnostic Positive TP FP

test result Negative FN TN

 TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative 

In the following, we introduce the basics of the ROC curve and 
its summary indices in section 2. Section 3 present a parametric 
approach for making inference for the ROC analysis using 
binormal model under the assumption of binormality (i.e., both 
the diseased and healthy populations are normally distributed). 
In section 4, we discuss the use of the Box-Cox transformation for 
non-normally distributed data. Section 5 illustrates the binormal 
ROC analysis using a real data set. Finally we give a summary and 
discussion in section 6.

Basics about the ROC Curve
For a continuous predictor, at each of the pre-specified 

threshold values, paired values of sensitivity and specificity can 
be computed. The Receiver Operating Characteristic (ROC) curve 
is a graph plotting the pair of (1− specificity, sensitivity) for all 
possible threshold values. Therefore, this graph demonstrates 
a trade-off phenomena between sensitivity and specificity. The 
ROC curve is an important and popular tool for the evaluation of 
the diagnostic tests. It can be used to demonstrate associations 
between a continuous variable for a binary outcome, as well as 
help to evaluate the accuracy of the prediction and classification 

based on a continuous variable. Extensive statistical research has 
been done in this field and there are several excellent reviews of 
statistical methods involving ROC curves [5-8].

In theory, the ROC curve of a perfect diagnostic test would be 
the one connecting points (0,0), (0,1) and (1,1). The point (0,1) 
is sometimes referred as the perfection point. Some practitioners 
may compare different diagnostic tests for the same disease 
based on visual inspection of the estimated ROC curves that do not 
overlap. The optimal test is the one with the ROC curve bending 
most towards the perfection point. However, this is not applicable 
for situations when the fitted ROC curves cross each other, which 
frequently occurs in practice. Furthermore, even if the fitted ROC 
curves do not overlap, due to sampling variability, such visual 
inspection of the estimated ROC curves is still not a valid approach 
to make formal comparisons between tests. Therefore, there is a 
need for some type of formal index to summarize the ROC curve. 
Among all summary measures of the ROC curve, the area under 
the ROC curve (AUC) is very popular.

The AUC can be calculated by the integration of the ROC curve 
with respect to the false positive rate over [0,1]. The AUC is an 
overall summary of the ROC curve across all thresholds which 
is invariant to the prevalence of the disease and the choice of 
the diagnostic threshold. Under the assumption that a larger 
biomarker value indicates greater likelihood of the disease, Bamber 
and Donald [8] showed that the AUC equals the probability of the 
marker value D of a randomly selected subject from the diseased 
population being greater than the marker value H of a randomly 
selected subject from the healthy population. This is denoted 
as ( )AUC Pr D H= > . The AUC is more useful for evaluating a 
diagnostic test at early stages, for which the primary purpose is to 
pick up candidate tests with discriminating potentials. However, 
as a single index, the AUC lacks details about the trade-off between 
sensitivity and specificity, hence it cannot measure and balance 
the respective cost of the false positives and the false negatives. 
For different types of disease, the clinical-meaningful range of the 
sensitivity and specificity would vary. Therefore, the partial area 
under the ROC curve ( )pAUC , which is obtained by integrating 
the ROC curve over a predetermined range of the false positive 
rate, would be more appropriate than the AUC for this purpose. 
Alternatively, sensitivity at a predetermined false positive rate can 
be used for specific applications.

For the purpose of making a diagnosis, a diagnostic threshold 
for the test is required. As the AUC is a global summary measure 
across all possible thresholds, separate computation after the 
AUC evaluation is needed to derive the optimal cut-off point for 
making diagnosis. Furthermore, the global measure AUC lacks 
direct link to the sensitivity and specificity, hence it is rather 
abstract for clinicians to understand and compute. For selecting 
an “optimal” diagnostic cut-off point, there exist a variety of 
approaches [10,11]. Among them, the Youden index J , defined 
as ( ) ( ){ }max 1sensitivity c specificity cc + − , is very popular since 
it ties nicely into the ROC framework and it has a closed-form 
solution under normality [12]. The cut-off point determined via 

