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 Introduction
Many statistical applications and inferences rely on the valid-

ity of the underlying distributional assumption. Symmetry of the 
underlying distribution is essential in many statistical inference 
and modeling procedures. There are several tests of symmetry 
in the literature; however most of these tests suffer from low sta-
tistical power. Tests have been suggested by Butler [1], Rothman 
& Woodroofe [2], Hill & Roa [3], Baklizi [4], and McWilliams [5]. 
McWilliams [5] showed, using simulation, that his runs test of 
symmetry is more powerful than those provided by Butler [1], 
Rothman & Woodroofe [2], and Hill & Roa [3] for various asym-
metric alternatives. However, Tajuddin [6] introduced a distribu-
tion-free test for symmetry based on Wilcoxon two-sample test 
which is more powerful than the runs test.

 Moreover, Modarres & Gastwirth [7] modified McWilliams 
[5] runs test by using Wilcoxon scores to weight the runs. The 
new test improved the power for testing for symmetry about a 
known center but did not perform well when the asymmetry is 
focused in regions close to the median for a given distribution. 
Mira [8], introduced a distribution free test for symmetry based 
on Boferroni’s Measure. She showed that her test outperform 
tests introduced by Modarres & Gastwirth [7] and Tajauddin [6]. 
Recently, Samawi et al. [9] provided a test of symmetry based on 
a nonparametric overlap measure. They demonstrated that the 
test of symmetry based on an overlap measure outperformed 
other tests of symmetry in the literature, including the runs test. 
Samawi & Helu [10] introduced a runs test of conditional sym-
metry which is reasonably powerful to detect even small asym-
metry in the shape of the conditional distribution. In addition, 
the Samawi & Helu [10] test does not need any approximation 
nor extra computations such as kernel estimation of the density 

function as in the other tests that are found in the literature. 

 This paper uses the Kullback-Leibler information to test for 
the symmetry of the underlying distribution. Let 1 2( ) and ( )f x f x
be two probability density functions. Assume samples of ob-
servations are drawn from continuous distributions. The Kull-
back-Leibler discrimination information function is given by 

                                                                                                     		
				                                                  (1)

    
( ) ( )1

1 2 1 1 1 1 2
2

( )( , ) ( ) ln , ( ) ln ( ) ( ) ln ( ) ,
( )

               

f xD f f f x dx f x f x dx f x f x dx
f x

∞ ∞ ∞

−∞ −∞ −∞

 
= = −∫ ∫ ∫ 

 

   	
 as defined by Kullback & Leibler [11]. For simplicity we will 
write (1) as

1 2 11 1 1 12 1 2( , ) ( , ) ( , ),D f f D f f D f f= −  where 

( ) ( )11 1 1 1 1 12 1 2 1 2( , ) ( ) ln ( )  and ( , ) ( ) ln ( ) .D f f f x f x dx D f f f x f x dx
∞ ∞

−∞ −∞

= =∫ ∫

This measure can be directly applied to discrete distributions 
by replacing the integrals with summations. It is well known 
that 1 2( , ) 0,D f f ≥ and the equality holds if and only if 1 2( ) ( )f x f x=  
almost everywhere. The discrimination function 1 2( , )D f f  mea-
sures the disparity between

1 2
 and f f .

Many authors used the discrimination function (.,.)D  for 
testing goodness of fit of some distributions. For example see 
Alizadeh & Arghami [12,13]. 

In this paper we consider testing the null hypothesis of 
symmetry for an underlying absolutely continuous distribu-
tion (.)F with known location parameter and density denoted 
by (.)f 0: ( ) ( ) H f x f x= −  versus : ( ) ( );for some .aH f x f x x≠ −
Under the null hypothesis of symmetry, if we let 
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Abstract

The assumption of the symmetry of the underlying distribution is important to 
many statistical inference and modeling procedures. This paper provides a test of 
symmetry using kernel density estimation and the Kullback-Leibler information. 
Based on simulation studies, the new test procedure outperforms other tests 
of symmetry found in the literature, including the Runs Test of Symmetry. We 
illustrate our new procedure using real data. 
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1 2( ) ( ) and  ( ) ( )f x f x f x f x= = − then 
1 2

( , ) 0D f f = .

