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Abstract
The validity of statistical inference depends on proper randomization methods. However, even with proper

randomization, we can have imbalanced with respect to important characteristics. In this paper, we introduce
a method based on ranked auxiliary variables for treatment allocation in crossover designs using Latin squares
models. We evaluate the improvement of the efficiency in treatment comparisons using the proposed method. Our
simulation study reveals that our proposed method provides a more powerful test compared to simple random-
ization with the same sample size. The proposed method is illustrated by conducting an experiment to compare
two different concentrations of titanium dioxide nanofiber (TDNF) on rats for the purpose of comparing weight
gain.

Keywords: ranked set sampling, ranked auxiliary covariate, experimental design, treatment allo-
cation method, crossover design, Latin square design, TDNF, weight gain

1. Introduction

The goal of designing a statistical experiment is to obtain valid conclusions. The results and conclu-
sions drawn from a statistical experiment depend on the quality of the data collected from the exper-
iment. A well-designed experiment involves randomization, a detailed description of the experiment
and its objectives which include the specification of the treatments and controls.

In any experiment, variability arising from a nuisance factor can affect the results. Levels of
effects from a nuisance factor may be changing over the duration of the experiment. Under such
circumstances, randomization can be introduced to reduce the bias. In other cases, the nuisance factor
may be known but is uncontrollable. When the source of variability is predictable and controllable,
a blocking design can be introduced to systematically eliminate the effect of the nuisance factor on
treatment comparisons. The blocking principle is utilized in several types of designs. One type of
design is the Latin square. A Latin square is used to eliminate two nuisance sources of variability.

In this paper, we introduce a method based on the baseline ranked auxiliary variable for treatment
allocation in crossover studies which can be analyzed as a set of n replicated Latin squares. When we
1 Corresponding author: Department of Biostatistics, Jiann-Ping Hsu College of Public Health, Georgia Southern Univer-

sity, Statesboro, GA, 30458, USA. E-mail: hsamawi@georgiasouthern.edu
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Table 1: Crossover design example

Latin square replicates I II III IV
Subject 1 2 3 4 5 6 7 8
Period 1 A B A B B A A B
Period 2 B A B A A B B A

consider time as one of the blocking factors in a Latin square design, it provides the foundation for a
p-period, p-treatment crossover design.

A crossover design is a study in which subjects receive sequences of different treatments. The
primary objective of crossover studies is to compare the outcome of interests between p treatment
groups on the same subject (Senn, 1993). The main advantage of a crossover design is efficiency with
the ability to study individual reaction to treatment. A typical layout of a crossover design using a
Latin square is illustrated in Table 1. Table 1 shows a crossover design of four Latin squares, each
with 2-periods, 2-treatments, and 2-sequences. A total of 8 subjects are enrolled in the study as shown
in Table 1. In the first period, half of the subjects are randomly assigned to treatment A, and the other
half to treatment B. At the end of the first period, the response is measured. If needed, a period of
time, called wash-out time, is allowed to pass in which any effects of the treatment is eliminated. Then
the experimenter switches the subjects who received treatment A to treatment B, and the subjects who
received the treatment B to treatment A.

1.1. Treatment allocation based on ranked auxiliary variable

The idea of treatment allocation based on a ranked auxiliary variable is inspired by ranked set sam-
pling. Ranked set sampling (RSS) was first introduced by McIntyre (1952). The principle of RSS is to
select a sample systematically from a population. It was originally introduced as an efficient alterna-
tive to simple random sampling. The sample mean of RSS is an unbiased estimator of the population
mean, and variance based on RSS is smaller than the variance on simple random sampling (SRS) with
the same effective sample size. The original method for ranking units is by visual judgment ranking
(McIntyre, 1952). Lynne Stokes (1977) proposed concomitant-based ranking which yields a smaller
variance than that from SRS. Concomitant-based ranking is ranking based on the covariates rather
than the characteristics of interest.

