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Abstract— Research has shown substantial reductions in the 
oxides of nitrogen (NOx) concentrations by using 10% to 25% 
exhaust gas recirculation (EGR) in spark ignition (SI) engines 
[1]. However under high EGR levels the engine exhibits strong 
cyclic dispersion in heat release which may lead to instability 
and unsatisfactory performance.  A suite of neural network 
(NN)-based output feedback controllers with and without 
reinforcement learning is developed to control the SI engine at 
high levels of EGR even when the engine dynamics are 
unknown by using fuel as the control input. A separate control 
loop was designed for controlling EGR levels.  The neural 
network controllers consists of three NN: a) A NN observer to 
estimate the states of the engine such as total fuel and air; b) a 
second NN for generating virtual input; and c) a third NN for 
generating actual control input.  For reinforcement learning, 
an additional NN is used as the critic.  The stability analysis of 
the closed loop system is given and the boundedness of all 
signals is ensured without separation principle. Online training 
is used for the adaptive NN and no offline training phase is 
needed.  

Experimental results obtained by testing the controller on a 
research engine indicate an 80% drop of NOx from 
stoichiometric levels using 10% EGR.  Moreover, unburned 
hydrocarbons drop by 25% due to NN control as compared to 
the uncontrolled scenario. 

I. INTRODUCTION 
oday's automobiles utilize sophisticated microprocessor-
based engine control systems to meet stringent federal 
regulations governing fuel economy and the emission of 

carbon monoxide (CO), oxides of nitrogen (NOx) and 
hydrocarbons (HC). Current efforts are directed at reducing 
the total amount of emissions and fuel consumption. 
Operating a spark ignition engine lean can reduce the NOx 
and will improve the fuel efficiency [1-3].  Similarly, 
substantial reductions in NOx concentrations have been 
achieved with 10% to 25% EGR [2] along with reduction in 
specific fuel consumption. For example, if an engine can 
tolerate 20 to 25% EGR, reduction in engine-out NOx on the 
order of 90-95% can be realized.   

However, EGR also reduces the combustion rate, which 
makes stable combustion [4-5] more difficult to achieve. 
High levels of EGR present in a spark ignition (SI) engine 
lead to cyclic dispersion in the heat release map of the SI 
engine. Under such conditions a large number of misfires 
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develop causing problems in drivability due to cycle-to-
cycle variations in output as well as large increases in 
unburned hydrocarbons.   

Several researchers [3, 6-9] have studied lean 
combustion engine control technology but few results have 
been reported for the EGR case. Conventional control 
schemes [3] have been found incapable of reducing the 
cyclic dispersion to the levels needed to implement these 
concepts. Moreover, the total amount of fuel and air in a 
given cylinder is normally not measurable which 
necessitates the development of output feedback control 
schemes.  

 Several output feedback controller designs in discrete 
time are proposed for the signal-input-single-output (SISO) 
nonlinear systems [10-12].  However, no output feedback 
control scheme currently exists for the proposed class of 
nonstrict feedback nonlinear discrete-time systems. To 
overcome the need for complex engine dynamics and to 
make the controller practical, a heat release based neural 
network (NN)-based output feedback controller is proposed 
by using the NN universal approximation property [13].  

 In the proposed output feedback controller, the NN 
observer is designed to estimate the total mass of air and fuel 
in the cylinder by using a measured value of heat release.  
The estimated values are used by an adaptive NN controller.  
The proposed design relaxes the persistence of excitation 
condition, certainty equivalence principle and linear in the 
unknown parameter assumptions.  Finally, separation 
principle is also not required. The NN weights are tuned on-
line, with no off-line learning phase required.   

II. ENGINE AS A NONLINEAR DISCRETE-TIME SYSTEM 

A. Non-Strict Nonlinear System Description 
   Consider the following non-strict feedback nonlinear 
system described by 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 2 1 1 2 2 11 , ,x k f x k x k g x k x k x k d k+ = + + (1)    

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 1 2 2 1 2 21 , ,x k f x k x k g x k x k u k d k+ = + +   (1) 

where ( ) ; 1,2ix k i∈ℜ =  are states, ( )u k ∈ℜ  is the system 

input and ( )1d k ∈ℜ  and ( )2d k ∈ℜ are unknown but 

bounded disturbances, whose bounds are given by 
( )1 1md k d< and ( )2 2md k d< . Here md1  and md2 are 

unknown positive scalars. 
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   Equations (1) and (2) represent a discrete-time nonlinear 
system in non-strict feedback form [16], since ( )1f ⋅  and 

( )1g ⋅   are functions of both 1( )x k and 2 ( )x k , unlike in the 

case of strict feedback nonlinear system, where ( )1f ⋅  and 

( )1g ⋅  are a function of ( )kx1 only [10-12].  Control of 

nonstrict feedback nonlinear systems is introduced in [16] 
since no known results are available in the literature.  
Engine dynamics can be expressed in this form. 

B. Engine Dynamics 
Daw, Finney, Green, Kennel and Thomas (1996) [5] and 

Daw et al. (1998) [4] developed a mathematical 
representation of the spark ignition (SI) engine to investigate 
nonlinear cycle dynamics under lean conditions and high 
EGR levels [2]. The residual air and fuel passed from one 
cycle to the next make the model deterministic. Stochastic 
effects are embodied in random fluctuations of parameters 
like injected air-fuel ratio or residual fraction. Actual 
variations in parameters due to complex processes like 
temperature and pressure effects, turbulence, fuel 
vaporization etc are not modeled but assumed to add 
stochastic noise to the engine output. The model for the 
EGR case is shown below.  