Since kernel density estimation procedures are readily avail-
able in various statistical software packages such as SAS, STATA, 
S-Plus and R, we were interested in exploring the development 
of a new test of symmetry using kernel density estimation of 

1 2( , )D f f . This paper will introduce a powerful test of symme-
try based on Kullback-Leibler discrimination information func-
tion. The Kullback-Leibler information test of symmetry and its 
asymptotic properties are introduced in Section 2. A simulation 
study is provided in Section 3. Illustrations of the test using base 
deficit score data and final comments are given in Section 4.

Test of Symmetry Based on the Kullback-Leibler 
Discrimination Information Function

Assume that a random sample, 1 2, ...., nX X X , is drawn from 
absolutely continuous distribution (.)F having known median, 
assumed to be 0. In the case of an unknown median, or if the 
center of the distribution is not known, then the data can be 
centered by a consistent estimate of the median. However, the 
implications of centering the data around a consistent estima-
tor of the median on the asymptotic properties are not straight-
forward. Therefore, further investigations are needed to study 
the robustness of the proposed test of symmetry and compare 
it with other available tests of symmetry when the median is 
unknown. In this paper we will discuss only the case where the 
median of the underlying distribution is assumed known. 

Consider testing for symmetry 0: ( ) ( ) H f x f x= −  
versus : ( ) ( );for some .aH f x f x x≠ −    Let 

1 2( ) ( ) and  ( ) ( )f x f x f x f x= = −  . Under the null hypothesis, 

1 2( , ) 0D f f =  . An equivalent hypothesis for testing the symmetry 
is   0 1 2: ( , ) 0 H D f f =  1 2versus : ( , ) 0aH D f f >   let D̂  be a consistent 
nonparametric estimator of 1 2( , )D f f  . Under the null hypoth-
esis of symmetry and some regularity assumptions, which will 
be discussed later in this paper, we propose the following test 
of symmetry:

 	               0

ˆ 0 (0,1)
ˆ ˆ

D Lz N
Dσ
−

= → , 		  (2)

For large n, where ˆˆDσ is a consistent estimator of the stan-
dard error of D̂ . An asymptotic significant test procedure at 
levelα  is to reject 0H  if 0z zα> , where zα is the upper α  per-
centile of the standard normal distribution. 

Kernel estimation of  1 2( , )D f f  
For the i.i.d. sample 1 2, ...., nX X X , let 11 1 1

ˆ ( , )D f f  be an esti-
mate of 11 1 1( , )D f f . To address which estimator of 11 1 1( , )D f f
will be appropriate to our inference procedure we need to state 
some necessary conditions:

C1: f is continuous. (Smoothness conditions)

C2: f is k times differentiable. (Smoothness conditions)

C3:
11

([ ], [ ]) 1D X X < , where [X] is the integer part of X. (Tail 	
	 condition)

C4: ( ) 0 ( ) 0f xInf f x> >  (Tail condition)

C5: 2(ln )f f <∞∫  (Peak condition) (Note that, this is also a 	
	 mild tail condition.)

C6: f is bounded. (Peak condition)

Some suggested estimators for ( )11 1 1 1 1( , ) ( ) ln ( )D f f f x f x dx
∞

−∞

− = ∫ may 
be found in the literature. These include the plug-in estimates 
of entropy which are based on a consistent density estimate nf  
of f. For example, the integral estimate of entropy introduced 
by Dmitriev & Tarasenko [14]. Joe [15] considers estimating 

11 1 1( , )D f f− when 1f  is a multivariate pdf, but he points out that 
the calculation when 1̂f  is a kernel estimator gets more difficult 
when the dimension of the integral is more than two. He there-
fore excludes the integral estimate from further study. The inte-
gral estimator can however be easily calculated if, for example, 

1̂f  is a histogram. 