( )( )
 / /

/ / 1 1
specifisensitivityTP FN TP FPDOR FP TN FN TN sensitivity

city
pecificis ty

= = =
− −
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the Youden index maximizes the overall correct classification rate 
(i.e., sum of sensitivity and specificity) and assigns equal weight to 
the sensitivity and the specificity. The Youden index has a clinical 
interpretation as a direct measure of the maximum diagnostic 
accuracy that a marker can achieve. Another advantage of the 
Youden index over the AUC is that it can detect differences other 
than in location while the AUC can only detect location differences 
between the diseased and healthy samples [13]. Graphically, 
the Youden index is the maximum vertical distance between 
the ROC curve and the chance line. It measures the difference 
of the diagnostic accuracy of a marker and that determined by 
random chance. In order to give varying weights for sensitivity 

and specificity, the weighted Youden index was proposed [14,15] 

and is expressed as ( ) ( ) ( ){ }max * * 1s 1W ensitivity c W specificity cc + − −  

with predetermined weights W and 1 W− .

Binormal Model for ROC Analysis
For the ROC analysis, sometimes, parametric assumptions 

are made on the distributions of the marker measurements for 
both healthy and diseased groups. The binormality assumption 
is the most popular as it utilizes many properties of the 
normal distribution and hence is the most straightforward for 
applications in practice. When the two discriminating populations 
are normally distributed or can be simultaneously transformed to 
normal after some monotonic transformation, the corresponding 
ROC curve satisfies the binormality assumption and is thus called 
the binormal ROC curve [16-18]. Hanley [19] listed some primary 
justifications of applying the binormal model for fitting the ROC 
curves. These includes “Gaussian distribution is natural for many 
situations”, “Other distributions can be approximated by Gaussian”, 
“The ROC curve is invariant under monotonic transformation of 
marker values” and “Mathematical convenience based on nice 
properties of normality.” The binormal ROC model provides a basis 
for parametric estimation and inference about the ROC curve and 
its summary indices. The binormal model generally fits well for 
continuous marker values. It is also robust for rating data on an 
ordinal scale assuming a continuous latent variable under large 
sample assumption [19]. This article focuses on the binormal 
model fitted explicitly on the continuous biomarker values. 

For making inference about the ROC curve using the binormal 
model, Linnet [20] developed a parametric approach based on 
maximum likelihood estimation for sensitivity given a fixed value 
of specificity or false positive rate. The confidence interval about 
sensitivity at a single value of specificity or false positive rate can 
also be considered as the pointwise confidence interval for the ROC 
curve. For making inference about the whole or partial ROC curve 
and maintaining the type I error within the range of specificity, 
the simultaneous confidence band needs to be estimated. Ma 
and Hall [21] proposed a parametric confidence band of the 
ROC curve by applying the binormal model and extending the 
Working and Hotelling [22] confidence band for a regression line. 
Demidenko [23] proposed an ellipse-envelope confidence band 
under binormality for the ROC curve. Yin and Tian [24] proposed 
a generalized inference confidence band for the ROC Curve.

For the Youden index and its associated optimal cut-point, 
some researchers examined different estimation and inference 
methods under binormal assumption. For example, Fluss et al. 
[25] compared parametric methods with and without the Box-
Cox transformation; Schisterman and Perkins [12] proposed 
asymptotic confidence intervals based on bi-normal and bi-
gamma models; Lai and Tian [26] applied the generalized 
inference method. For making inference about the AUC using 
the binormal model, Wieand et al. [27] applied the delta method 
based asymptotic results to construct a test of difference between 
two AUCs in a paired design. Molodianovitch et al. [28] applied the 
Box-Cox transformation for non-normal data and then applied the 
method of Wieand et al. [27] on the transformed data. Tian [29] 
and Li et al. [30] applied the generalized pivotal quantity approach 
to obtain the exact confidence intervals for single AUC and paired 
AUC respectively. Recently, the parametric joint inference under 
binormality for two or more ROC summary indices were proposed. 
For example, Yin and Tian [30] proposed joint confidence 
region estimation of the AUC and the Youden index based on the 
asymptotic delta method and generalized inference approach. 
Yin and Tian [31] and Bantis et al. [32] used similar approaches 
for joint inference about sensitivity and specificity at the optimal 
threshold value associated with the Youden index. 

