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AssTBACT The tracking control problem associated with Brushless DC Motors 
(BLDCM) for high performance applications is considered. To 
guarantee their high dynamic performance operation in motion 
control systems, the magnetic saturation and reluctance variation 
effects are accounted for in the BLDCM mathematical model. The 
trajectory tracking control problem is addressed in the context of the 
transformation theory of nonlinear systems. A nonlinear control law 
is implemented, which is shown to compensate for the nonlinearities 
of BLDCM. A case study is presented in which a direct drive 
inverted pendulum actuated by a BLDCM is chosen to investigate 
the effectiveness of the control law. The effectiveness of the 
proposed control in compensating for modeling errors, external 
disturbances, and measurement errors is demonstrated. 

I. Introduction 
The control problem of Brushless DC Motors (BLDCM) for high 
performance applications is considered. This study has been 
motivated by the increasing interest in adopting BLDCM for high 
performance applications. In recent years, brushless motors have 
become a viable choice for industrial applications, specially those 
related to robotics, numerically controlled machine tools, electric 
propulsion, etc., e.g.[1,9]. This increasing interest has been the 
consequence of the advantages of brushless motors compared to 
their brushed counter parts. 

To guarantee the high performance of BLDCM in motion control 
applications, its mathematical model must include the effects of 
magnetic saturation as well as reluctance variations. Such a model 
constitutes a highly nonlinear and coupled dynamical system. 
Another class of brushless motors which has gained considerable 
attention in the motion control industry is the Switched Reluctance 
Motor (SRM). The detailed modeling and control of SRM has been 
studied by numerous researchers, e.g.[5,6]. However, SRM 
constitutes a different dynamical system from BLDCM, since the 
mutual inductances associated with the phase windings of SRM are 
usually neglected whereas in a BLDCM the mutual inductances play 
a significant role. This introduces a major difficulty in terms of the 
mathematical model when magnetic saturation is present and also in 
terms of construction of commutation strategies. The proposed 
approach in this paper eliminates the need for the derivation of 
explicit commutation strategies by representing the BLDCM 
mathematical model in a rotating frame. 

Based on the transformation theory of nonlinear systems[4], a 
nonlinear control law is proposed and examined through computer 
simulations. A case study is presented in which a direct drive 
inverted pendulum actuated by a BLDCM, whose model has been 
experimentally evaluated and verfied, is considered. 

The governing differential equations describing the dynamic 
behavior of BLDCM may be written as 

(1) 
dh(l e) 

Y(t) = B Ut) +y 
where Y(t) and I(t) are the input voltage, and current vectors, 
repectively. B = diag( RJis the resistance mamx. The motion of the 
rotor and the load attached may be described by 

(2) 
dw 

J dt = T(l,e) - TL 

where J is inertia, w is the angular velocity of the rotor, TL 
represents the load torque, e is the angular displacement of the 
rotor, and T represents the torque generated by the motor. In the 
absence of magnetic saturation, the fulx linkage vector, h, is 
expressed by 

where 
A(l.0) = I + Am@) (3) 

~ ~ ~ ( 0 )  ~ ~ ~ ( 0 )  ~ 1 3 ~  

- w )  =[ L 2 p  L22(e) L23(e) ] (4) 

L31W L32W L33W 
L i  is the self inductance of phase j, and Ljk when j#k represents the 
mutual inductance between phase j and phase k. &j represents the 
flux linkage associated with the permanent magnet and phase j. 
Equation (1) represents a system of differential equations with time 
varying (periodic) coefficients. It is known [lo] that for 
sinusoidally distributed windings, a floquet transformation, 
frequently referred to as Park's transformation, can be used to 
transform the above equations to a system of diffemetial equations 
with constant coefficients, represented in a coordinate frame attached 
to the rotor. 

For a BLDCM with sinusoidally distributed stator windings, the 
elements of the inductance matrix and the permanet magnet flux 
linkage vector, Am@), are defined as follows 

2(k- l ) ~  L& = La-Lg cos(2ne + 7) for k=1,2,3 (5 )  

~ 2 3  = ~ 3 2  = -2- L g cos(2ne 

& = Ke sin(ne - -3 

(8) II. 

