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Abstract—In many manufacturing applications contour 
tracking is more important than individual axis tracking. 
Many control techniques, including Iterative Learning 
Control (ILC), target individual axis error. Because 
individual axis error only indirectly relates to contour 
error, these approaches may not be very effective for 
contouring applications. Cross-Coupled ILC (CCILC) is 
a variation on traditional ILC that targets the contour 
tracking directly. In contour trajectories with rapid 
changes, high frequency control is necessary in order to 
meet tracking requirements. This paper presents an 
improved CCILC that uses a linear time-varying (LTV) 
filter to provide high frequency control for short 
durations. The improved CCILC is designed for raster-
scan tracking on a Cartesian robotic test platform. 
Analysis and experimental results are presented. 

I. INTRODUCTION 
any manufacturing applications use repetitive 
processes in order to build numerous identical parts. 

The tracking performance of these systems is critical to the 
quality of these parts and ultimately to the success of the 
company [1]. As these parts move from the macro to the 
micro and nano-scale, the demand for enhanced precision 
motion control increases. Iterative learning control (ILC) is a 
feedforward control technique which improves individual 
axis tracking of a system through a process known as 
learning [1,2,3]. ILC uses the tracking errors from past 
iterations to update the feedforward control input, leading to 
improved axis tracking. Convergence of the learning process 
leads to a control input which is optimized for the specific 
trajectory being learned thereby yielding very low tracking 
error.  

The first order learning algorithm is given by,  
 1( ) ( ) ( ) ( )j j ju k u k L q e k+ = +   (1) 
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where u is the control input, e is the error, k is the discrete 
time index, j is the iteration index, q is the forward time-shift 
operator ( ) ( )1qx k x k + , and L(q) is a linear time-
invariant (LTI) learning function. One of the challenges with 
(1) is that high-frequency signals can propagate from 
iteration to iteration. High-frequency propagation can lead to 
undesirable outcomes such as large transient growth and 
long convergence times [1,4,3]. Some designs for L, such as 
the plant inverse method, dynamically couple with the plant 
dynamics in such a way as to nominally prevent high-
frequency propagation. These designs, particularly plant 
model inversion [5], risk being over-designed and may not 
be robust to uncertainty in the plant dynamics. To prevent 
high-frequency propagation and achieve robustness, an 
additional variable, Q, is included in a modified first-order 
learning algorithm as 
 ( )1( ) ( ) ( ) ( ) ( )j j ju k Q q u k L q e k+ = + . (2) 

Q(q) is known as the Q-filter and is often a lowpass filter 
that removes high-frequency signals from the learning 
algorithm. 

For many precision motion control applications, the 
reference trajectories include short durations of high 
frequency content combined with large durations of low 
frequency content [6], such as Fig. 1.  
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Fig. 1. Reference raster scanning trajectory. 

For these types of trajectories, a time-invariant lowpass Q-
filter may be the limiting factor in the ability of the learning 
controller to achieve low converged tracking error. One 
method for improving the tracking performance may be to 
redesign L so that the bandwidth of Q can be increased, 
which may require very accurate models of the plant 
dynamics. Alternatively, improvements can be made by 
focusing our attention on the design of a linear time-varying 
(LTV) Q-filter. Previous work [6] has shown that Q-filter 
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bandwidth can be increased for short periods of time without 
inducing large transient growth and long convergence times. 
This LTV Q-filter is highly effective for trajectories with 
short durations of high frequency content. 

In many manufacturing systems, the desired trajectory 
requires motion from more than one axis. Typically in these 
multiaxis systems, individual controllers are designed for 
each motion axis. This decoupled approach works well for 
linear trajectories defined by single-axis movements because 
this control design technique focuses on improving 
individual axis tracking. However, in many applications, the 
emphasis is placed on the contour tracking performance. 
MIMO and SISO ILC only indirectly attack the problem of 
contour tracking through individual axis control. For 
applications in which the focus is on contour tracking, it 
may be beneficial to use a controller that directly focuses on 
minimizing the contour error.  
 Cross-coupled ILC (CCILC), introduced in [7], is a new 
variation on ILC that directly targets contour tracking. This 
new technique, derived from cross-coupled control (CCC) 
[8], uses the contour error directly in the learning algorithm. 
Just as CCC is combined with individual axis feedback 
control to provide low contour error with good command 
following, the CCILC can be combined with individual axis 
ILC. This combined design approach has been shown to be 
effective in reducing contour errors for a multi-axis robotic 
test platform [9,7]. 
 This paper focuses on the use of the combined ILC and 
CCILC algorithm for tracking contour trajectories that 
exhibit large durations of low frequency control combined 
with short periods of high frequency control, Fig. 1. To this 
end, we combine CCILC with an LTV Q-filter design [6] to 
create a new LTV CCILC.  
 The remainder of this paper is structured as follows. 
Section II of this paper introduces the class of systems 
considered in this paper. The LTV Q-filter learning 
algorithm is described in Section III. Section IV gives a 
brief overview of the combined ILC and CCILC system. 
Stability and convergence analysis is provided in Section V, 
while a design procedure for the LTV CCILC learning 
algorithm is presented in Section VI. Experimental results 
are given in Section VII. Conclusion and future work are 
discussed in Section VIII.      