Under binormality

Let ( )2
11 1,Y Normal µ σ  and ( )2

22 2,Y Normal µ σ  denote 

diagnostic marker measurements for the diseased and the healthy 

populations respectively. The cumulative distribution function 

(cdf) for the two populations is denoted as ( ) ( )i
Y

i

t
F ti

µ
σ
−

= Φ  for 

1,2i = . Assume that 1y and 2y are independent. Without loss of 

generality, assume that 1 2µ µ> . Zou and Hall [18] stated that the 

ROC curve is completely determined by the parameters α and β 
which are defined as 

					     (1)

Under binormality, given the false positive rate ( )p , the ROC 
curve can be expressed as 

	

Sensitivity and specificity at any known threshold c are 
expressed as 

		

						      (2)

where ( ).Φ denotes the standard normal cumulative 
distribution function.

1 2 1

2 2
andµ µ σα βσ σ

−= =

( ) ( )( ) ( )1
1

2
1 1Y Yp i

p
ROC F F p

α
β

−
−

 + Φ
 = − − = Φ
 
 

( ) ( )1 2
1 2

1 2

c cP c andP cµ µ
σ σ

   − −
= Φ = Φ      

   
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The optimal cut-point 0c  associated with Youden index can 

be obtained by maximizing 2 1

2 1

c cJ µ µ
σ σ

   − −
= Φ −Φ      

   
 with 

respect to c. Hence the optimal cut-point 0c  is achieved at the 
intersection of the two normal density functions of the healthy 
and the diseased groups which gives largest separation of the two 
populations. Denote the optimal threshold value associated with 
the Youden index as 0c  and it is obtained by 

	 0c 	 =	 ( ) ( ){ }1 2arg max 1c p c p c+ − 	 (3)

		  =	 ( ) ( ){ }12argmax Y YF c F c
c

= +

Youden index ( )J  is 

	

and the sensitivity (P1) and specificity (P2) at the optimal 
threshold co selected by the Youden index are 

	

Schisterman and Perkins [11] presented the Youden index ( )J

and the optimal cut-off value ( )0c  as functions of 'i sµ  and 'i sσ  

( )1,2i = . Based on two binormal parameters in (1), we can derive 

the Youden index as a function of α and β. When 1 2σ σ≠  (i.e. β≠1), 
co can be expressed as 

	

						            (4)

and hence j  is calculated to be 

	

					                (5)

	

When variances for the healthy and the diseased groups are 

the same and equal to 2σ , i.e. 1β = , then 1 2
0 2

c µ µ+
=  and J can 

be obtained correspondingly as 

	

The optimal cut-off point associated with the Youden index is 
the only optimal estimation with a closed-form solution under 
binormality. Therefore, among all cut-off point selection criteria, 
the one based on the Youden index is the most straightforward 
approach for clinicians to apply directly.

The AUC is calculated by integration of the ROC curve function 
with respect to false positive rate (p) from 0 to 1: 

	

Under normality, AUC can be expressed as a function of α and 
β: 

 

						      (6)

Since all the aforementioned ROC indices have closed-form 
solutions, which are functions of normal means and variances, 
substituting the sample means and variances of the observed 
data into corresponding expressions, e.g., (4), (5) and (6), 
provides the large-sample estimates of these ROC indices. For 
making inferences about these ROC indices, we must derive the 
large-sample variances of these estimates. This can be achieved 
by applying the large-sample delta method. However, there are 
times such as when making a joint inference about several ROC 
indices, when it is challenging and labor intensive to derive a 
closed-form solution for the asymptotic variance matrix by the 
large sample delta method. In such situations, some alternative 
simulation based methods can be applied, such as the parametric 
bootstrapping or the generalized inference approach based 
on simulated generalized pivots [33,34]. After obtaining the 
point estimate and the variance estimate of corresponding ROC 
indices of interest, it is straightforward to derive the confidence 
interval or region and the test statistics for hypothesis testing 
using standard z-test type of approach for univariate case and 
chi-square-test type of approach for multivariate case. There 
may be times when the obtained confidence interval or region 
is not bounded by the meaningful range of the ROC index. When 
this happens, it is recommended to apply a logit or a arcsin-
square-root transformation for both univariate and multivariate 
inference problems. Alternatively, if the parametric bootstrapping 
or the generalized inference approach is applied, the lower and 
upper limits of the confidence intervals can be estimated by the 
quantiles of the simulated bootstrap samples or generalized 
pivots. 