Different ranking schemes have been devised when there are more than one concomitant variable.
Samawi et al. (1996) proposed extreme ranked set sample (ERSS). This ERSS has important appli-
cations in genetics for quantitative trait loci mapping (Chen, 2007). Bivariate RSS was introduced
by Al-Saleh and Zheng (2002). Linder et al. (2015) proposed stratified bivariate RSS for regression
estimators. They showed this estimator is more efficient to stratified bivariate SRS under same effec-
tive sample size. Samawi and Al-Sagheer (2001) discuss the relationship between extreme ranked set
samples and median ranked set sample for distribution estimation. Since the sample mean from RSS
is unbiased estimator of population mean, it is not a problem to draw statistical inference based on
the sample mean of RSS. Based on the studies using RSS, we can conclude that RSS can be used in
experiments to increase the efficiency of treatment comparison.

The idea proposed in this paper is to evaluate the improvement of the efficiency of treatment
comparison by incorporating the subjects selection based on ranked auxiliary variable. Subjects will
be allocated to treatment by ranking on an available auxiliary variable in the crossover studies using
Latin square design. Section 2 presents the proposed statistical analysis of treatment allocation based
on ranked auxiliary variables in crossover design. Section 3 is a simulation study. In Section 4,
the proposed method is illustrated by conducting weight gain experiment to compare two different
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concentrations of TDNF on rats. Final remarks and discussion are presented in Section 5. In the next
section, we will discuss the details of statistical analysis in crossover designs based on incorporating
subjects selection based on ranked auxiliary variable.

2. Proposed method

The purpose is to investigate the performance of the proposed treatment allocation methods based
on auxiliary variable in crossover studies. The primary aim is to improve the efficiency of treatment
comparisons by allocating subjects using ranked auxiliary variable which is correlated with the out-
come of interest. The treatment effect is estimated by the fixed effect model and random effect model
respectively. The proposed method is described in the next subsection.

2.1. Treatment allocation based on concomitant-based RSS in crossover design

Assume a situation where the outcome of interest (Y) in a crossover study is known be correlated with
a baseline auxiliary variable (X), in the biologically sense or from the literature and easy to obtain
and rank. In addition, we have the information of X before the study started. Suppose we perform
a p-treatment, p-period, p-sequence crossover design using n replicates of Latin squares. Therefore,
we need np out of np2 subjects selected randomly from a population. Then randomize n replicates of
Latin squares to each set of p subjects.

Therefore, the protocol of treatment allocation based on a ranked auxiliary variable to crossover
studies using Latin squares can be described as follow:

1. Select p sets, each of p subjects randomly from an available pool of subjects.

2. In each set, rank the p subjects based on auxiliary baseline variable (X) which is highly correlated
with outcome and easy to rank.

3. From the first set of p subjects, the subjects ranked lowest, in (X), is chosen for actual quantifica-
tion. From the second set of p subjects, the subject ranked second lowest in (X), is measured. The
process is continued until the subject ranked highest is measured from the pth set of p units. At
this point, p subjects are selected.

4. Randomly choose a Latin square design to these p subjects.

5. This cycle is repeated n times until the desired sample size (np).

For example, p = 3, the process can be illustrated as Table 2.
After the crossover study, we collect the measures of outcome of interest (Y). Two scenarios

are considered. If only np2 subjects are available to the experiment, we consider the subjects effect as
fixed effect. Model (A.1) is used for the analysis. If we can select subjects from a large population, we
consider the subjects effect as a random effect. Model (B.1) is used for the analysis. See Appendixs
A and B for details of analysis.

Yi j[k]l = µ + αi + τ j + βk(l) + γl + ϵi j[k]l, k = 1, . . . , p; i = 1, . . . , p; j = 1, . . . , p; l = 1, . . . , n, (A.1)
Yi j[k]l = µ + αi + τ j + β[k](l) + γl + ϵi j[k]l, k = 1, . . . , p; i = 1, . . . , p; j = 1, . . . , p; l = 1, . . . , n. (B.1)
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Table 2: Example process of p = 3

Replicate Set Ranking according to X Select subject Treatment allocation
1 X11(1), X11(2), X11(3) X1(1) Randomly assign a Latin1 2 X12(1), X12(2), X12(3) X1(2) square to the 3 subjects3 X13(1), X13(2), X13(3) X1(3)
1 X21(1), X21(2), X21(3) X2(1) Randomly assign a Latin2 2 X22(1), X22(2), X22(3) X2(2) square to the 3 subjects3 X23(1), X23(2), X23(3) X2(3)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 Xn1(1), Xn1(2), Xn1(3) Xn(1) Randomly assign a Latinn 2 Xn2(1), Xn2(2), Xn2(3) Xn(2) square to the 3 subjects3 Xn3(1), Xn3(2), Xn3(3) Xn(3)