( ) ( )
221 1 2

1 1

( 1) ( )[ ( ) . ( ) ( ) ]
                ( ) ( )

NO

new

x k F k x k R CE k x k r k r k
x k d k

+ = − + +

+ +
 (3) 

( ) '
2 2 2 2( 1) ( )(1 ( )) ( ) ( ) ( )newx k F k CE k x k x k u k d k+ = − + + +  (4) 

2 2 23 3( 1) ( )( ( ) ( ) ( ) ( )

( ))
CO H O Nx k F k r k r k r k x k

EGR k

+ = + + +

+
 (5) 

2( ) ( ) ( )y k x k CE k=  (6) 

32

1 2 1 3

( ) ( )( )( ) . 1
( ) ( ( ) ( ) ( ) ( ))

x k EGR kx kk R
x k x k x k x k EGR k

ϕ γ
⎡ ⎤+

= −⎢ ⎥+ + +⎣ ⎦

 (7) 

max
( ( ) ) /( )( ) ,

1 100 m u lk

CECE k ϕ ϕ ϕ ϕ− − −=
+

,
2

u l
m

ϕ ϕϕ +
=  (8) 

2 2 2( ) ( ) ( )H O H Or k x k CE kγ=  (9) 

2 2 2( ) ( ) ( )O Or k x k CE kγ=  (10) 

2 2 2( ) . ( ) ( )N Nr k R x k CE kγ=  (11) 

2 2 2( ) ( ) ( )CO COr k x k CE kγ=  (12) 

where 1 2 3( ),  ( ) and ( )x k x k x k are the total mass of air, fuel and 
inert gases respectively. The heat release at the kth time 
instant is given by ( )y k , ( )CE k is the combustion efficiency 
and

min max0 ( )CE CE k CE< < < ,
maxCE is the maximum 

combustion efficiency and it is a constant, ( )F k is the 
residual gas fraction which is bounded 

min max0 ( )F F k F< < < , 

R is the stoichiometric air-fuel ratio,~15.13 for iso-octane, 
( )u k is the small change in fuel per cycle, ( )kϕ is the 

equivalence ratio, 
, ,m l uϕ ϕ ϕ are equivalence ratio system 

parameters, 
2 2 2

( ),  ( ),  ( )H O O Nr k r k r k  and 
2
( )COr k are the mass 

of water, oxygen, nitrogen and carbon dioxide respectively. 

It should be noted that the residual oxygen combines 
proportionally with the residual nitrogen to form residual 
air. The fraction of total nitrogen leftover after this is the 
residual inert nitrogen. γ is a constant and 

2 2 2, ,  H O O Nγ γ γ and 
2COγ  are constant parameters associated 

with water, oxygen, nitrogen and carbon dioxide 
respectively. The Daw model uses hydrogen and carbon 
proportions of the fuel along with the EGR fraction to 
determine the residual fractions using stoichiometry. 

'
1 ( )d k and '

2 ( )d k are unknown but bounded disturbances. It 
can be seen that the SI engine with EGR levels has highly 
nonlinear dynamics with ( )CE k and ( )F k being unknown 
and cannot be measured. 
Remark 1: It is important to note that the output is a 
nonlinear function of the states unlike in many papers where 
the output is a linear function of states. 
Remark 2: For lean engine operation, the inert gas equation 
(5) is not used and there are fewer parameters in (3) and (4). 

C. Engine Dynamics Using Nominal Values 
 Substituting (6) into both (3) and (4), we get 

( )
2 21 1

1 1

( 1) ( )[ ( ) . ( ) ( ) ]

               ( ) ( )
O N

new

x k F k x k R y k r k r k

x k d k

+ = − + +

+ +
 (13) 

'
2 2 2 2( 1) ( )( ( ) ( )) ( ) ( ) ( )newx k F k x k y k x k u k d k+ = − + + +  (14) 

In real engine operation, the fresh air 1newx , fresh fuel   

2newx  and residual gas fraction, ( )F k  can all be viewed as 
nominal values plus some small and bounded disturbances. 
The inert gases include the residual exhaust gases in the 
cylinder and the EGR fraction. Equation (5) will not be 
considered for controller development as a separate control 
loop designed to control EGR levels makes the inert gases 
evolve into a stable value. Therefore, it is not included here. 
Consider, 

1 1 0 1( ) ( )new new newx k x x k= + Δ  (15) 

2 2 0 2( ) ( )new new newx k x x k= + Δ  (16) 

0( ) ( ) ( )F k F k F k= + Δ  (17) 
where

1 0 2 0 0,   and  new newx x F are the known nominal fresh air, 
fuel and residual gas fraction values. 