The Box-Cox transformation for cases without 
binormality

When normality is not satisfied, it is a standard practice to 
use the Box-Cox transformation to approximate normality in 
diagnostics due to the fact that the ROC curve is invariant under 
monotonic transformations. This type of approach is very popular 
and has been shown to perform very well for a wide variety of 
situations in ROC studies [28,25,18,35-37]. For review of Box-Cox 
transformation in general, see Sakia [38].

For the ( )1,....,th
ij j n= subject in the thi  group (i=1,2) with each 

( ) ( )02 1Y Y oJ F c F c= −

( ) ( ) ( ) ( )1 0 0 2 0 01 2
1 ;Y YP c F c P c F C= − =

( ) ( ) ( )2 2 2 2
2 2 2

0 2

1 1 ln

1
c

µ β ασ βσ α β β

β

− − + + −
=

−

( )2 2 2

2

1 ln

1

αβ α β β

β

 − + − 
= Φ 

−  
 

1 0 0 2

1 2
1c cJ µ µ

σ σ
   − −

= Φ +Φ −      
   

( )2 2 2

2

1 ln

1

α β α β β

β

 − + − 
−Φ 

−  
 

1 22 1 2 1
2 2

J µ µ α
σ
−   = Φ − = Φ −   

   

( )( )1 1
0 1 2
1 1Y YAUC F F p dp−= − −∫

1 2
2 2 2
1 2 1

AUC µ µ α

σ σ β

   −   = Φ = Φ
   + +  
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group having in observations, let 

			 

					   

					     (7)

where it is assumed that ( ) ( ). .
2,

i i d

ij i iY Nλ µ σ . Based on the 

observations from the healthy and the diseased group, the log-
likelihood function can be simplified as follows: 

		

						    

						              (8)

The maximum likelihood estimate (MLE) of λ can be obtained 
by maximizing the function in (8). As the same transformation 
is used for both the diseased and the healthy populations, 
we are required to take the same transformation for both 
groups to approximate binormality. After applying the Box-Cox 
transformation, the binormal-model based inference approaches 
can be readily applied for the transformed data.

There are some alternative versions of Box-Cox transformation. 
For example, only positive Y values are allowed in the Box-
Cox transformation equation in (7). In order to address such a 
limitation, it is suggested to apply the shifted power transformation 
[36] with the form

	

where 1λ  is the Box-Cox transformation parameter and 2λ  is a 
fixed value such that ( ) 2min ijY λ> − . This adjustment is the same 
as moving the whole data distribution towards right by a value 
of 2λ .

It is important to note that the range of ( )( )
ijY

λ
is restricted 

according to whether λ is positive or negative. This implies that 
the transformed values do not cover the entire real line, which 
provides only approximate normality for the Box-Cox transformed 
data set.

For non-normal data, researchers generally apply the Box-
Cox transformation first to approximate binormality for the 
original data and then the binormal model is applied based on 
the transformed approximately normal data. Therefore, the 
parameter λ is assumed to be fixed when applying the binormal 
model and the delta method. Bantis et al. [32] discussed that as λ 
is a parameter in the likelihood function, the information matrix 
should include it in addition to the normal means and variances, 
resulting in an information matrix of the normal parameters 
that is no longer diagonal. It has been shown to perform well 

for univariate inference problems in the ROC analysis context. 
However, it does not perform satisfactorily under multivariate 
situations [13,31] due to the lack of consideration of the variability 
of λ, when the Box-Cox transformation completely separates from 
the estimation process under binormality using the delta method. 