The re-substitution estimate is proposed by Ahmad & Lin 
[16] as follows:

	
11 1 1 1

1

1ˆ ˆ ˆˆ ( , ) ln ( ),
n

i
i

D f f f X
n =

− =− ∑  	     (3)

Where 1̂f  is a kernel density estimator? They 
showed the mean square consistency of (3), such that 

2
11 1 1 11 1 1

ˆ ˆˆlim  {( ( , ) ( , )) } 0n E D f f D f f
∞

− =


 Joe [15] considers the es-
timation of 11 1 1( , )D f f− for multivariate pdfs by an entropy esti-
mate of the re-substitution type (3), also based on a kernel den-
sity estimate. He obtained asymptotic bias and variance terms, 
and showed that non-unimodal kernels satisfying certain con-
ditions can reduce the mean square error. His analysis and sim-
ulations suggest that the sample size needed for good estimates 
increases rapidly when the dimension of the multivariate den-
sity increases. His results rely heavily on conditions C4 and C6. 
Hall & Morton [17] investigated the properties of an estimator of 
the type (3) both when nf  is a histogram density estimator and 
when it is a kernel estimator. For the histogram estimation they 
showed that 1/2 2

11 1 1 11 1 1
ˆˆlim  ( ( , ) ( , )) (0, )n n D f f D f f N σ

∞
− 



under 
certain tail and smoothness conditions with.

		
		

2 (ln( ( ))Var f Xσ = 	 (4)

Other estimators using sampling-spacing are investigated by 
Tarasenko [18], Beirlant & van Zuijlen [19], Hall [20], Cressie 
[21], Dudewicz & van der Meulen [22], and Beirlant [23]. Finally, 
other nonparametric estimator has been discussed by many au-
thors including Vasicek [24], Dudewicz & Van der Meulen [22], 
Bowman [25] and Alizadeh [26]. Among these various entropy 
estimators, Vasicek’s sample entropy has been most widely used 
in developing entropy based statistical procedures. However, de-
riving the asymptotic distribution for there D̂ is hard to estab-
lish. Therefore, in this paper we will adopt the kernel re-substi-
tution estimate which is proposed by Ahmad & Lin [16]. 
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We will adopt the notation of Samawi et al. [9]. Our proposed 
test of symmetry is as follow: Let 1 2, ...., nX X X  be a random sam-
ple from absolutely continuous distribution (.)F which is con-
tinuously differentiable with uniformly bounded derivatives and 
having known median. 

Let K be a kernel function satisfying the condition 

                         ( ) 1K x dx∞
−∞ =∫ .                                               (5)

For simplicity, the kernel K will be assumed to be a sym-
metric density function with mean 0 and finite variance; an 
example is the standard normal density. The kernel estimators 
for ( ) and ( ), 1,2,...,i if w f w i C− = , are:

		   
1

1ˆ ( )  
n i j

i
j

w x
f w KK nh h=

− − 
− = ∑  

 
	 (6)

and 

                                1

1ˆ ( )  
n i j

K i
j

w x
f w K

nh h=

− 
= ∑  

 
,	                                   	

						      (7)

Respectively, where C  is the number of bins and depends on 
the sample size. As in Samawi et al. [9], we suggest to take the 
integer of C n= . In addition, h is the bandwidths of the kernel 
estimators satisfying the conditions that 0, 0 and ( )h h nh> → →∞
as  n→∞ . There are many choices of the bandwidths ( h ). In our 
procedure we use the method suggested by Silverman [27] Us-
ing the normal distribution as the parametric family, the band-
widths of the kernel estimators are 

                                     1/50.9 ( )  h A n −= ,                              (8)

Where A =min{standard deviation of ( 1 2, ...., nx x x ), inter-
quantile range of ( 1 2, ...., nx x x )/1.349}. This form of (8) is found 
to be adequate choices of the bandwidth for many purposes 
which minimizes the integrated mean squared error (IMSE), 

                          
2ˆ[ ( ) ( )] .KIMSE E f x f x dx= −∫                         (9)                                  	

 	                                We will use the Samawi et al. [9] suggestion to calculate the 
bins as follows: Let 1 2( , ,..., )nR range x x x= , then bins will be se-
lected as 1 ,i i xw w δ−= +  where 2,...,i C= , 

1 1 2
min( , , ..., )

n
w x x x=

and 
x

R
C

δ =
. 

 Using the above kernel estimator, the nonparametric kernel 
estimator of 1 2( , )D f f under the null hypothesis is given by

	   	  
11 12

ˆ ( )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ln , = ( ( ), ( )) ( ( ), ( )),ˆ ( )
K

K K K K K
K

f xD f x dx D f x f x D f x f x
f x

 
= − − ∫  −  	

					                  (10)

Which can be approximated by? 