1 0 2 0,  new newx xΔ Δ and 0FΔ are unknown yet bounded 
disturbances on those values whose bounds are given by,  

1 10 ( )new newMx k x≤ Δ ≤ Δ  (18) 

2 20 ( )new newMx k x≤ Δ ≤ Δ  (19) 

0 ( ) MF k F≤ Δ ≤ Δ  (20) 
Substituting these values into the system model we can get 
the state equations in the following form, 

( )
( )

2 2

1 0 1 2

1 0 1 1

( 1) ( ( ) ( ))[ ( ) . ( )

               ( ) ] + ( ) ( )O N new new

x k F k F k x k R CE k x k

r k r k x x k d k

+ = + Δ −

+ + + Δ +
 (21) 
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( )2 0 2

'
2 0 2 2

( 1) ( ( ) ( ))(1 ( ))

                 ( ) ( ) ( )new new

x k F k F k CE k x k

x x k u k d k

+ = + Δ −

+ + Δ + +
 (22) 

III. NEURAL NETWORK BASED OBSERVER DESIGN 
 First a NN is used to predict the value of the heat release 
for the next burn cycle which will be used subsequently by 
the observer to predict the states of the system. The inert 
gases can be calculated directly if the air and fuel values are 
known so they are not estimated. The heat release for the 
next burn cycle is given by 

( 1) ( 1) ( 1)y k x k CE k+ = + +  (23) 

A. Observer Structure 
 From (23), the heat release for the next cycle y(k +1) can 
be approximated by using a one layer neural network as 

1 1 1 1 1 1( 1) ( ( )) ( ( ))T Ty k w v z k z kφ ε+ = +  (24) 
where the input to the NN is taken as 

4
1 1 2( ) [ ( ), ( ), ( ), ( )]Tz k x k x k y k u k R= ∈ ,the matrix 14

1

nw R ×∈  

and 14

1

nv R ×∈ represent the output and hidden layer weights, 

( )1 .φ represents the hidden layer activation function, 1n  
denotes the number of the nodes in the hidden layer, and 

( )( )1 1z k Rε ∈ is the functional approximation error. It has 

been demonstrated that, if the hidden layer weight 1v , is 
chosen initially at random and held constant and the number 
of hidden layer nodes is sufficiently large, the 
approximation error ))(( 11 kzε can be made arbitrarily small 
over the compact set since the activation function forms a 
basis according to [13]. 

For simplicity, we define 
1 1 1 1 1( ( )) ( ( ))Tz k v z kφ φ=                                  (25) 

1 1 1( ) ( ( ))k z kε ε=                                      (26) 
Given (24) and (25), (26) is re-written as 

1 1 1 1( 1) ( ( )) ( )Ty k w z k kφ ε+ = +                      (27) 
Since states 1 2( ) and ( ) x k x k are not measurable,

1( )z k is not 
available either. Using the estimated values 1̂( )x k , 

2ˆ ( )x k and ˆ( )y k instead of 1 2( ),  ( ) and ( ) x k x k y k the 
proposed heat release observer can be given as, 

1 1 1 1 1

1 1 1 1

ˆ ˆ ˆ( 1) ( ( )) ( )
ˆ( ) ( ( )) ( )

T T

T

y k w v z k l y k

w k z k l y k

φ

φ

+ = +

= +

%

% %
 (28) 

where )1(ˆ +ky  is the predicted heat release, inRkw ∈)(ˆ1 is 
the actual output layer weights, the input to the NN is taken 
as 4

1 1 2
ˆ ˆ ˆˆ ( ) [ ( ), ( ), ( ), ( )] ,Tz k x k x k y k u k R l R= ∈ ∈  is the 

observer gain, )(~ ky is the heat release estimation error, 
which is defined as 

)()(ˆ)(~ kykyky −=                                    (29) 

and 
1 1̂( ( ))z kφ  represents 1 1 1

ˆ( ( ))Tv z kφ for the purpose of 
simplicity.  

Using the heat release estimation error, the proposed 
observer is given as the following form, 

1 1 0 1 2ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )new o ox k x k F x k R F y k l y k+ = + − ⋅ ⋅ + %            (30) 

2 2 2 0 3ˆ ˆ ˆ( 1) ( ( ) ( )) ( ( ) ( )) ( )o newx k F x k y k x k u k l y k+ = − + + + % (31) 

where 2l R∈ and 3l R∈ are observer gains. The term 

2 2
( )o O NF r r+ has been pulled out from equation (30) as there 

are no nominal values available for the inert gases. The error 
introduced by this will be taken up as part of the air 
estimation error. Equations (26), (28) and (29) represent the 
dynamics of the observer to estimate the states 
of 1 2( ) and ( )x k x k . 

B. Observer Error Dynamics    
  Define the state estimation errors as: 

2,1),()(ˆ)(~ =−= ikxkxkx iii                          (32) 
Combining (21) through (26), we obtain the estimation error 
dynamics as 

2 2

2 2

1 1 2 1

1

1

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

o o new

o O N

O N

x k F x k l R F y k x k
F k x k R F k y k F r r

F r r d k

+ = + − ⋅ − Δ
−Δ + Δ − +

−Δ + −

% % %
    (33) 

2 2 3

2 2 2

( 1) ( ) ( ) ( )

              ( )( ( ) ( )) ( ) ( )
o o

new

x k F x k l F y k

F k x k y k x k d k

+ = + −

− Δ − − Δ −

% % %
    (34) 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

ˆ ˆ( 1) ( ) ( ( )) ( ) ( ( )) ( )
ˆ ˆ ˆ      ( ( ) ) ( ( )) ( ( ( )) ( ( ))) ( )

ˆ       ( ) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( )

T T

T T

T T

T

y k w k z k l y k w z k k
w k w z k w z k z k k

w k z k w k z k k
k w z k k

φ φ ε
φ φ φ ε

φ φ ε
ζ φ ε

+ = + − −
= − + − −

= + −
= + −

% %

% % %

%

    (35)                      

1 1 1where, ˆ( 1) ( ) ,w k w k w− = −%  (36) 

))(()(~)( 1111 kzkwk T φζ =  (37) 

and for the purpose of simplicity, 1 1 1 1
ˆ( ( ( )) ( ( )))z k z kφ φ− is 

written as 1 1( ( ( ))z kφ % . 