Table 3: Empirical nominal value (0.05) for fixed effect model

µ Period Treatment Subject Corr(X,Y) α = 0.05
Latin square 1 Latin square 2 Proposed SR*

1 0 0 0 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.058 0.040
0.7 0.049 0.041
0.5 0.055 0.042

2 0 0 0 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.043 0.054
0.7 0.046 0.061
0.5 0.043 0.048

1 0 0.2 0.3 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.052 0.042
0.7 0.051 0.050
0.5 0.060 0.047

2 0 0.2 0.3 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.053 0.050
0.7 0.041 0.052
0.5 0.052 0.052

1 0 0 0 0 0 0 1 3 6 2 3 4
0.9 0.057 0.047
0.7 0.056 0.045
0.5 0.050 0.057

2 0 0 0 0 0 0 1 3 6 2 3 4
0.9 0.047 0.046
0.7 0.050 0.052
0.5 0.047 0.046

1 0 0.2 0.3 0 0 0 1 3 6 2 3 4
0.9 0.053 0.054
0.7 0.044 0.053
0.5 0.050 0.047

2 0 0.2 0.3 0 0 0 1 3 6 2 3 4
0.9 0.049 0.057
0.7 0.049 0.050
0.5 0.046 0.047

SR = simple randomization.

3. Simulation

3.1. Design of simulation study

In this simulation, we compare the power of hypothesis testing using the proposed method and simple
randomization. We want to explore the improvement in power of our proposed method compared to
simple randomization. We simulate a 3-treatments, 3-periods crossover design using 2 Latin square
replicates. The total number of subjects is 6, 3 in each Latin square. Subjects in the proposed method
are ranked according to the baseline auxiliary variable denote as X. The corresponding outcome
denotes as Y . The correlation between X and Y is set at (0.5, 0.7, 0.9) for each settings. For each
simulation settings. Random samples of 2,000 Monte Carlo simulations are generated from bivariate
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Table 4: Empirical Power comparison using proposed method and simple random sample (fixed effect model)

µ Period Treatment Subject Corr(X,Y) 1 − β Relative
Latin square 1 Latin square 2 Proposed SR power

1 0 0 0 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.713 0.411 1.735
0.7 0.336 0.193 1.745
0.5 0.221 0.135 1.637

2 0 0 0 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.690 0.460 1.500
0.7 0.308 0.169 1.825
0.5 0.237 0.149 1.593

1 0 0.2 0.3 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.716 0.419 1.709
0.7 0.306 0.179 1.709
0.5 0.238 0.128 1.859

2 0 0.2 0.3 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.689 0.425 1.621
0.7 0.301 0.176 1.710
0.5 0.219 0.145 1.512

1 0 0 0 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.566 0.327 1.734
0.7 0.246 0.160 1.534
0.5 0.152 0.113 1.347

2 0 0 0 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.560 0.329 1.703
0.7 0.247 0.143 1.727
0.5 0.190 0.155 1.230

1 0 0.2 0.3 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.545 0.313 1.740
0.7 0.241 0.145 1.668
0.5 0.185 0.156 1.190

2 0 0.2 0.3 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.540 0.326 1.655
0.7 0.256 0.161 1.587
0.5 0.192 0.129 1.494

1 0 0 0 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.655 0.360 1.819
0.7 0.304 0.174 1.747
0.5 0.219 0.129 1.699

2 0 0 0 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.693 0.410 1.690
0.7 0.315 0.175 1.805
0.5 0.214 0.127 1.681

1 0 0.2 0.3 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.702 0.410 1.713
0.7 0.311 0.183 1.699
0.5 0.244 0.135 1.807

2 0 0.2 0.3 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.700 0.400 1.751
0.7 0.325 0.186 1.752
0.5 0.214 0.142 1.507

SR = simple randomization.

normal distributions. Throughout this simulation, we assume there is no carry over effect. So we can
drop this effect from the model. Because the subject effect can be considered as fixed or random, we
perform the simulation on the fixed effect model and the mixed effect model respectively.