	
1 1

1 1ˆ ˆˆ ln ( ) ln ( )
C C

K i K i
i i

D f w f w
C C= =

= − −∑ ∑  	              (11)

The approximate variance of D̂  is given by

1 1
2 2

ˆ ˆ( ln ( )) ( ln ( ))
ˆ( ) .

C C

K i K i
i i

Var f w Var f w
Var D

C C
= =

−∑ ∑
= +

Asymptotic properties of D̂

The nonparametric kernel estimator of 1 2( , )D f f  ( D̂ ) is 
based on the univariate kernel for density estimation, :K → 

. The necessary regularity conditions imposed on the univariate 
kernel for density estimation are:

I.  ( ) 1.R K z dz=∫

II. ( ) 0 for any 1,..., 1, and | | ( ) . r
R Rz K z dz r z K z dzβ β= = − <∞∫ ∫

III.  2 ( ) .RR K z dz= <∞∫

IV. 0, 0 , ( ) and ( )
log
nhh h nh

n
> → →∞ →∞

These conditions may be found in Silverman [27] (Chapter 
3) or Wand & Jones [28] (Chapter 2). 

To show consistency of D̂ , apply the kernel density asymp-
totic properties found in Silverman [27], (Chapter 3) or Wand & 
Jones [28], (Chapter 2). Under assumptions 1-4 and assuming 
that the density :f →   is continuous at each iw , i=1, 2,… C,

 ˆ ˆ( ( )) (1)  and  ( ( )) (1)K i K iBias f w o Bias f w o− = =− +      (12)

  	 2 2( ) 1 ( ) 1ˆ ˆ( ( )) ( ) ( ) and ( ( )) ( ) ( ), i i
K i K i

f w f wVar f w K z dz o Var f w K z dz o
nh nh nh nh
−

− = + = +∫ ∫
 

					                   (13)

and for 0, 0 and ( )h h nh> → →∞ as  n→∞  
ˆ ˆ( ) ( ) and ( ) ( )K i i K i i

P Pf w f w f w f w− → − →  If f(.) uni-
formly continuous, then the kernel density estimate is 
strongly consistent. 	 Moreover, as in Ahmad & Lin [16], 

2
11 11

ˆ ˆˆlim  {( ( ( ), ( )) ( ( ), ( ))) } 0,C K K K KE D f x f x D f x f x
∞

− =


  and 

hence 11 11
ˆ ˆˆ ( ( ), ( )) ( ( ), ( )), as K K K K

PD f x f x D f x f x C→ →∞   and 

12 12
ˆ ˆˆ ( ( ), ( )) ( ( ), ( )), as K K K K

PD f x f x D f x f x C− → − →∞ . How-

ever, since 11 12
ˆ ˆ ˆ ˆˆ ˆ ˆ( ( ), ( )) ( ( ), ( ))K K K KD D f x f x D f x f x= − −   therefore 

ˆ ( ( ), ( )), as .pD D f w f w C→ − →∞

 To drive the asymptotic distribution of D̂ , we will define 
1 2( , )D f f  as a functional 

			 
1 2 1 1 1 2 1 1 2 1( , ) ( ) ln( ( )) ( ) ln ( ) ln( ( )) ln ( )D f f f w f w dw f w f w dw f w dF f w dF

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

= − = −∫ ∫ ∫ ∫ .

http://dx.doi.org/10.15406/bbij.2016.03.00060


A Test of Symmetry Based on the Kernel Kullback-Leibler Information with Application 
to Base Deficit Data

Copyright:
©2016 Samawi  et al.