IV. ADAPTIVE NN OUTPUT FEEDBACK 
CONTROLLER DESIGN 

 The control objective of maintaining the heat release 
constant is achieved by holding the fuel and combustion 
efficiency within a close bound, i.e., the heat release is 
driven to a target heat release yd. Given yd and the engine 
dynamics (3) – (5), we could obtain the nominal values for 
the total mass of air and fuel in the cylinder, x1d and x2d, 
respectively. By driving the states 1 2( ) and ( )x k x k  to 

approach to their respective nominal values 1dx  and 2dx , 

( )y k  will approach dy .  By developing a controller to 
maintain the EGR at a constant level separately, we can see 
that the inert gases evolve into a stable value since equation 
(5) can be viewed as a feedback linearizable nonlinear 
discrete-time system with ( )F k being less than one and the 
weights of the gases kept constant with minor variations. 
The controller for the EGR system (5) is developed 
separately and not presented here. With the estimated 
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states 1 2andˆ ˆ( )  ( )x k x k , the controller design follows the 
backstepping technique [14-15]. The details are given in the 
following sections. 

A. Adaptive NN Output Feedback Controller Design 
The controller design is now given. 

Step 1: Virtual controller design. 
Define the error between actual and desired air as 

1 1 1( ) ( ) de k x k x= −  (38) 
which can be rewritten as 

( )
( )

2

2

1 1 1

1 2

1 1 1

( 1) ( 1)

( )[ ( ) . ( ) ( )

]   ( ) ( )

d

O

N d new

e k x k x

F k x k R CE k x k r k

r k x x k d k

+ = + −

= − +

+ − + +

 (39) 

For simplicity let us denote 
( )

2 21 1 1 1( ) ( )[ ( ) ( ) ] ( )O N new df k F k x k r k r k x k x= + + + −  (40) 

)()()(1 kCEkFRkg ⋅=  (41) 
Then the system error equation can be expressed as  

1 1 1 2 1( 1) ( ) ( ) ( ) ( )e k f k g k x k d k+ = − +  (42) 

By viewing 2 ( )x k as a virtual control input, a desired 
feedback control signal can be designed as 

1
2

1

( )
( )

( )d

f k
x k

g k
=  (43) 

The term x2d(k) can be approximated by the first action NN 
as, 

2 2 2 2 2 2 2 2( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
dx k w v x k x k w x k x kφ ε φ ε= + = +  (44) 

where the input in the state 
2

221 ,)](),([)( nT Rwkxkxkx ∈= and 12
2

nv R ×∈ denote the 
constant ideal output and hidden layer weights, n2 is the  
number of nodes in the hidden layer, the hidden layer 
activation function 

2 2( ( ))Tv x kφ is simplified as 2 ( ( ))x kφ and 
))((2 kxε is the approximation error. Since both 

1 2( ) and ( )x k x k are unavailable, the estimated state ˆ( )x k is 
selected as the NN input. 

Consequently, the virtual control input is taken as 

2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
dx k w k v x k w k x kφ φ= =            (45) 

where 2

2
ˆ ( ) nw k R∈ is the actual weight matrix for the first 

action NN . Define the weight estimation error by 

2 2 2
ˆ( ) ( )w k w k w= −%  (46) 

Define the error between 2 ( )x k and 2
ˆ ( )dx k as  

2 2 2ˆ( ) ( ) ( )de k x k x k= −  (47) 

Equation (35) can be expressed using (47) for 2 ( )x k as 

),())(ˆ)()(()()1( 122111 kdkxkekgkfke d ++−=+  (48) 
or equivalently 

1 1 1 2 2 2

2 1

1 1 2 2 2

2 1

1 2 2 2 1

1 2 2 2 2 2

2 1

( 1) ( ) ( )( ( ) ( ) ( )
( )) ( )

( ) ( )( ( ) ( ) ( )
ˆ ( )) ( )

ˆ( )( ( ) ( ) ( )) ( )
ˆ ˆ( )( ( ) ( ) ( ( )) ( ( ))

( ( ))) ( )

d d

d

d d

d

d d
T T

e k f k g k e k x k x k
x k d k
f k g k e k x k x k
x k d k
g k e k x k x k d k

g k e k w k x k w x k
x k d k

φ φ
ε

+ = − + −

+ +
= − + −
+ +

= − − + +

= − + −
− +

 (49) 

 
Similar to (35), (49) can be further expressed as 

1 1 2 2 2 2 2 1
( 1) ( )( ( ) ( ) ( ( )) ( ( ))) ( )Te k g k e k k w x k x k d kζ φ ε+ =− − + − +%  (50) 

where
2 2 2

ˆ( ) ( ) ( ( ))Tk w k x kζ φ= %                                           (51) 

2 2 2 2 2
ˆ( ( )) ( ( ( )) ( ( )))T Tw x k w x k x kφ φ φ= −%  (52) 

 
Step 2: Design of the control input ( )u k . 