We specify the period effect (α), treatment effect (τ), and subject effect (β) in the simulation.
Calculate the empirical power using proposed method and simple randomization. Because the sample
size is small, we check if the significant level is hold for null hypothesis under all parameter settings.

Similar assumptions apply to the mixed effect model. In the mixed effect model using simple
randomization, the subject effect (βk(l)) is considered as a random effect. It is assumed to be i.i.d with
mean 0 and variance σ2

β[k].

3.2. Result of simulation

Table 3 presents the estimated probability of type I error under the null hypothesis of no mean differ-
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Table 5: Empirical nominal value (0.05) for random effect model

µ Period Treatment Subject Corr(X,Y) α = 0.05
Latin square 1 Latin square 2 Proposed SR

1 0 0 0 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.049 0.043
0.7 0.047 0.053
0.5 0.059 0.053

2 0 0 0 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.059 0.048
0.7 0.048 0.055
0.5 0.056 0.055

1 0 0.2 0.3 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.050 0.060
0.7 0.052 0.050
0.5 0.047 0.055

2 0 0.2 0.3 0 0 0 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.043 0.049
0.7 0.046 0.056
0.5 0.050 0.050

1 0 0 0 0 0 0 1 3 6 2 3 4
0.9 0.060 0.050
0.7 0.050 0.052
0.5 0.059 0.041

2 0 0 0 0 0 0 1 3 6 2 3 4
0.9 0.047 0.054
0.7 0.050 0.046
0.5 0.049 0.048

1 0 0.2 0.3 0 0 0 1 3 6 2 3 4
0.9 0.054 0.045
0.7 0.052 0.050
0.5 0.055 0.047

2 0 0.2 0.3 0 0 0 1 3 6 2 3 4
0.9 0.049 0.054
0.7 0.053 0.049
0.5 0.057 0.053

SR = simple randomization.

ences of treatment effects, for proposed method and simple randomization using fixed effect model,
respectively. In general, both methods give close estimates to the nominal value (α = 0.05) for all
suggested correlations, period effects and subject effects.

Table 4 shows the estimated empirical power under different alternative hypothesis for treatment
comparison using fixed effect model. The table shows that using the proposed method is more pow-
erful than using simple randomization for all parameter settings. Also, the power increases as the
correlation coefficient increases. The relative power shows the power of proposed method is increased
by an average of 65%. When the correlation between X and Y is 0.9, our proposed method increases
the power by an average of 70%. When the correlation between X and Y is 0.7, our proposed method
increases the power by an average of 70%. When the correlation between X and Y is 0.5, our proposed
method increases the power by an average of 54%.

Table 5 presents the estimated probability of type I error under the null hypothesis of no mean
differences of treatment effects, for proposed method and simple randomization using mixed effect
model, respectively. In general, both models give close estimates to the nominal value (α = 0.05) for
all suggested period effects and subject effect.

Table 6 shows the estimated empirical power under different alternative hypothesis for treatment
comparison using mixed effect model. The table shows that using the proposed method is more
powerful than using simple randomization for all parameter settings. Also, the power increases as the
correlation coefficient increases. The relative power is calculated as the power of proposed method
divided by the power of simple randomization. The relative power shows the power of proposed
method is increased by an average of 63%. When the correlation between X and Y is 0.9, our proposed
method increases the power by an average of 66%. When the correlation between X and Y is 0.7, our
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Table 6: Empirical power comparison using proposed method and simple random sample (random effect model)

µ Period Treatment Subject Corr(X,Y) 1 − β RelativeLatin square 1 Latin square 2 Proposed SR

1 0 0 0 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.698 0.426 1.639
0.7 0.322 0.182 1.766
0.5 0.227 0.135 1.681

2 0 0 0 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.712 0.431 1.653
0.7 0.301 0.176 1.707
0.5 0.233 0.132 1.772

1 0 0.2 0.3 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.696 0.422 1.648
0.7 0.324 0.189 1.719
0.5 0.218 0.132 1.652

2 0 0.2 0.3 0.1 0.12 0.15 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.677 0.410 1.651
0.7 0.282 0.176 1.599
0.5 0.217 0.129 1.689

1 0 0 0 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.557 0.310 1.797
0.7 0.267 0.142 1.883
0.5 0.170 0.127 1.340