2(k-1)~  (9) 
A BLDCM consists of a permanent magnet rotor, a position sensor 
mounted on the rotor, and a means to provide signals to the phase 
windings of the motor; see figure 1. The signals from the signal 
generator are synchronized with the oumut of the Dosition Sensor to 

k=1,2,3 

where La and Lg are parameters defining the nominal inductance 
provide the electronic commutation. ?he armatire windings of a 
typical motor are 3-phase, Y-connected, sinusoidally distributed, 
and are located on the stator. 

value and the Lp1itude of he inductance ,,ariation, respectively. 
Ke is the electromotivs force constant and n is is the number of 

permanent magnet pole pairs. After applying the transformation tc 
the rotating frame, the following goveming equations are obtained 

* Previously associated with the Sibley School of Mechanical and Aerospace 
Engineering, Cornell University, Ithaca, New York. (10) 

v = R i  + L  A + n L d i m + n K e x  di  d e  d e  
9 9 q d t  
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where Lq = (2) 3 (La - Lg), and Ld = (7) 3 (La + Lg). The torque 

expression in terms of the new variables is 

(12) 
3n 

T(i&) = (Keiq + (Ld - Lq) iqid) 

Equations (10)-(12) define a set of constant coefficient nonlinear 
differential equations. 

111. Nonlinear T r a c k i n g 0 1  of B W  
The control problem is first addressed by considering a mathematical 
model for BLDCM when magnetic saturation has been neglected. 
This step simplifies the derivation of the feedback control law. 
Having developed the contol law, we will then generalize it for the 
case when magnetic saturation is present. The control problem is 
attacked as a feedback linearization problem. The need for deriving 
explicit commutation strategies is eliminated by incorporating the 
transformation of the BLDCM representation to the rotating frame. 
This in turn eliminates the explicit dependence of the flux linkages 
and the torque equation on the rotor displacement. 

IIIa. Control of BLD- 
Consider the dynamic system with the following state space 
representation 

(13) dlr -- dt - fb) +_eo 
where &ER",  PE R m ,  f: R n + R n ,  andg:  Rn-+RnXm.  The 
BLDCM model, equations (10)-(12), constitutes a dynamic system 
of the form given by (13), where xl=8,  x2=o, x3=i x4=id. It 
can be shown[3] that there exists a transformationY(a which 
transforms the BLDCM governing equations to a linear system of 
equations 

$ = A x + B u  (14) 

in the Brunovsky canonical form with the Kronecker indices ~ 1 = 3  

and K2=1. The nonlinear control which achieves this transformation 
is given by 

no 

where kl=3nKe/2J, k2=3n(Ld-Lq)/2J, kg=-R/Lq, k4=-Ke/Lq, 
kS=-Ld/Lq, k6=-R/Ld, and k7=Lq/Ld. 

Linear control design techniques are used to compute the control 
inputs u l  and u 2  of the linearized system which in turn are used to 
compute the control voltages v and vd. using equation (15). 

The non-singular transformation T k )  exists[3] if 

4 

Ke + (Ld-Lq) id # 0 (18) 

The coefficient of id in (IS), i.e. (Lq-Ld), represents the degree of 
reluctance variation associated with the motor. This normally has a 
much smaller magnitude than the magnitude of K,. As a result, this 
condition can only be significant if the magnitude of id becomes 
very large. The significance of this condition is further reduced by 
choosing a stabilizing control law for the state variable id. 

IIIb. Contrnl of BLD- 
For applications where large quantities of torque are required, (to 
achieve high acceleration and deceleration rates as in direct drive 
systems), the existence of magnetic saturation is inevitable. 
However, the task of modeling the saturation nonlinearity is quite 
complex. The fact that the flux linkages of the phase windings of 
BLDCM are mutually coupled makes the modeling task even more 
complex. Here, a mathematical model based on experimental results 
is used which accounts for the magnetic saturation effect. 