II. CLASS OF SYSTEMS 
 While ultimately we are concerned with controlling 
multiaxis systems, we focus the initial discussion of this 
work on single-input single-output (SISO) systems. The 
process can be extended to additional axes, as well as to the 
cross-coupled learning controller. In order to use learning 
controllers, the system is assumed to perform repeated 
operations in which the initial conditions, disturbances and 
trajectory are assumed identical from iteration to iteration. 
The input-output relationship of a discrete-time, LTI, SISO 
system can be given by [3], 

  ( ) ( ) ( ) ( )j jy k P q u k d k= +   (3) 

where y is the output signal of the plant model, u is the 
system control input signal, d is the exogenous signal (e.g. 
contains information about the initial states, as well as the 
disturbances) that is time-varying but not iteration varying, 
and P is the plant that is assumed open loop stable.  
 One can now consider that each of the above signals 
actually contains N-sampled values, 

 

( ), {0,1,..., 1}

( ), {0,1,..., 1}

( ), {0,1,..., 1}

j

j

j

u k k N

y k k N

d k k N

∈ −

∈ −

∈ −

 , (4) 

including the desired system output defined as 

 ( ) {0,1,..., 1}dy k N∈ −  . (5) 

The error signal for the jth iteration is defined as 

 ( ) ( ) ( )j d je k y k y k= −  . (6) 

The goal of ILC is to generate a sequence of control inputs, 
each an improvement from iteration to iteration, that 
achieves rapid convergence of the error signal to a low 
converged value.  

III. LTV Q-FILTER LEARNING ALGORITHM [6] 
 An LTV Q-filter can be written as  

 
1

, ,1 ,0 ,1

,

( ) Q

Q

Q

Q

N
k k N k k k

N
k N

Q q q q q

q

λ λ λ λ

λ

−

−

= + + + + +

+
  (7) 

where ,k iλ  are the impulse response coefficients of a 
lowpass filter with bandwidth Ω(k). The description, (7), is 
general enough to include many different types of filters 
including causal, noncausal, FIR, and IIR filters of any 
linear type (Gaussian, Butterworth, Chebychev, Bessel, 
etc.). Although any filter type may be used for the Q-filter, 
we will use a Gaussian filter because the filter impulse 
coefficients can be written explicitly as a function of the 
bandwidth, which is useful for an LTV filter. The 
coefficients (7) for the Gaussian filter are given by  

( )( )
( )( )22

, 222

2

21 exp
ln 42

exp
ln 4

Q

Q

k i

N

r N

i k
Sr k

S

π
λ

π
=−

⎛ ⎞Ω
⎜ ⎟= −
⎜ ⎟⎛ ⎞Ω ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

∑
  (8) 

where S is the sample frequency in Hz.  
 The first order learning algorithm with an LTV filter is 
defined as 

  1( ) ( ) ( ) ( ) ( )j k j ju k Q q u k L q e k+ ⎡ ⎤= +⎣ ⎦   (9) 

where L(q) is designed using any general learning function 
design such as PD-type [10], model inverse [11], and 
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optimal LQ design [12]. The focus for this paper is on the 
design of the LTV Q-filter. This does leave open the 
possibility of a future design procedure which incorporates 
the design of the learning function into the design of the 
optimal LTV Q-filter. 