  Rewriting the error 2 ( )e k from (47) as 

2 2 2

2 2 2

( 1) ( 1) ( 1)
ˆ    (1 ( )) ( ) ( ) ( ( ) ( )) ( 1) ( )

d

d

e k x k x k

CE k F k x k MF k u k x k d k

+ = + − +

= − + + − + +

%
 (53) 

For simplicity, let us denote, 
( )2 2 2( 1) ( )(1 ( )) ( )newx k F k CE k x k x k+ = − +  (54) 

Equation (53) can be written as 
2 2 2 2ˆ( 1) ( ) ( ) ( 1) ( )de k f k u k x k d k+ = + − + +  (55) 

where )1(ˆ2 +kx d is the future value of )(ˆ2 kx d
. Here, 

)1(ˆ2 +kx d is not available in the current time step. However, 
from (43) and (45), it can be clear that )1(ˆ2 +kx d  is a smooth 

nonlinear function of the state ( )x k and virtual control 

input 2
ˆ ( )dx k . Another NN can be used to approximate the 

value of )1(ˆ2 +kx d
since an NN is a first order predictor since 

the proposed NNs use a semi-recurrent architecture.  Other 
methods via filtering approach [18] do exist in the literature 
in order to obtain this value.   
  Select the desired control input by using the second NN 
in the controller design as 

2 2

3 3 3 3 3 3

3 3 3 3 3

ˆ( ) ( ( ) ( 1))

( ( )) ( ( ))

( ( )) ( ( ))

d d

T T

T

u k f k x k

w v z k z k

w z k z k

φ ε

φ ε

= − + +

= +

= +

 (56) 

where 3

3

nw R∈ and 33

3

nv R ×∈ denote the constant ideal 

output and hidden layer weights, 3n is the hidden layer nodes 

number, the hidden layer activation function 3 3 3( ( ))Tv z kφ is 

simplified as 3 3( ( ))z kφ , 3 3( ( ))z kε is the approximation 

error, 3

3 ( )z k R∈ is the NN input, which is given by (55). 
Considering the fact both 1 2( ) and ( )x k x k cannot be 

measured, ( )3z k  is substituted with 3
3 )(ˆ Rkz ∈  where 

3
23 )](ˆ),([)( Rkxkxkz T

d ∈=                (57) 
and 
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3
3 2ˆ ˆˆ ( ) [ ( ), ( )]T

dz k x k x k R= ∈  (58) 
Now define  

1 1 1ˆ ˆ( ) ( ) ,de k x k x= −  (59) 
and 

2 2 2ˆ ˆ( ) ( ) de k x k x= −  (60) 

 
  

Fig.1.  Neuro-controller structure. 
 

The actual control input is now selected as 
3 3 3 4 2

3 3 3 4 2

ˆ ˆˆ( ) ( ) ( ( )) ( )
ˆ ˆˆ( ) ( ( )) ( )

T T
c

T

u k w k v z k l e k

w k z k l e k

φ

φ

= +

= +
 (61) 

where 3

3ˆ nTw R∈ is the actual output layer weights, 4l R∈ is 
the controller gain selected to stabilize the system. Similar to 
the derivation of (39), combining (55), (56) with (61) yields 

2 4 2 3 3 3 3 3 2ˆ( 1) ( ) ( ) ( ( )) ( ( )) ( )Te k l e k k w z k z k d kξ φ ε+ = + + − +%  (62) 
where 

3 3 3ˆ( ) ( )w k w k w= −%  (63) 

3 3 3 3ˆ( ) ( ) ( ( ))Tk w k z kξ φ= %  (64) 
and 

3 3 3 3 3 3 3ˆ( ( )) ( ( ( )) ( ( )))T Tw z k w z k z kφ φ φ= −%  (65) 
Equations (50) and (62) represent the closed-loop error 
dynamics. It is required to show that the estimation error 
(29) and (32), the system errors (50) and (62) and the NN 
weight matrices 1

ˆ ( )w k , 2
ˆ ( )w k and 3

ˆ ( )w k  are bounded. Fig. 
1 shows the block diagram of the final structure of the 
designed neuro-controller where a(k) and m(k) denote the 
mass of air and fuel 1( )x k and 2 ( )x k respectively and Q(k) 
denotes heat release, y(k). 
 
 B. Weight Updates for Guaranteed Performance 
Assumption 1 (Bounded Ideal Weights): Let w1, w2 and w3 
be the unknown output layer target weights for the observer 
and two action NNs and assume that they are bounded above 
so that 

1 1 2 2 3 3, ,  and ,m m mw w w w w w≤ ≤ ≤        (66) 

where 1mw R+∈ , 2mw R+∈ and 3mw R+∈ represent the 
bounds on the unknown target weights where the Frobenius 
norm is used. 
 

Fact 1: The activation functions are bounded above by 
known positive values so that 

( ) , 1, 2,3i im iφ φ⋅ ≤ =                               (67) 

where , 1, 2, 3im iφ = are the upper bounds. 
 
Assumption 2 (Bounded NN Approximation Error): The 
NN approximation errors 1 1( ( ))z kε , 2 ( ( ))x kε and 

3 3( ( ))z kε are bounded over the compact set by 1mε , 

m2ε and m3ε , respectively.  
 