2 0 0 0 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.565 0.329 1.717
0.7 0.246 0.151 1.626
0.5 0.187 0.128 1.467

1 0 0.2 0.3 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.566 0.327 1.732
0.7 0.243 0.157 1.553
0.5 0.194 0.110 1.759

2 0 0.2 0.3 1 0.8 1.2 0.1 0.12 0.15 0.12 0.15 0.1
0.9 0.533 0.338 1.581
0.7 0.252 0.152 1.656
0.5 0.168 0.112 1.504

1 0 0 0 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.698 0.420 1.661
0.7 0.318 0.187 1.699
0.5 0.238 0.137 1.741

2 0 0 0 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.690 0.448 1.540
0.7 0.308 0.174 1.770
0.5 0.080 0.054 1.481

1 0 0.2 0.3 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.689 0.417 1.651
0.7 0.325 0.500 0.650
0.5 0.233 0.123 1.894

2 0 0.2 0.3 0.1 .0.5 0.7 1 3 6 2 3 4
0.9 0.693 0.420 1.649
0.7 0.306 0.193 1.592
0.5 0.216 0.138 1.565

SR = simple randomization.

proposed method increases the power by an average of 60%. When the correlation between X and Y
is 0.5, our proposed method increases the power by an average of 62%. This results lead to similar
conclusions for fixed effect model.

4. Illustration on the effect of gaining weight associated with short term-term
ingestion of TiO222 nanofiber (TDNF)

The main objective of this experiment study was to investigate the adverse effect associated with short
term-term ingestion of TiO2 nanofiber (TDNF). Specifically the lungs will be assessed for global
differential gene expression changes. The experiment was conducted by the authors to illustrate the
proposed method of the first author Dr.PH dissertation. However, for the illustration propose in this
paper we will focus on the effect of weight gaining associated with short term-term ingestion of
TiO2 nanofiber (TDNF), when subject is allocated to treatments based on baseline ranked weight as
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Table 7: Latin square design layout for the matched paired rats

Latin square replicates I II
Rank matched pairs 1 2 3 4

Period 1 (rat1 in the matched pair) A B A B
Period 2 (rat2 in the matched pair) B A B A

Table 8: ANOVA table for weight gain in rats using crossover design

Source df Type I SS Mean square F-value p-value
Replicates 1 544.50 544.50 22.75 0.0412
Rats (rep) 2 250.82 125.41 5.24 0.1602

Period 1 2.00 2.00 0.08 0.7997
Treatment 1 220.50 220.50 9.21 0.0935

Table 9: ANOVA table for weight gain in rats using complete randomized design

Parameter Estimate Standard error t-value p-value
Intercept 100.45 5.930 16.93 <0.0001

treat 1 10.50 8.392 1.25 0.2575
treat 2 0.00

explained above.

4.1. Experimental design

Male Sprague Dawley rats were purchased from Taconic Bioscience Inc., Hudson, NY. The animals
were 6–7 weeks old at the time of treatment. To apply the proposed method of selecting the rats to this
experiment, we asked Taconic Bioscience Inc. to divide the rats into four weight groups ranging from
low weight group to maximum weight group. Four rats were randomly selected from each ordered
group. For this illustration, we used two sets of selected rats. Each set has four rats with four different
baseline weights ranked from minimum weight to maximum weight. We used two treatments: (1)
Treatment A = total ingestion concentration of 0 ppm (control − FC), (2) Treatment B = 60 ppm
(medium concentration − FMC). We used a Latin square model to test for the difference in treatment
weight gain after two weeks of feeding the rats with the two concentrations. TDNF was delivered to
animals via oral gavage. We formed four pairs of rats matching them based on their baseline weights.
Our Latin square design is shown in Table 7: we treated each pair of rats as a blocking factor (as
Period 1 and Period 2). Animal weight and dietary ingestion was measured during the course of the
study

4.2. Data analysis and results

To compare the difference between treatment A and B effect on weight gain, we analyzed the data
using a nested effect design as follows:

weight gain = overall mean + period + treatment + rats (replicate) + replicates + error.