IV.  COMBINED ILC AND CCILC ALGORITHM 
Combined ILC and CCILC [7] is shown in Fig. 2. The 

combined controller contains three different learning 
controllers, the individual x- and y-axis controllers and the 
cross-coupled learning controller. The individual ILC 
controllers act on the individual axis errors, while the CC 
learning controller acts directly on the contour error defined 
as 

 x x y yc e c eε = − +   (10) 

where cx and cy are called the coupling gains [13]. These 
gains are trajectory dependent and generally time-varying. 
For this work, linearized coupling gains [13] are used to 
simplify the design process of the cross-coupled learning 
controller.   
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Fig. 2. Block diagram of the combined controller. 

 
A.  Learning Algorithm 

 The general first order learning algorithms for the 
combined controller are given as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1

j j j

j j j

x k x x x x

y k y y y y

u k Q q u k L q e k c L q k

u k Q q u k L q e k c L q k

ε

ε

ε

ε

+

+

⎡ ⎤= + −⎣ ⎦
⎡ ⎤= + +⎣ ⎦

 

(11) 
where Li, i = [x,y,ε], are the learning functions for the x, y 
and contour controllers, respectively. Substituting the 
contour error ε  in (11) with (10) results in a linear time-
varying combined learning controller the authors are calling 
LTV CCILC.  

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

1

1

                             

                             

j j j

j

j j j

j

x k x x x x x

x y y

y k y y y y y

y x x

u k Q q u k L q c L q c e k

c L q c e k

u k Q q u k L q c L q c e k

c L q c e k

ε

ε

ε

ε

+

+

⎡= + +⎣
⎤− ⎦

⎡= + +⎣
⎤− ⎦  (12) 

The new aspect of this approach versus [9] is the 
introduction of the time-varying Q-filter. Convergence 
analysis for this combined system is presented in the 
following section.  

V. STABILITY ANALYSIS 
 In this section, stability and convergence properties for 
the combined control system are presented in a lifted system 
format. Define ˆ

jY , ˆ
jU  and P̂ as lifted matrices [3]. 

1

2 1

1 1

(1) (0) 0 0
(2) (1) 0ˆ ˆ ˆ; ; 

( ) ( 1)

j j

j j
j j

j j n n

y u p
y u p p

Y U P

y n u n p p p−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (13) 

The linear plant dynamics, (3), can now be written as 

 ˆˆ ˆ ˆ
j jY PU d= +  , (14) 

where d̂  is a vector of the same lifted form as ˆ
jY  that 

contains periodic disturbance effects. The elements in the P̂  
matrix, {p1, p2, …} represent the impulse response of the 
plant model, also known as the Markov parameters. The 
lifted tracking error is given by 

 ˆ ˆ ˆ
j d jE Y Y= −   (15) 

with ˆ [ (0),... ( 1)]T
j j jE e e N= −  and ˆ [ (0),... ( 1)]T

d d dY y y N= − . 

Using (12), (14), and (15) the lifted form of the closed-loop 

iteration domain dynamics of the combined ILC system is  

    

( )( )

( )( )

1

1

11 12

21 22

11 1

12 2

21 1

22 2

ˆ ˆ
ˆ ˆ

ˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ ˆ

j j

j j

x x

k

y y

x x x

x y

y x

y y y

U UM M
Q D

M MU U

M I L C L C P

M C L C P

M C L C P

M I L C L C P

ε

ε

ε

ε

+

+

⎡ ⎤ ⎡ ⎤⎛ ⎞⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦ ⎣ ⎦

= − +

=

=

= − +

 , (16) 

where 

3916

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 14:26 from IEEE Xplore.  Restrictions apply.



 
 

 

0,0 0,

, ,0 ,

, ,0 ,

1, 1,0

ˆ

Q

Q Q Q Q Q

Q Q Q Q Q

Q

N

N N N N N

k

N N N N N N N N

N N N

Q

λ λ

λ λ λ

λ λ λ

λ λ

−

−

− − − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

(17) 
 

(0) ( 1) ( 1)
(1) (0) ( 2)ˆ [ , , ].

( 1) ( 2) (0)

i i i

i i i
i

i i i

l l l N
l l l N

L i x y

l N l N l

ε

− − +⎡ ⎤
⎢ ⎥− +⎢ ⎥= =
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

(18) 

Using the lifted format, one can see that the control input 
converges in the iteration domain as long as 

 11 12

21 22

ˆ 1i k

M M
Q

M M
λ

⎛ ⎞⎛ ⎞
<⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  (19) 

where i is defined on the interval [1, ]i n∈ . The spectral 

radius condition, ( )( )ˆmax 1kQ Mλ < , satisfies the stability 

criteria, but does not ensure monotonicity in the iteration 
domain [14]. A sufficient condition for monotonic 
convergence is given by: 

 11 12

21 22

ˆ 1k

i

M M
Q

M M
⎛ ⎞

<⎜ ⎟
⎝ ⎠

  (20) 

In this equation, 
i

⋅  is the induced norm of the matrix. 
Satisfying (20) with the induced 2-norm ensures 
monotonicity and stability of the given system. 