In order to take into account the variability of λ , Bantis et al. 
[32] proposed to apply the standard asymptotic delta method 
incorporating λ in the information matrix of normal means and 
variances in order to calculate the variance of the corresponding 
ROC index/indices. Alternatively, they proposed to generate 
bootstrap samples parametrically under binormality to allow λ 
to vary for each bootstrap sample, and then use the transformed 
samples to calculate the bootstrap variance matrix. They 
demonstrated significant improvements through a simulation 
study in terms of the coverage probability of the proposed 
confidence region of sensitivity and specificity at the optimal cut-
off point associated with Youden index when taking the variability 
of λ into account. Even though empirically, the performance of Box-
Cox transformation under univariate case is satisfactory and not 
as sensitive as the multivariate case, the process assuming fixed
λ is theoretically not sound. Therefore, we recommend future 
researchers to take into account of the variability of λ when 
calculating the variances of the ROC indices for both univariate 
and multivariate scenarios in ROC analysis. 

Data Example of Binormal ROC analysis
Duchenne muscular dystrophy (DMD) is a recessive X-linked 

form of a genetic disorder. It is characterized by progressive 
muscular degeneration and weakness. It is caused by the mutation 
in the gene for dystrohin, which is a protein found in the muscle. 
Because of the way the disease is inherited, the female carriers are 
unaware of this mutation until they have an affected son. Percy 
et al. [39] presented data of four different DMD markers, namely 
serum creatine kinase (CK), hemopexin (HPX), pyruvate kinase 
(PK) and lactate dehydrogenase (LD). Complete data is available 
on 66 female carriers with affected sons and 127 female controls. 
For illustrative purposes, markers CK and HPX are used in this 
section.

Figures 1 and 2 presents Q-Q plots of markers CK and HPX, 
respectively, for the control and carrier groups. It can be seen that 
marker HPX is normally distributed for both groups, while marker 
CK is not. The Box-Cox transformation is applied for marker 
CK and the estimate of the Box-Cox parameter λ is obtained by 
maximizing the log-likelihood function of the data set as in (8), 
which is estimated to be −0.345. Figure 3 give the Q-Q plots of 
the Box-Cox transformed CK marker values, and we can see 
that both diseased and healthy groups are normally distributed. 
The binormal model is applied on the Box-Cox transformed CK 
values and the original HPX values. Both the binormal and the 
non-parametric empirical ROC curves are estimated and the 
corresponding Working Hotelling [22] type of confidence band 
is plotted with the empirical and the binormal ROC curves (see 
Figures 4 and 5). The reason for the confidence band being narrow 
is due to the relatively large sample sizes of this data set. We will 
use the Box-Cox transformed CK marker values for illustrating the 
univariate inferences in the ROC context and HPX marker for the 
multivariate inferences. 
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Table 2 gives the contingency table for marker CK at the cut-off point associated with the Youden index, 
which can be calculated from (4) using the binormal model. For table 3, the optimal cut-off point for the 
diagnosis based on marker CK is determined by maximizing the DOR or equivalently, the logarithm of DOR, i.e., 

( )( ) 1 2 1 2

1 2 1 2
max log log log log logOR c

c c c cc DOR c µ µ µ µ
σ σ σ σ

               − − − − = = Φ + Φ − Φ − Φ                                             
. For this data set, the DOR does 

not reach its maximum within the observed range of cut-off point, so we select a point on the boundary. The maximum CK value of 
2.6535 is chosen to be the optimal cut-off point. This situation is not rare, as Bohning et al. [4] concluded that the DOR criteria for 
optimizing the cut-off point can “easily lead to cut-off point on the boundary of the parameter range”. 

Figure 1: Q-Q plots of marker CK. Values from both the diseased and 
the healthy groups are not normally distributed, therefore, Box-Cox 
transformation is needed.

Figure 2: Q-Q plots of marker HPX. Values from both the diseased and 
the healthy groups are normally distributed.

Table 4 summarizes the point and interval estimates for the 
AUC, the Youden index ( )J and the diagnostic odds ratios (DOR) 
at the optimal cut-off point corresponding to the maximum 

Youden index ( )Jc  and the maximum ( )ORDOR c for marker CK. 
When the cut-off point selected corresponds to the maximum 
DOR, the estimate for the DOR is infinity and therefore, no valid 
confidence interval can be calculated. Even at the optimal cut-off 
point with the Youden index, the DOR estimate still has a relatively 
wide confidence interval. However, both ROC indices, i.e., the AUC 
and the Youden index always yield bounded confidence intervals 
within the range of [0,1].