The approach adopted[3] is to represent the variation of the 
inductance parameters La, L , and the back emf constant Ke, as 
functions of current. This has%een done by collecting experimental 
data and computing the best fitting piecewise continuous 
polynomials to represent the dependence of these parameters on the 
phase current variable. Furthermore, to be able to exploit the 
properties associated with the representation of the dynamics of 
BLDCM in the rotating frame, the parameters La, L , and Ke are 
considered to be piecewise constant functions o f  the current 
variable. It is important to note that since explicit functions have 
been obtained, the intervals of current in which these parameters 
take on constant values can be made arbitrarily small. 

Having defined the mathematical model of the BLDCM in the 
presence of magnetic saturation in terms of piecewise constant 
coefficients, we can now generalize the control law as given in (14) 
of section IIIa with minor modifications. The control law of section 
IIIa remains the same except that the parameters La, Lg, and Ke are 
now considered to be piecewise constant functions of the phase 
current variables. 

IV. W v :  Direct Drive Inverted Pendulum 
The effectiveness of the proposed control law is examined through 
computer simulations. A direct drive inverted pendulum actuated by 
the BLDCM whose model has been constucted and verified is 
considered. The dynamics of the arm and the payload are modeled 

Priven b- 

by 

(19) 
d28 
liT TL = Mgl cos(8) + MI2 

where M=2 is the payload mass, 1=1 is the arm length, g is the 
gravitational acceleration, and 8 is the displacement of the arm 
relative to the horizontal plane. In all of the simulation results 
presented below, the BLDCM operates in the presence of magnetic 
saturation. 

The task is defined as tracking a given trajectory (8d(t), wd(t), 
ad(t)). Figure 7 depicts the block digram of the feedback control 
system . The control inputs ul and u2 are defined as follows: 

= -hOJ(Yl-Bd) dz - hl(Y1-ed) - h2 (Y2-wd) 

The control gains hi, i=O, ..., 3, are computed based on a fourth 
order reference model with two pairs of complex conjugate poles 
with natural frequencies on 1 =on2=40,  and damping ratios 
5 1 =c 1 =I.  The current stabilizing control u 2  is computed with 
hd=103.  A cubic trajectory is prescribed to examine the 
performance of the control system. 

In an actual application, the mass and inertia properties associated 
with the payload are subject to significant variations and 
uncertainties. This is of particular importance in direct drive 
systems since the inertia variations are directly transmitted to the 
motor shaft. Figure 2 illustrates the time history of the position 



error when there exist errors in the inertial properties of the payload. 
Figure 3 illustrates the behavior of the control system when the 
BLDCM model is subject to uncertainties in its parameter values. 
The inaccuracies correspond to the model parameters Ke, La, Lg, 
and R. Since the model has been verified experimentally, the 
parameter uncertainties are not expected to be large. However, the 
parameter which could be subject to significant variations is the 
phase resistance R, due to the sensitivity to temperature variations. 
To see the effect of variations in R on the performance of the 
system, figure 4 illustrates the time histories of the postion error 
along the trajectory when the value of R is subject to different 
degrees of uncertainties. The position error in this case does not 
asymptotically approach zero, although it remains within reasonable 
bounds. It is apparent from the simulation results that the controller 
performance is most sensitive to variations in the resistance 
parameter. 

Thus far we have assumed that accurate feedback information for 
position, velocity and acceleration are available to generate the 
appropriate control inputs. In the absence of acceleration 
measurements, approximate acceleration information can be 
computed based on the system dynamic model. Figure 5 illustrates 
the behavior of the control system when estimated acceleration is 
used and the system is subject to modeling uncertainties. The peak 
position error depicted is in the same range as in the case when 
accurate acceleration measurements were available (see figure 3). 
The behavior of the control system in the presence of uncertainties in 
model parameters, payload inertia uncertainties, and acceleration is 
depicted in figure 6. 