VI. DESIGN AND OPTIMIZATION OF AN LTV Q-FILTER  
In this section we present a design methodology for the 

LTV Q-filter which is used in conjunction with the 
combined learning controller to generate an LTV CCILC 
[15]. This controller will then be applied to a Cartesian 
robotic test platform in Section VII. While the design results 
in this section are specific to the robotic test platform, the 
methodology is general enough to be applied to other 
motion control systems. 

As stated previously, this work focuses on a high-
performance design for the Q-filter. We assume that the 
learning functions have been designed using one of the 
generally accepted design methods mentioned in Section III. 

We design the bandwidth Ω(k) of the Q-filter to have 
roughly the same profile as the initial tracking errors of the 
multiaxis system, exo(k) and eyo(k). For example, if we 
consider the raster trajectory shown in Fig. 1, representative 

initial tracking errors for the robotic system used in Section 
VII are given in Fig. 3.  
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Fig. 3. Initial tracking errors without the use of learning.  

Fig. 3 clearly indicates the locations where the most 
energy from the error signals is focused. Both the x- and y-
axis error signals show relatively small error values, with 
intermittent areas of large error signals. These locations 
correspond to the high-frequency component of the error 
signal which is a direct result of the rapid changes in 
direction moving from one scanning line to another. From 
this information, the locations where a higher frequency 
bandwidth Q-filter can be used have been identified as t1, t2, 
t3, and t4, respectively.  

The Ω profile can be defined explicitly using the variables 
a1, b1, a2, b2 and c as shown in Fig. 4. Two different high-
frequency bandwidth peaks have been chosen for this 
particular LTV Q-filter. The first peak is a short-duration, 
high-frequency peak used to capture the high frequency 
dynamics. The second peak is a medium frequency peak that 
seeks to capture the remaining axis errors. The baseline 
frequency is described by the c variable and should be set as 
low as possible, while still achieving good tracking 
performance during the low frequency sections of the error 
signals.  

The discontinuities in the profiles at each of the peaks will 
introduce discontinuities in the control, thus decreasing 
performance. Therefore, after the variables are selected, a 
lowpass filter, F(q), is used to smooth the bandwidth profile.  

 
1 1 2 2 1 1 2 2, , , , , , , ,( ) ( ) ( )a b a b c a b a b c

smoothed

k F q k′Ω = Ω   (21) 

The authors choose to use the same type of Gaussian filter 
as is used for the LTV Q-filter, with the exception of being 
time-invariant. The bandwidth of F(q) depends on the 
particular application/trajectory and in this case is chosen to 
be 10 Hz to smooth the signal, while still permitting distinct 
peaks. 

t2 t1 t3 t4 
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Fig. 4. Parameterized profile. 

 To optimally select the parameters a1, b1, a2, b2, and c, we 
minimize a cost function with two competing objectives. 
The first objective is to obtain low converged contour error 
which is measured by the root-mean-square (RMS) of the 
converged contour error: 

 
2

1 1 1 2 2( , , , , )J a b a b c
N

ε∞=
 (22) 

where ε∞  is the converged value of the contour error 
defined loosely as lim jj

ε ε∞ →∞
= , as long as jε  is stable and 

converges as j → ∞ . The second objective is fast 
convergence, which is defined as the number of iterations of 
learning required to converge within 1% of the converged 
contour error. 