Table 2: Contingency table of marker CK at the optimal cut-off point with 

the Youden index ( 2.1837jc = )

Diseased Healthy

Diagnostic >2.1837 47 17

test result1 ≤2.1837 19 110

 1: The diagnosis is based on the Box-Cox transformed marker value 

In Figure 7, the joint confidence region of the sensitivity 
and the specificity at the optimal cut-off point associated with 
the Youden index are plotted for marker HPX, along with the 
rectangular region formed by respective confidence intervals of 
the sensitivity and the specificity after the Bonferroni correction. 

Figure 3: Q-Q plots of the Box-Cox transformed values of marker CK. 
After Box-Cox transformation, the values from both the diseased and 
the healthy groups are normally distributed.
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The Bonferroni-corrected method is commonly used for adjusting 
multiple testing in practice due to its straightforward application. 
However, it is known to give conservative results. Similarly, Figure 
8 gives the joint confidence region of the AUC and the Youden 
index for marker HPX along with the rectangular Bonferroni 
region. From Figure 8, since the correlation between the AUC 
and the Youden index is very high, the advantages of the joint 
confidence region are significant.

Table 3: Contingency table of marker CK at the optimal cut-off point with 
the maximum DOR ( 2.6535)ORc =

Diseased Healthy

Diagnostic 22.6535> 0 0

test result1 ≤2.6535 66 127

1:The diagnosis is based on the Box-Cox transformed marker value.
2:Since the DOR does not reach its maximum within the observed range 
of cut-off point (as shown in Figure 6), the maximum CK value (2.6535) is 
thus chosen to be the optimal cut-off point.

Table 4: Summary of point and interval estimates about the AUC, the 

Youden index ( )J and the diagnostic odds ratios (DOR) at the optimal 

cut-off point corresponding to the maximum Youden index ( )Jc  and the 

maximum ( )ORDOR c  for marker CK.

AUC J ( )JDOR c ( )ORDOR c

Point Est. 0.8721 0.6113 19.9650 inf

95% C.I. (0.8157, 
0.9284)

(0.5132, 
0.7093) (7.65 , 33.48) -

1: The cut-off estimate is for the Box-Cox transformed CK values.

Figure 4: The estimated binormal ROC curve (bold), empirical ROC 
curve (step line) and the 95% confidence bands (CB) of the ROC curve. 
The binormal ROC curve and the corresponding Working Hotelling 
confidence band [22] are fitted on the Box-Cox transformed values 
of marker CK.

Figure 5: The estimated binormal ROC curve (bold), empirical ROC 
curve (step line) and the 95% confidence bands (CB) of the ROC curve. 
The binormal ROC curve and the corresponding Working Hotelling 
confidence band [22] are fitted on the original values of marker HPX.

Figure 6: Logarithm of the DOR values across all possible values of 
the cut-off point for marker CK of the data set
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Figure 7: The 95% joint confidence region of the sensitivity and the specificity at the optimal cut-off point associated with the Youden index 
for marker HPX. Since both the sensitivity and the specificity are given at the same cut-off point which is estimated by all samples from the 
two populations. Therefore, the sensitivity and the specificity at the optimal cut-off point are correlated (the sample correlation is −0.26 for 
this data set). Meanwhile, the rectangular region formed by respective individual confidence intervals adjusted by the Bonferroni correction is 
also plotted to compare with the joint elliptical region. The joint confidence region is estimated by the generalized inference approach, which 
automatically account for the correlation structure through simulations. The joint confidence region is given by the elliptical equation  		

				    with major axis being in the direction of vector ( )1, 1.7237 T± − and with point (0.7590,0.6179) as 

the origin. The individual confidence intervals are calculated by the lower and upper 0.05/4 percentiles of the simulated generalized pivotal 
quantities. The 97.5% adjusted confidence interval for sensitivity is (0.6418,0.8370), and that for specificity is (0.4957,0.7188).