Citation: Samawi, Vogel R (2016) A Test of Symmetry Based on the Kernel Kullback-Leibler Information with Application to Base Deficit Data. Biom 
Biostat Int J  3(2): 00060. DOI: 10.15406/bbij.2016.03.00060

4/10

Using the previously stated regularity conditions, some 
regularity conditions given by Serfing [29] and assuming that 
the ˆGateaux derivatives of the functional 1 2( , )D f f  exist, we 
can show that the partial influence function of the functional 

1 2( , )D f f  [30] are as follows:

1 1 1 1 1 1( ; , ) ln ( ) ( ) ln ( ) ,L w F F f w f w f w dw
∞

−∞

= − ∫

and 

2 1 2 2 1 2( ; , ) ln ( ) ( ) ln ( ) .L w F F f w f w f w dw
∞

−∞

= − ∫  

Note that 

1 1 1 1 2 1 2 1( ; ( ), ( )) ( ) 0 and  ( ; ( ), ( )) ( ) 0.L w F w F w dF w L w F w F w dF w= =∫ ∫  
Now using this functional representation of 1 2( , )D f f , then as in 
Samawi et al. [30] and Serfing [29],

2
1 2 ˆ

ˆ( ( , )) (0, ),
D

LC D D f f N σ− →

         
(14) 

Where    2 2 2
1 1 1 1 2 1 2 1ˆ ( ; , ) ( ; , )

D
L w F F dF L w F F dFσ = +∫ ∫  

A consistent estimate for 2
D̂

σ  is given by  

	
2 2 2

1 1 1 2 1 2ˆ
1 1

1 1ˆ ˆ ˆ ˆˆ ( ; , ) ( ; , ),
C C

D
i i

L w F F L w F F
C C

σ
= =

= +∑ ∑
					     Where, 

1 1 1 1 11 1 1 2 1 2 2 12 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ; , ) ln ( ) ( ( ), ( )) and ( ; , ) ln ( ) ( ( ), ( )), 1,2,..., ,i i i i i i i iL w F F f w D f w f w L w F F f w D f w f w i C= − = − =

Where in our case 1 2( ) ( ) and ( ) ( )i i i if w f w f w f w= = − .

For discussions about different methods addressing the issue 
of the performance of kernel density estimation at the boundary, 
see Hall & Park [31].

Simulation Study
As in Samawi et al. [9], to gain some insight of our procedure, 

a simulation study was conducted to investigate the perfor-
mance of our new test of symmetry based on D̂ . We compared 
our proposed test of symmetry with the test proposed by McWil-
liams [5], Modarres & Gastwirth [32], Mira [8] Bonferroni’s test, 
and Samawi et al. [9] tests of symmetry. 

As in McWilliams [5], the runs test is described as follows: 
For any random sample of size n, let (1) (2) ( ), ,... , nY Y Y denote the 
sample values ordered from the smallest to largest according 
to their absolute value (signs are retained), and 1 2, ,..., nS S S de-

note indicator variables designating the sign of the ( )jY values 

[ ( )1 if  is nonnegative, 0 otherwisej jS Y= ]. Thus, the test statistic 
used for testing symmetry is  = the number of runs in 1 2, ,..., nS S S
sequence=

2

1
n

j
j

I
=

+ ∑ , where 

	

		           

1

1

0   if 
1   if  

j j
j

j j

S S
I

S S
−

−

== ≠ 	 .

We reject the null hypothesis if *R  is smaller than a crit-
ical value ( cα ) at the pre-specified value ofα . Moreover, 
Mira [8] Bonferroni’s test is 1 :( ) 2( )n n s nF X Xγ = − , where

: 1 2( , ,..., )s n nX Median X X X= . The process is to reject the null hy-
pothesis if 

1 1| ( )| ( , ),n
n c n

aF S F
n

γ γ≥
where

 

2 2 2 2 2
1 , , : ,1 1 12

1/5

4/5 4/5
[( /2) ]: [( /2) 1]:

1 2ˆ ˆ as , ( , ) 4 ( ) 4 , ( ) , ( ),  
1

( ), and 0.5.
2

n n

i n in c n n c n c n i s n n cF F
i i

n cn n n cn n

a z n S F D D S X X S X X I X X D
n n

n
X X c

c

α µ µγ σ σ
−

= =

+ + +

∑ ∑→ → ∞ = + − = − = − ≤ =
−

− =

The Modarres & Gastwirth [32] test is the hybrid test of sign 
test in the first stage and a percentile-modified two-sample Wil-
coxon see Gastwirth [33] test in the second stage. Finally, Sama-
wi et al. [9] test of symmetry is based on kernel estimate of the 
overlap measure. 