Table 8 shows that there is a marginal significance different between Treatment A = total ingestion
concentration of 0 ppm (control − FC), and Treatment B = 60 ppm (medium concentration − FMC) in
weight gain after 2 weeks of feeding. Treatment B has a reduced weight gain in 2 weeks feeding, since
the average weight gain in treatment A is 110.95 (104.17, 117.73, 95% C.I.) gm while in treatment B
is 100.45 (93.62, 107.23, 95% C.I.) gm. However, even with very small number of rats, by using our
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proposed approach, we achieved marginal significance of different treatment effect. The post power
analysis showed that we need at least 16 rates.

Table 9 shows the ANOVA analysis for weight gain in rats using complete randomized design.
Using the Latin square approach for a crossover design is more efficient for treatment groups compar-
isons.

5. Final remarks and discussion

The use of an auxiliary variable in the treatment allocation is introduced in many experiments. In the
literature, studies show that the use of the auxiliary variable is beneficial to control for nuisance factor.
If we want to control for two nuisance factors, the Latin square design is useful. The Latin square
design provides the statistical foundation for p by p crossover design. In this paper, we focused on
crossover designs using a Latin squares model.

We propose a treatment allocation method to improve the efficiency of treatment comparisons
in a crossover design using Latin squares model based on one ranked auxiliary variable, which is
known to be correlated with the outcome of interest. In our proposed protocol, a set of p subjects are
selected based on one ranked auxiliary variable. Then we randomize one of the n Latin squares to
these p subjects. This process is repeated n times. Because subject effect can be considered as fixed
effect or random effect, two models are proposed for making inference with the ANOVA approach.
The proposed method is shown to have greater power for all illustrated parameters than SRS in our
simulation study, as shown in Section 3.

There are many advantages to using a crossover design. It is attractive to researchers, that subjects
are their own control in the studies, which implies elimination of between subjects variation. A
crossover design increases the efficiency for estimating and testing treatment effects, when there is no
carry-over effect. It requires a smaller sample size than is needed in a parallel group design. However,
not all types of studies can be applied to crossover design. For example, if subjects (e.g. rats) need
to be sacrificed after the treatment, it does not apply. In addition, if we consider the presence of a
carryover effect, the crossover design is not applicable in this settings.

In this paper we propose a method by incorporating a ranked auxiliary variable in a crossover
design to increase the efficiency of treatment comparison. The main strength of this proposed method
is that it provides an alternative method of treatment allocation. Treatment allocation based on the
ranked auxiliary variable provides for increased power. In the simulation study, the proposed method
shows higher power compared to simple randomization. Our proposed approach is illustrated on
weight gain in rats using baseline ranked weight for rats allocation.

Appendix A: Analysis using fixed effect model

For the scenario that subjects are considered as fixed effect, we use model (A.1) and assume the
following:

Yi j[k]l = µ + αi + τ j + βk(l) + γl + ϵi j[k]l, k = 1, . . . , p; i = 1, . . . , p; j = 1, . . . , p; l = 1, . . . , n, (A.1)

where Yi j[k]l is the response of kth ranked subject in lth replicate in jth treatment at ith period.
µ is an effect common to all response. αi is the effect of the ith period. βk(l) is the effect of the

kth ranked subject nested in lth replicate. τ j is the effect of the jth treatment. γl is the effect of the
lth replicate. ϵi j[k]l is the error term (within subject) in observing response Yi j[k]l. It is assumes to
be independent with mean 0 and variance σ2

[k]. The goal of this study is to test the treatment effect.
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Table A.1: The ANOVA table for crossover design using Latin squares, proposed method, fixed effect model

Source of Sum of squares (SS) Expected value of SS Degree of
variation freedom

Periods np
p∑

i=1

(
Ȳi··· − Ȳ····

)2
np

p∑
i=1

α2
i +

p − 1
p

p∑
k=1

σ2
[k] p − 1

Treatments np
p∑

j=1

(
Ȳ· j·· − Ȳ····

)2
np

p∑
j=1

τ2
j +

p − 1
p

p∑
k=1

σ2
[k] p − 1

Subjects
p

p∑
k=1

n∑
l=1

(
Ȳ··k(l) − Ȳ···l

)2
p

p∑
k=1

n∑
l=1

β2
k(l) +

n(p − 1)
p

p∑
k=1

σ2
[k]

n(p − 1)(nested in
replications)