( ) ( )2 2

2 2

0.7590 0.6179
1

0.1298 0.0956

x y− −
+ =

Figure 8: The 95% joint confidence region of the AUC and the Youden index and the rectangular region formed by respective individual 
confidence intervals adjusted by the Bonferroni correction for marker HPX. The joint confidence region is estimated by the large sample delta 
method, for which the variance matrix of AUC and Youden index is calculated analytically. The joint confidence region is given by the elliptical 

equation 
( ) ( )2 2

2 2

0.7523 0.3802
1

0.1840 0.0146

x y− −
+ =  with major axis being in the direction of vector ( )1,1.5975 T± and with point (0.7523,0.3802) 

as the origin. The adjusted individual confidence intervals are calculated by the standard z-test at the confidence level of 97.5%, and it is 
(0.6747,0.8300) for the AUC and (0.2571,0.5033) for the Youden index. Since the AUC and Youden index are highly correlated, the rectangular 
region formed by Bonferroni approach is very conservative (as its area is much larger than that of the ellipse) and has less likelihood to 
successfully reject the multivariate outliers (e.g., point (0.7,0.45) in red).
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Summary and Discussion
Logistic regression and its corresponding odds ratio are the 

most popular measures of association between a continuous 
or categorical variable with a binary outcome in epidemiology, 
but it often produces results that are puzzling and misleading. 
A predictor with a large DOR does not necessarily yield a good 
prediction. Also, the DOR is not a proper measure of prediction 
accuracy for a strongly associated variable since the DOR will be 
very large and even close to infinity with wild confidence intervals. 
Henceforth, we need alternative approaches for evaluating strong 
association. In this paper, we recommend the use of the Receiver 
Operating Characteristic (ROC) curve. The most straightforward 
parametric approach to estimate the ROC curve and make 
inference about the ROC curve and its related summary indices is 
the binormal model. 

The classical binormal model with two parameters has some 
limitations. Specifically, it does not fit well for “degenerate” data 
set. Metz and Pan [40] suggested that the fitted ROC curve by the 
classical binormal model always lie partly below the diagonal 
line, and such phenomena is especially obvious for degenerate 
data. The sensitivity is not a monotonic increasing function with 
respect to the false positive rate, as is supposed to be by the 
ROC theory. Therefore, for such degenerate data, the binormal 
ROC curve is not “proper”. Alternative parametric models were 
proposed when the conventional binormal model is no longer 
appropriate, including the “proper” binormal model [41] and the 
“proper” bigamma model [41]. Particularly, the “proper” binormal 
model contains three parameters by making diagnostic decisions 
based upon some monotonic transformations of the likelihood 
ratio of the bi-normally distributed random marker values. Unlike 
the two-parameter classical binormal model, the ROC-related 
indices may not have closed-form solutions expressed by the 
three parameters, which can be an interesting problem for future 
research.

When normality is not satisfied for either the diseased or 
the healthy population, it is a common practice to use Box-Cox 
transformation to achieve binormality in diagnostic studies. 
This is achieved due to the fact that ROC curve is invariant under 
monotonic transformations. An issue about the application of the 
binormal model in the ROC context is that it is not a very robust 
approach under violations of binormality assumption [42]. 
Sometimes it is impossible to approximate normality well enough 
for both populations under a common transformation with the 
same λ. In such situation, the non-parametric bootstrap methods 
based on empirical estimates or kernel-smoothed estimates of the 
ROC curves or its summary indices has been shown to perform 
very well and are easily applied. For example, see Faraggi and 
Reiser [35] [35]and Fluss et al. [25] for single indices, Yin and 
Tian [13] and Bantis et al. [32] for joint inference.

If multiple variables are believed to associate with the 
binary outcome of interest collectively but not individually, it 
is recommended to combine the variables to a composite score 
or function. In the context of the ROC analysis, researchers have 
proposed combining the multiple predictors by maximizing the 
ROC indices, such as the AUC or the Youden index [43-47,11]. After 

a composite score is obtained, the binormal model discussed here 
is readily applied for the composite score to make inference about 
the prediction accuracy when all variables are combined.
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