 In the following simulation, SAS version 9.3 {proc kde; 
method=srot} is used. As in McWilliams [5], the generalized 
lambda distribution see, Ramberg & Schmeiser [34] is used in 
our simulation with following set of parameters:

1- 1 2 3 40, 0.197454, 0.134915, 0.134915, (Symmetric)λ λ λ λ= = = =

2- 1 2 3 40, 1, 1.4, 0.25, λ λ λ λ= = = =

3- 1 2 3 40, 1, 0.00007, 0.1,λ λ λ λ= = = =  

4- 1 2 3 43.586508, 0.04306, 0.025213, 0.094029,λ λ λ λ= = = =

5- 1 2 3 40, 1, 0.0075, 0.03,λ λ λ λ= =− =− =−

6- 1 2 3 40.116734, 0.351663, 0.13, 0.16,λ λ λ λ=− =− =− =−

7- 1 2 3 40, 1, 0.1, 0.18,λ λ λ λ= =− =− =−

8- 1 2 3 40, 1, 0.001, 0.13,λ λ λ λ= =− =− =−

9- 1 2 3 40, 1, 0.0001, 0.17.λ λ λ λ= =− =− =− 	  

To generate the observations we used 3 4
1

2

1 ( (1 ) , 1,..., ,i i ix u u i mλ λλ
λ

= + − − =

where iu a uniform random number. The significance level used 
in the simulation is 0.05,α= with sample sizes n=30, 50, and 
100. To investigate the Type I error, the symmetric distributions 
used in the simulation are the first case of the generalized lamb-
da and the normal. Our simulation is based on 5000 simulated 
samples. The 95% confidence intervals of the true probabil-
ity of type I error under the null hypothesis with 0.05α=  are 
(0.04396, 0.05504).
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Table 1.1 shows the estimated probability of type I error. Our 
test is an asymptotic test with a slight bias in D(., .) and in the 
variance estimation for small sample size. For sample sizes more 
than 30, the test seems to have an estimated probability of type I 
error close to the nominal value 0.05. However, Bonferroni’s test 
seems to be conservative test procedure, while Modarres, Gast-
wirth test is slightly conservative for small sample size. Table 1.2 
and Table 1.3 show that using D(., .) based test is more powerful 

than McWilliams [5], Bonferroni’s, Modarres & Gastwirth [32] 
and Samawi et al. [9] tests in all of the presented cases. The effi-
ciency increases as the sample size increases.

Note: The values of skewness 3( )α and kurtosis 4( )α are 
from McWilliams [5].

Note: The values of skewness 3( )α and kurtosis 4( )α are 
from McWilliams [5].

Table 1.1: Probability of Type I Error under the Null Hypothesis. ( 0.05α= ).

Distribution n Run 
Tests

Test Based 
on the 

Overlap

Bonferroni’s 
1( )nFγ

Modarres 
and Gast-
wirth (1998) 
Test 0.80W

Test Based on 
Kullback-Leibler 
Information

Case #1 generalized lambda 

1 2 3

4 3 4

0, 0.197454, 0.134915,

0.134915,  0, 3.0

λ λ λ

λ α α

= = =

= = =

30 0.046 0.056

1( )nFγ
0.03

0.80W
0.027 0.051

50 0.052 0.051 0.032 0.044 0.047

100 0.058 0.052 0.027 0.046 0.051

Normal (0, 1) 30 0.052 0.057 0.03 0.03 0.052

50 0.048 0.055 0.03 0.043 0.051

100 0.051 0.052 0.032 0.048 0.052

Table 1.2: Power of Kullback-Leibler Information based test, with comparison with other tests Under Alternative Hypotheses ( 0.05α= ).