Replicates p2
n∑

l=1

(
Ȳ···l − Ȳ····

)2
p2

n∑
l=1

γ2
l +

n − 1
p

p∑
k=1

σ2
[k] n − 1

Error
p∑

i=1

p∑
j=1

p∑
k=1

n∑
l=1

(
Yi j[k]l − Ȳi··· − Ȳ· j·· − Ȳ··[k]l + 2Ȳ····

)2 (p − 1)(np − 2)
p

p∑
k=1

σ2
[k] (p − 1)(np − 2)

Total
p∑

i=1

p∑
j=1

p∑
k=1

n∑
l=1

(
Yi j[k]l − Ȳ····

)2 np
p∑

i=1

α2
i + np

p∑
j=1

τ2
j + p2

n∑
l=1

γ2
l

np2 − 1

+ p
p∑

k=1

n∑
l=1

β2
k(l) +

np2 − 1
p

p∑
k=1

α2
i

Therefore, the hypothesis testing can be written as:

H0 : τ1 = τ2 = · · · = τp = 0,
H1 : at least one τpis not equal to 0.

Let Ȳ···· denote the average of all observations, Ȳi··· denote the average of observations from period
i, Ȳ j··· denote the average of observations in jth treatment, Ȳ··k(l)denote the average of kth ranked subject
nested in replicate l and Ȳ···l denote the average of observations in replicates l. The analysis of variance
sums of squares, degrees of freedom, and expected mean squares can be obtained in the appendix. We
show the test statistic is approximately F distribution with degree of freedom [(p−1), (p−1)(np−2)].
Table A.1 presents the ANOVA table for analyzing the model in A.1 with sum of squares expectations.

Appendix B: Analysis using mixed effect model

If we consider the subject effect as random effect, the following model (B.1) is used for analysis.

Yi j[k]l = µ + αi + τ j + β[k](l) + γl + ϵi j[k]l, k = 1, . . . , p; i = 1, . . . , p; j = 1, . . . , p; l = 1, . . . , n. (B.1)

Similar assumptions as in model (A.1) are needed except that we need, β[k]l the effect of the kth subject
nested in lth replicate, to be independent with mean 0 and variance σ2

[k]l and ϵi j[k]l is independent of
β[k]l .

Similarly, the hypotheses can be written as:

H0 : τ1 = τ2 = · · · = τp = 0,
H1 : at least one τp is not equal to 0.

Table B.1 presents the ANOVA table for analyzing the model in (B.1) with sum of squares expecta-
tions.
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Table B.1: The ANOVA table for crossover design using Latin squares, proposed method, mixed effect model

Source of Sum of squares (SS) Expected value of SS Degree of
variation freedom

Treatments np
p∑

i=1

(
Ȳi··· − Ȳ····

)2
np

p∑
j=1

τ2
j +

p − 1
p

p∑
k=1

σ2
[k] p − 1

Periods np
p∑

j=1

(
Ȳ· j·· − Ȳ····

)2
np

p∑
i=1

α2
i +

p − 1
p

p∑
k=1

σ2
[k] p − 1

Subjects p
p∑

k=1

n∑
l=1

(
Ȳ··k(l) − Ȳ···l

)2 n(p − 1)
p

p
p∑

k=1

σ2
[k] +

p∑
k=1

σ2
β[k]

 n(p − 1)

Replicates p2
n∑

l=1

(
Ȳ···l − Ȳ····

)2
p2

n∑
l=1

γ2
l +

n − 1
p

p
p∑

k=1

σ2
β[k] +

p∑
k=1

σ2
[k]

 n − 1

Error
p∑

i=1

p∑
j=1

p∑
k=1

n∑
l=1

(
Yi j[k]l − Ȳi··· − Ȳ· j·· − Ȳ··[k]l + 2Ȳ····

)2 (p − 1)(np − 2)
p

p∑
k=1

σ2
[k] (p − 1)(np − 2)

Total
p∑

i=1

p∑
j=1

p∑
k=1

n∑
l=1

y2
i jkl −

y2
····

np

np
p∑

i=1

α2
i + np

p∑
j=1

τ2
j + p2

n∑
l=1

γ2
l

np2 − 1

+ (np − 1)
p∑

k=1

σ2
[k] +

np2 − 1
p

p∑
k=1

σ2
[k]
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