Theorem 1: Consider the system given in (3) – (5) and let 
the Assumptions 1 and 2 hold. Let the unknown 
disturbances be bounded by 

1 1 2 2( )  and ( ) ,m md k d d k d≤ ≤ respectively. Let the 
observer NN weight tuning be given by  

1 1 1 1 1 1 1 1 5ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l y kα φ φ+ = − + %    (68) 
with the virtual control NN weight tuning be provided by 

2 2 2 2 2 2 6 1ˆ ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k x k w k x k l e kα φ φ+ = − +    (69) 
and the control NN weight tuning be provided by 

3 3 3 3 3 3 3 3 7 2ˆ ˆ ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ( ) ( ))Tw k w k z k w k z k l e kα φ φ+ = − +    (70) 

where 
1 2 3 5 6 7, , ,  and , ,  and R R R l R l R l Rα α α∈ ∈ ∈ ∈ ∈ ∈ are 

design parameters. Let the system observer be given by (28), 
(29) and (30), virtual and actual control inputs be defined as 
(45) and (61), respectively. The estimation errors (33) 
through (35), the tracking errors (50) and (62), and the NN 
weight estimates 1

ˆ ( )w k , 2
ˆ ( )w k and 3

ˆ ( )w k are uniformly 
ultimately bounded provided the design parameters are 
selected as 

2(a)  0 ( ) 1,    1, 2,3i i k iα φ< < =                      (71) 
2 2

2 21 0 2 0
3 52 2 2

( ) ( )
(b)  1 4

6 6m m

l R F l F
l l

R F F
− ⋅ −

< − − −
⋅ Δ Δ

                 (72) 

,
18

1,
18

)1(
min  (c) 222

2
02

6 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ⋅
−

<
RFR

F
l

m

                     (73) 

,
3
1,

6
)1(

min6  (d) 2

2
02

7
2
4 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−

<+
mF

F
ll                      (74) 

Remark: For instance, given R = 14.6, F0 = 0.14, and ΔFm = 
0.02, we can select l1 = 1.99, l2 = 0.13, l3 = 0.4, l4 = 0.14, l5 
= 0.25, l6 = 0.016, and l7 = 0.1667 to satisfy (71) – (74). 

Remark 4: Given the hypotheses, this proposed neuro-
output NN control scheme and the weight updating rules in 
Theorem 1 with the parameter selection based on (65) 
through (68), the state ( )kx2  approaches the operating point 

dx2 . 
Remark 5: It is important to note that in this theorem there 

is no persistence of excitation condition, certainty 
equivalence, linearity in the unknown parameter 
assumptions for the NN observer and NN controller. In our 
proof, the Lyapunov function consists of the observer 
estimation errors, system errors, and the NN estimation 
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errors and therefore separation principle is not used. 

V. REINFORCEMENT WEIGHT UPDATING 
   In this section, we develop an alternate weight updating 

rules based on reinforcement learning where actor-critic 
architecture is utilized. The critic NN is trained online to 
approximate the strategic utility function (long-term system 
performance index). Then the critic signal, with a potential 
for estimating the future system performance, is employed to 
tune the two action NNs to minimize the strategic utility 
function and the unknown system estimation errors so that 
closed-loop stability is inferred. 

A. The Strategic Utility Function 
   The utility function ( ) ℜ∈kp  is defined based on the 
current system errors and it is given by 

( ) ( ) ( )( )1 2ˆ ˆ0,

1,

if e k e k c
p k

otherwise

⎧ + ≤⎪= ⎨
⎪⎩

,                              (75) 

where ℜ∈c  is a pre-defined threshold. The utility function 
( )kp  is viewed as the current system performance index; 
( ) 0=kp and ( ) 1=kp refers to the good and poor tracking 

performance respectively.  
   The long-term system performance measure or the 
strategic utility function ( ) ℜ∈kQ , is defined as  

  ( ) ( ) ( ) ( )NpkpkpkQ kNN 11 21 +− +++++= ααα L ,         (76) 
where ℜ∈α  and 10 << α , and N  is the depth or horizon. 
The term ( )kQ  is viewed here as the future system 
performance measure. 

B. Design of the Critic NN 
     The critic NN is used to approximate the strategic utility 
function ( )kQ . We define the prediction error as 

( ) ( ) ( ) ( )( )kpkQkQke N
c αα −−−= 1ˆˆ ,            (77) 

where the subscript “c” stands for the “critic” and   
( ) ( ) ( )( ) ( ) ( )kkwkxvkwkQ TTT

33333 ˆˆˆ φφ == ,           (78) 
and ( ) ℜ∈kQ̂  is the critic signal, ( ) 3

3ˆ nkw ℜ∈  and 
32

3
nv ×ℜ∈ represent the matrix of weight estimates, 

( ) 3
3

nk ℜ∈φ  is the activation function vector in the hidden 

layer, 3n  is the number of the nodes in the hidden layer, and 
the critic NN input is given by ( ) 2x̂ k ∈ℜ . The objective 
function to be minimized by the critic NN is defined as 

( ) ( )kekE cc
2

2
1

= .                          (79) 

   The weight update rule for the critic NN is a gradient-
based adaptation, which is given by 

( ) ( ) ( )kwkwkw 333 ˆˆ1ˆ Δ+=+ ,               (80) 
where 

( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡
∂
∂

−=Δ
kw
kEkw c

3
33 ˆ

ˆ α ,                   (81) 

or 
( ) ( ) ( ) ( ) ( ) ( )( )TN kQkpkQkkwkw 1ˆˆˆ1ˆ 1

3333 −−+−=+ + ααφα , (82) 

where ℜ∈3α  is the NN adaptation gain. 