2
2 1 1 2 2 *

2

( , , , , ) min *: 0.01, *j

j
J a b a b c j j j

ε ε

ε
∞

∞

⎧ ⎫−⎪ ⎪= ≤ ∀ ≥⎨ ⎬
⎪ ⎪⎩ ⎭

(23) 

The combined cost function is given by 

 ( ) ( ) ( )1 2, , , , , , ,  1, 2i i i i i iJ a b c J a b c J a b c iη= + ⋅ =   (24) 

where η is a design parameter. 
 To calculate the costs, J1 and J2, for a given set of 
variables, we first generate the LTV Q-filter using the 
smooth frequency profile Ω’ with (7) and (8). The learning 
process is then simulated until the contour error converges. 
Convergence is assumed when the error change, 1j jε ε+ − , 

is less than 10-8, which typically occurs between 10-500 
iterations for the system given in Section VII. The 
converged error is taken as the final value of the contour 
error for the simulation and J1 and J2 are calculated from the 
simulation results using (24) and (25), respectively.  
 Equation (24) is typically not convex; therefore we use a 
brute force approach for searching different combinations of 
variables. Choosing a moderate baseline frequency, c, based 
on known performance and convergence properties of LTI 

Q-filter designs, a broad search pattern is selected for the 
remaining a and b variables.   

As a final step, in keeping with previous design strategies 
for CCILC [7], we impose the condition of monotonicity. In 
order to satisfy this requirement, we check monotonicity of 
each LTV Q-filter combination using (20). The results of the 
optimization search are plotted in Fig. 5.  
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Fig. 5. Numerical optimization results showing the tradeoff between 
converged error and learning time.   

As can be seen in Fig. 5, monotonicity is calculated for 
each data point and indicated by color variation on the plot. 
For this particular example, only monotonic LTI combined 
CCILC & ILC designs were considered, while the optimized 
combinations of the a, b, and c variables produced both 
monotonic and non-monotonic LTV combined CCILC & 
ILC controllers.    

For this work, monotonically convergent controllers 
which fell along the η = 0.1 line were chosen for comparison 
purposes. These are indicated by the letters A and B in Fig. 
5. Table I shows a summary of the selected LTI and LTV 
controllers. A comparison of the Ω profiles for the different 
type of filters is shown in Fig. 6. As can be seen in Table I, 
the LTV filter resulted in a 14% improvement in the cost 
function (24) over the LTI filter for the combined system.    

TABLE I 
COMPARISON OF LTI AND LTV Q-FILTERS 

 J1 μm J2 
iterations J a1 B1 A2 b2 C 

LTI combined 1.57 15 3.07 - - - - 28 
LTV combined 1.33 13 2.63 20 20 5 40 20 

Improvement 15% 13% 14%      
 
Fig. 6 shows that the lower converged error and learning 

time is achieved by implementing higher bandwidth peaks at 
the locations where the trajectory rapidly changes and lower 
bandwidth elsewhere.  
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Fig. 6. Optimized LTV versus LTI Q-filter.  

VII. APPLICATION: CARTESIAN ROBOTIC TESTBED 
To demonstrate the effectiveness of this technique, an 

LTV CCILC controller is applied to a Cartesian robotic 
testbed system. The system consists of stacked x, y and z 
axes all mounted orthogonally to one another. Linear models 
of the x- and y-axes and proportional-integral-derivative 
(PID) feedback controllers for the Cartesian robot are given 
in the appendix. 

The individual axis learning functions are designed using 
model inversion of the open-loop stabilized systems. While 
nominal plant models are used, the resonances vary 
depending on the location of the axes within the frame of the 
robotic testbed. Due to these inconsistencies, the resonances 
have been eliminated from the learning functions. The 
individual learning functions are given in the appendix. 

The cross-coupled learning function selected for this 
system is a simple PD-type function of the form 

 ( ) ( 1)
p d

L q k q k qε ε ε= + −  . (25)   

PD parameters, .25 and 22
p d

k kε ε= = , are tuned to 

provide satisfactory contour learning behavior, as well as 
satisfy the monotonic convergence condition (20). The 
reference command, shown in Fig. 1, is applied to the 
testbed as yd and xd, respectively. Optimal LTI and LTV FIR 
Gaussian Q-filters for η = 0.1 are obtained using the design 
procedure described in Section VI. Implementing the LTI 
combined CCILC & ILC and LTV combined CCILC & ILC 
controllers on the robotic testbed, performance 
improvements resulting from the use of the LTV design can 
be seen in Fig. 7.  

Fig. 7 illustrates that the LTV combined controller 
converges fairly quickly, while the LTI combined controller 
requires a much longer learning time. An overview of the 
cost function results for the experimental testing is presented 
in Table II. The LTI combined learning controller converged 
to a neighborhood of 2.92 μm RMS contour error in 60 

iterations, while the LTV combined controller converged to 
a neighborhood of 0.97 μm RMS contour error in 
approximately 20 iterations.  