The BLDCM control problem has been studied, A nonlinear 
control law has been presented which compensates for the  
nonlinearities of the system. The effects of magnetic saturation and 
reluctance variations have been included in the BLDCM 
mathematical model. An approach has been adopted which 
eliminates the need for derivation of explicit commutation strategies. 
The method is computationally simple and thus suitable for real time 
control applications. The effectiveness of the control algorithm is 
demonstrated by considering a direct drive inverted pendulum 
actuated by a BLDCM with magnetic saturation present. The control 
system performs well even when the system is subject to substantial 
parameter uncertainties, provided that accurate acceleration 
information is available. When an estimated acceleration 
information is used the performance of the sytstem subject to large 
parameter uncertainties may be degraded, this may be alleviated by 
including a robust control term in the overall controller[3]. 

The authors thank Professor James Thorp of Come11 University for 
many valuable discussions and comments. This project was funded 
in part by Moog Inc., East Aurora, New York, and by the NSF 
grant MSM8451074. 

v. (=onclusions 

VI. Acknowledeements 

[ 11 Asada, H., and Youcef-Toumi, p i r e c t  K., Drive Robots: 
Theorv and Practice", MIT Press, 1987. 

Machinery", Fourth Edition, McGraw-Hill, 1983. 
[2 ]  Fitzgerald, A.E., Kingsley, C., and Umans, S.D., "Electric 

[31 Hemati, N., "Modeling, Analysis, and Tracking Control of . .  
Brushless DC Motors?or Rokt ic  Application?', Ph.D. Thesis, 
Sibley School of Mechanical and Aerospace Engineering, 
Cornell University, August 1988. 

[ 4 ]  Hunt, L.R., Su, R., and Meyer, G., "Design for Multi-Input 
Nonlinear Systems", in Differential Geometric Control Theory, 
Birkhauser Boston, Cambridge, Mass., 1982. 

D.G., "Feedback Linearizing Control of Switched Reluctance 
Motors", IEEE Trans. on Automatic Control. vol. AC-32. No. 

[SI Ilk-Spong, M., Marino, R., Peresada, S.M., and Taylor, 

5, pp.37i-379, May 1987. 
[6] Ilic-Spong, M., Miller, T.J.E., MacMinn, S.R., and Thorp, 

J.S., "Instantaneous Torque Control of Electric Motor 
Devices", IEEE Trans. on Power Electronics, vol. PE-2, No. 
1, pp.55-61, Jan. 1987. 

Jahns, T.M., "Torque Production in Permanent-Magnet 
Synchronous Motor Drives with Rectangular Current 
Excitation". IEEE Trans. on Ind. A d . .  IA-20. No.4. DD. 803- 

I *  . . . A I  

' ". McGraw-Hill, 
813, July/Aug;st 1984. 
Krause, P.C., 
1986. 
Vidyasagar, M., "System Theory and Robotics", IEEE Control 
Systems Magazine. up. 16-17, April 1987. 

[10]Ybula, D.C.,-and Boigiomo, J.J:, Jr., "A Floquet Theory of 
the General Rotating Machine", IEEE Trans. on Circuits and 
Systems, vol. CAS-27, No. 1, pp. 15-19, Jan. 1980. 

b 

40% error in M 
-40% error in M .- 

v1 I :  
a" -3: i i  -!i 

-4 . . , . . 1 .  . , . . , . . , 
0.0  0 .2  0.4 0.6 0.8 1.0 

Time, seconds 
Figure 2: Time history of position error, in 
the presence of payload uncertainties. 
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Figure 3: Time history of position error, in 
the presence of modeling errors. 
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Figure 5: Time history of position error in the 
presence of modeling errors with estimated 
acceleration information. 
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Figure 4: Time history of position error in 
the presence of resistance, R, errors. 
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Figure 6 Time history of position mor in the 
presence of modeling and payload uncertainties 
with estimated acceleration. 

Figure 7: The block diagram of the nonlinear tracking control of BLDCM. 
K and K-l represent Parks transformation and its inverse. 
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