C. Weight Updating Rule for the First Action NN 
   The first action NN ( ) ( )kkwT

11ˆ φ weight is tuned by using the 
functional estimation error, ( )k1ζ , and the error between the 
desired strategic utility function ( ) ℜ∈kQd

 and the critic signal 

( )kQ̂ .  Define 
( ) ( ) ( ) ( ))ˆ(11 kQkQkke da −+= ζ ,             (83) 

where ( )k1ζ  is defined in (31), ( ) ℜ∈kea1
, and the subscript 

“a1” stands for the “first action NN”.   
   The value for the desired strategic utility function ( )kQd  is 
taken as “0”, i.e., to indicate that at every step, the nonlinear 
system can track the reference signal well. Thus, (34) 
becomes 

( ) ( ) ( )kQkkea
ˆ

11 += ζ ,                    (84) 
   The objective function to be minimized by the first action 
NN is given by 

( ) ( )kekE aa
2
11 2

1
= ,                        (85) 

    The weight update rule for the action NN is also a 
gradient-based adaptation, which is defined as 

( ) ( ) ( )kwkwkw 111 ˆˆ1ˆ Δ+=+ ,             (86) 
where 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

−=Δ
kw
kEkw a

1

1
11 ˆ

ˆ α ,                     (87) 

or 
( ) ( ) ( ) ( ) ( )( )kkQkkwkw 11111

ˆˆ1ˆ ζφα +−=+ ,    (88) 
where ℜ∈2α  is the NN adaptation gain. 
     The NN weight updating rule in (88) cannot be 
implemented in practice since the target weight 1w  is 
unknown. However, using (18), the functional estimation 
error ( )k1ζ is given by 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 1 2 1 1ˆ ˆ ˆ1k e k l e k e k x k d kζ ε= − + − − + + .  (89) 

Substituting (89) into (88), we get 

( ) ( ) ( ) ( )kQkkwkw ˆˆ1ˆ 1111 φα−=+

( ) ( ) ( ) ( ) ( )( ) ( )( )1 1 1 1 1 2 1 1ˆ ˆ ˆ1k e k l e k e k x k d kαφ ε− − + − − + + .              (90) 

   Assume that bounded disturbance ( )kd1 and the NN 
approximation error ( )( )kx1ε  are zeros for weight tuning 
implementation, then (84) is rewritten as 

( ) ( ) ( ) ( )kQkkwkw ˆˆ1ˆ 1111 φα−=+ ( ) ( ) ( ) ( )( )1 1 1 1 1 2ˆ ˆ ˆ1k e k l e k e kα φ+ + + + .   (91) 

   Equation (91) is the adaptive critic based weight updating 
rule for the first action NN. Similarly, the weight updating 
rule for the second action NN ( ) ( )kkwT

22ˆ φ  is given next. 

D. Weight Updating Rule for the Second Action NN 
   Define 

( ) ( ) ( ) ( )
( )kg
kQkkgkea

2
222

ˆ
+= ζ

,              (92) 
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where ( )k2ζ  is defined in (45), ( ) +ℜ∈kg2
 and ( ) ℜ∈kea2 , 

the subscript “a2” stands for the “second action NN”. 
Following the similar design procedure and taking the 
bounded unknown disturbance ( )kd2

 and the NN 
approximation error ( )( )kz2ε  to be zeros, the second action 
NN ( ) ( )kkwT

22ˆ φ  weight updating rule is given by 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2
ˆˆ ˆ ˆ ˆ1 1w k w k k Q k e k l e kα φ+ = − + + − ,      (93) 

One can use these weight tuning schemes and prove the 
closed-loop stability. 

VI. CONTROLLER HARDWARE DESIGN 

 
Fig. 2. Cooperative fuel research (CFR) engine. 

 
The experimental setup involves a Cooperative Fuel 

Research (CFR) engine, shown in Fig.2, on which the 
controller operates. The CFR is operated at 1000 RPM.  
Being a single cylinder engine, dynamics introduced by 
multiple cylinders are avoided. Shaft encoders are mounted 
on the cam and crank shafts that return start-of-cycle and 
crank angle signals, respectively. There are 720° of crank 
angle per engine cycle, so a crank angle degree is detected 
every 167 microseconds. For the exhaust-gas-recirculation 
(EGR) portion of gaseous intake, nitrogen is used.  EGR is 
comprised mainly of inert gases from the previous 
combustion cycle, so nitrogen, an inert gas in the 
combustion process is used in place of the residual inert 
gases. This allows for an accurate fraction of EGR to be 
introduced to the cylinder. 
 Heat release for a given engine cycle is calculated by 
integrating in-cylinder pressure and volume over time.  In-
cylinder pressure is measured every half crank angle degree 
during combustion, which is considered from 345° to 490°, 
for a total of 290 pressure measurements. At 1000 RPM 
pressure measurements must be made every 83.3 
microseconds. The calculation window is 106° wide or 
17.667 milliseconds.  In this time all engine-to-PC-to-engine 
communication are completed. The algorithm designed uses 
15 neurons to approximate the output. 