 

Fig. 7. Experimental RMS contour error convergence.  

TABLE II 
COMPARISON OF LTI AND LTV Q-FILTERS 

 J1 μm J2 
iterations J A1 B1 A2 b2 C 

LTI combined 2.92 60 8.92 - - - - 28 
LTV combined 0.97 20 2.97 20 20 5 40 20 
Improvement 67% 67% 67%      

 
Analogous to the simulation results, the experimental 

results indicate that the lowest cost function was achieved by 
the LTV combined learning controller with a 67% 
improvement over the LTI combined learning controller. 
The increase in the contour error resulting from unmodelled 
dynamics provides more opportunity for enhanced 
performance results from the LTV learning controller in the 
experimental testing. In many applications, one may have a 
more accurate plant model, in which case the simulation and 
experimental results would be more closely aligned. 
However, numerical, simulation and experimental results all 
indicate that an LTV Q-filter can improve the performance 
of the combined learning controller over an optimal LTI 
combined learning controller.    

VIII. CONCLUSION AND FUTURE WORK 
This paper has presented the basic algorithm and design 

procedure for an LTV Q-filter to be used in conjunction 
with individual axis ILC and CCILC. An LTV Q-filter 
provides a means of increasing the bandwidth of the Q-filter 
and implementing high-frequency control at precise 
locations within a trajectory. This is particularly useful in 
trajectories such as a raster scanning trajectory, where the 
direction of the reference trajectory changes rapidly from 
one scanning line to the next, requiring short sections of 
high frequency control. Stability and monotonic 
convergence analysis for the LTV combined controller 
(LTV CCILC) was presented and used, along with a two-

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration 
 

 

LTI combined CCILC & ILC
LTV combined CCILC & ILC

R
M

S
 C

on
to

ur
 E

rr
or

 [μ
m

] 

3919

Authorized licensed use limited to: University of Missouri. Downloaded on January 15, 2009 at 14:26 from IEEE Xplore.  Restrictions apply.



 
 

 

part cost function of converged contour error and learning 
time, to select optimal LTI and LTV Q-filters. The 
procedure and optimally designed controllers were 
implemented on a robotic testbed system. Simulation and 
experimental results demonstrated that the LTV combined 
learning controller resulted in a lower cost function than the 
LTI combined controller. 

APPENDIX  CARTESIAN ROBOT MODEL 
Dynamic models for the robotic system are of the form [16] 

 
2 2

1 2 3 4 5
2 2

1 2 3 4 5

k(z )(z )( )
( )

( )( 1)( )( )
z z z

G z
z z z z z z

α α α α α
β β β β β

+ − + − +
=

− − − + − +
 . (26) 

Numerical values for (26) are presented in Table III.  

 
TABLE III 

VALUES FOR DYNAMIC MODELS AND LEARNING CONTROLLERS  

 
 
PID feedback controllers used to stabilize the x- and y-axis 
plant models of (26) are given below 

 
( )
( )( )

238 1.941 .9423
( )

1 .7408xG

z z
C z

z z

− +
=

− −
 ,  (27) 

 
( )
( )( )

236.5 1.949 .9506
( )

1 .7408yG

z z
C z

z z

− +
=

− −
 .  (28) 

The open-loop stable plant model used in (3) and all 
subsequent equations is of the form 

 ( ) ( )
( ) ( )

, j 1,2, i ,
1

i

i
j

i G

G z
P z x y

G z C z
= = =

+
 .  (29) 

The individual axis learning functions, designed as modified 
inverse plants, are given as  

2

2

34.1( .9235)( .9666)( 1.815 .8303)( )
( 1)( .8187) ( .7408)x

z z z zL z
z z z

− − − +
=

− − −
 , (30) 

2 2

2

11.43( 1.939 .9409)( 1.732 .815)( )
( 1)( .8187) ( .7408)y

z z z zL z
z z z
− + − +

=
− − −

 .  (31) 
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SYMBOL QUANTITY 
Numerator α1 α2 α3 α4 α5 
Gx 0.9604 1.981 0.9918 1.874 0.9747 
Gy 1.0 1.983 0.9912 1.873 0.9547 
Denominator β1 β2 β3 β4 β5 
Gx .9994 1.978 0.9894 1.738 0.8672 
Gy .9994 1.983 0.9911 1.87 0.9539 
Gain k  
Gx .00083  
Gy .00185 
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