Case # n Run 
Test

Test 
Based 
on the 

Overlap

Bonfer-
roni’s 

0.80W

Modar-
res and 
Gastwirth 
(1998) Test 

0.80W

Test based 
on Kull-
back-Leibler 
Information

-2
1 2 3 4 3 40, 1, 1.4, 0.25 =0.5, 2.2λ λ λ λ α α= = = = =

30 0.282 0.501 0.253 0.495 0.948

50 0.456 0.839 0.352 0.941 0.992

100 0.781 0.999 0.5 1 1

-3
1 2 3 4 3 40, 1, 0.00007, 0.1, 1.5, 5.8λ λ λ λ α α= = = = = =

30 0.444 0.846 0.508 0.61 0.98

50 0.678 0.953 0.756 0.99 0.999

100 0.913 1 0.966 1 1

-4
1 2 3 4

3 4

3.586508, 0.04306, 0.025213, 0.094029

0.9, 4.2

λ λ λ λ

α α

= = = =

= =

30 0.12 0.38 0.154 0.179 0.684

50 0.134 0.541 0.26 0.474 0.854

100 0.245 0.761 0.488 0.845 0.946

-5
1 2 3 4 3 40, 1, 0.0075, 0.03, 1.5, 7.5λ λ λ λ α α= = − = − = − = =

30 0.141 0.451 0.231 0.247 0.81

50 0.201 0.601 0.41 0.652 0.92

100 0.336 0.839 0.741 0.954 0.98
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Table 1.3: Power of Overlap based test and Run Tests under Alternative Hypotheses. ( 0.05α= ).

Case # n Runs 
Test

Test 
Based 
on the 

Overlap

Bonfer-
roni’s 

1( )nFγ

Modar-
res and 
Gastwirth 
(1998) 
Test 0.80W

Test Based 
on Kull-
back-Leibler 
Information

-61 2 3 4

3 4

0.116734, 0.351663, 0.13, 0.16,

0.8, 11.4

λ λ λ λ

α α

= − = − = − = −

= =

30 0.051 0.161 0.034 0.033 0.191

50 0.055 0.174 0.04 0.055 0.225

100 0.053 0.21 0.059 0.12 0.331

-7
1 2 3 4 3 40, 1, 0.1, 0.18, 2.0, 21.2λ λ λ λ α α= = − = − = − = =

30 0.101 0.189 0.091 0.092 0.452

50 0.111 0.241 0.155 0.21 0.611

100 0.122 0.361 0.336 0.478 0.737

-8
1 2 3 4 3 40, 1, 0.001, 0.13, 3.16, 23.8λ λ λ λ α α= = − = − = − = =

30 0.544 0.98 0.643 0.655 0.993

50 0.752 0.999 0.888 0.992 1

100 0.961 1 0.996 1 1

-9
1 2 3 4 3 40, 1, 0.0001, 0.17 3.88, 40.7λ λ λ λ α α= = − = − = − = =

30 0.571 1 0.685 0.676 0.993

50 0.81 1 0.916 0.995 0.999

100 0.963 1 0.999 1 1

Illustration Using Base Deficit Data
We applied our new test procedure of symmetry to the base 

deficit (bd) data as in Samawi et al. [9]. The base deficit score re-
fers to a deficit of "base" present in the blood. Base deficit scores 
were first established by Davis et al. [35]. The base deficit score 
has been found correlated to many variables in the trauma pop-
ulation, such as, mechanism of injury, the presence of intra-ab-
dominal injury, transfusion requirements, mortality, the risk of 
complications, and the number of days spent in the intensive 
care unit as indicated by Tremblay et al. [36] and Davis et al. 
[37]. 	

The samples used in this illustration are part from the data 
collected based on a retrospective study of the trauma registry 
at a level 1 trauma center between January, 1998 and May, 2000. 
The primary concern was to determine at what point we can dif-
ferentiate between life and death based on a base deficit score. 
A first step in this analysis is to determine if there is a differ-
ence in location for the base deficit score of those who survive 
and those who fail to survive. As is frequently the case in such 
studies, the underlying distribution is assumed “normal” or at 
least symmetric and a t-test or a nonparametric test would be 
performed without checking the assumptions. In either case a 
test of symmetry is almost never considered as a means of de-
termining how one may proceed in the analysis. Based on the 
conclusions of a test of symmetry, the analyst can chose the most 
powerful test for location. The goal is to test the hypothesis that, 
on average, the base deficit score is the same for those who sur-
vive and those who fail to survive their injuries. The injuries of 
interest in this group of patients are either penetrating injury 
or blunt injury. However, before deciding on the test procedure, 

we need to check the assumptions of underlying distribution 
of the base deficit for both penetrating injury and blunt injury 
groups of patients. In particular, the assumption of symmetry of 
the underlying distribution needs to be verified. The data will be 
centered about the estimated measure of location to perform the 
tests of symmetry. 

Figure 1.1 and Figure 1.2 show the box plot for penetrating 
injury and blunt injury groups for dead and alive patients re-
spectively. Clearly there is some asymmetry on all four distri-
butions. Also, Table 2.1 and Table 2.2 show summery statistics 
for penetrating injury and blunt injury groups for dead and alive 
patients respectively. Table 2.3 shows the overlap based test, 
the runs test and the proposed test of symmetry based on the 
Kullback-Leibler information of symmetry for the underlying 
distribution for patients discharged alive and dead patients of 
blunt trauma and penetrating trauma. We reject the assumption 
of symmetry for underlying distribution of these groups.

The proposed test of symmetry based on the Kullback-Leibler 
information, appears to outperform the other tests of symmetry 
in the literature in terms of power. Our test is more sensitive to 
detect a slight asymmetry in the underlying distribution than 
other tests proposed in the literature. Moreover, the kernel den-
sity estimation literature is very rich and many of the proposed 
methods and the improved methods are available on statistical 
software, such as SAS™, S-plus, Stata and R. Since based on the 
Kullback-Leibler information can be used in multivariate cases 
as well as in univariate cases, our proposed test of symmetry can 
be extended to multivariate cases for diagonal symmetry, condi-
tional symmetry and other types of symmetry.
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Table 2.1: Summery statistics for base deficit for dead patients.

Descriptives

BD

Type of Wound Statistic Std. Error

Penetrating

Mean -10.81 0.846

95% Confidence 
Interval for Mean

Lower Bound -12.49

Upper Bound -9.12

5% Trimmed Mean -10.68

Median -10

Variance 52.904

Std. Deviation 7.274

Minimum -29

Maximum 9

Range 38

Interquartile Range 10

Skewness -0.21 0.279

Kurtosis 0.102 0.552

Blunt

Mean -7.59 0.444

95% Confidence 
Interval for Mean

Lower Bound -8.46

Upper Bound -6.71

5% Trimmed Mean -7.3

Median -6

Variance 60.65

Std. Deviation 7.788

Minimum -37

Maximum 23

Range 60

Interquartile Range 10

Skewness -0.518 0.139

Kurtosis 1.368 0.277
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Table 2.2: Summery statistics for base deficit for alive patients.

Descriptives
Base 

Deficit Type of Wound Statistic Std. Error

penetrating

Mean -3.52 0.202

95% Confidence Interval 
for Mean

Lower Bound -3.91

Upper Bound -3.12

5% Trimmed Mean -3.06

Median -2.7

Variance 24.683

Std. Deviation 4.968

Minimum -28

Maximum 12

Range 40

Interquartile Range 5

Skewness -1.75 0.099

Kurtosis 5.079 0.199

Blunt

Mean -1.8 0.059

95% Confidence Interval 
for Mean

Lower Bound -1.92

Upper Bound -1.69

5% Trimmed Mean -1.61

Median -1.3

Variance 11.601

Std. Deviation 3.406

Minimum -27

Maximum 13

Range 40

Interquartile Range 3

Skewness -1.22 0.043

Kurtosis 4.39 0.085

Table 2.3: Test of symmetry with summary statistics.

Injury Type N Test Significance

Kullback-Leibler 
Information

Penetrating - Dead 74 3.989 <0.0001

Penetrating - alive 603 13.057 <0.0000

Overlap test*
Penetrating - Dead 74 -2.09 0.0183

Penetrating - alive 603 -16.928 <0.0001

Run test*
Penetrating - Dead 74 -2.065 0.0195

Penetrating - alive 603 -16.41 <0.0001

Kullback-Leibler 
Information

Blunt - Dead 306 13.92 <0.0001

Blunt - alive 3275 8.053 <0.0001

Overlap test*
Blunt - Dead 306 -13.264 <0.0001

Blunt - alive 3275 -79.074 <0.0001

Run test*
Blunt - Dead 306 -10.29 <0.0001

Blunt - alive 3275 -52.405 <0.0001
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Figure 1.1: Box plot to base deficit for dead patients.

Figure 1.2: Box plot to base deficit for alive patients.
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