VII. EXPERIMENTAL RESULTS 
 An equivalence ratio of one was maintained with 
variation of 1%, R = 15.13 for iso-octane, residual gas 
fraction F = 0.09, mass of nominal new air = 0.52485, mass 
of nominal new fuel = 0.02428, the standard deviation of 
mass of new fuel is 0.007, cylinder volume in moles = 

0.021, molecular weight of fuel = 114, molecular weight of 
air = 28.84, 0.665, 0.645u lφ φ= = , maximum combustion 
efficiency = 1, and the gains (

2,1 ll ) of backstepping 
controller are selected at 0.1 and placed diagonally.  EGR 
was assumed to be a mixture of Nitrogen and Oxygen gases 
with a molecular weight of 30.4 and the hydrogen carbon 
ratio was 1.87. All initial values of air, fuel and inert gases 
were chosen to be 0. The neural networks were designed to 
with learning rates of 0.01 each.  
 The activation functions used were the hyperbolic tangent 
sigmoid functions. The results for engine operation at a 
near-stoichiometric equivalence ratio and addition of a 
percentage of EGR to the contents of the cylinder are 
discussed.  The uncontrolled engine equivalence ratio was 
0.97.  The controller pushed the equivalence ratio to 1.0, due 
to the behavior of the control input ( )u k additional mass of 
fuel injected.  The EGR used for this experiment was 
nitrogen, rather than actual exhaust gas.  The nominal mass 
of EGR is set such that its mass is a desired percentage of 
the total mass of cylinder contents.  The following equation 
shows that a mass of nitrogen, EGRm , can be chosen to give 
a desired percentage of EGR. 

% 100 EGR

f a EGR

mEGR
m m m

⎛ ⎞
= ×⎜ ⎟⎜ ⎟+ +⎝ ⎠

                             (94) 

Heat release time series and return maps were generated 
for both controlled and uncontrolled cases for each of two 
EGR set points: 5%, and 10%. Before engine tests, air flow 
is measured and nominal fuel is calculated for the desired 
equivalence ratio. The nominal fuel and air are loaded into 
the controller configuration.  During data acquisition, 
ambient pressure is referenced in the acquired cylinder 
pressure each engine cycle based on the in-cylinder pressure 
when the exhaust valve is fully open at 600°. 
  The NN weight values are all initialized at zero.  Figs. 3 
and 4 display a decrease in cyclic dispersion for 10% EGR 
respectively During the absence of control there is much 
cyclic dispersion and occasional misfires, illustrated as 
spikes, and during control the misfires and dispersion are 
reduced. The return maps at 10% EGR show distinct cyclic 
dispersion during no control and a significant decrease in 
those dispersed data points during control. 

When using fuel as the control input, the controller must 
change the fuel to affect the engine, and therefore changes 
the equivalence ratio. Fuel intake increases slightly during 
control causing the actual operating equivalence ratio to be 
slightly higher than the set point, here, at 1.0. It is thought 
that this is partly due to a higher value specified for target 
heat release compared to uncontrolled case.  Moreover, this 
slight offset remains due to slow learning of the NNs which 
eventually becomes zero with time.  A tradeoff exists 
between speed of learning and performance. Higher learning 
rate for NNs slightly degrades performance in terms of 
dispersion and vice versa. 
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Fig. 3.  Heat release time series at 10% EGR 
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Fig. 4. Uncontrolled and controlled heat release return maps plotting current 

cycle y(k) against next cycle y(k+1) at 10% EGR. 
The coefficient of variation, COV, for all of the EGR 

return maps is listed in Table 1.  As the EGR percentage of 
cylinder contents is increased from 0% to 10%, the 
coefficient of variation increases for both uncontrolled and 
controlled engine operation. The increased coefficient of 
variation indicates increased cyclic dispersion as seen in the 
EGR return maps.  The coefficient of variation decreases 
when control is applied.   

Table  1. Coefficient of Variation of the Return Maps 
EGR Uncontrolled COV Controlled COV 

5% 0.0873 0.0347 

10% 0.1873 0.0838 

 Experimental results indicate that 80% drop of NOx at 
stoichiometric levels (2153 PPM C3H8 at 0% EGR to 436 
PPM C3H8) using 10% EGR.  The percentage of NOx 
reduction should roughly remain the same between the 
controlled and uncontrolled cases as it is a strong function of 
the percentage of EGR. The percentage of unburned 
hydrocarbons at 10% also shows a drop of 28% due to 
control (58 PPM C3H8) as compared to the uncontrolled 
scenario (81 PPM C3H8).  

VIII. CONCLUSIONS 
 A novel NN controller scheme is presented to reduce the 
cyclic dispersion in heat release at high EGR levels. The 
stability analysis of the closed-loop control system was 
conducted and the boundedness of the closed loop signals 
was shown. Experimental results show that the performance 
of the proposed controller is highly satisfactory while 
meeting the closed loop stability even though the dynamics 
are not known beforehand. The presented work can be 
extended by introducing a separate control loop for the EGR 
while varying the air-fuel ratio to include lean operation. 

REFERENCES 
[1] K. P. Dudek and M. K. Sain, “A control-oriented model for cylinder 

pressure in internal combustion engines,” IEEE Trans. on automatic 
control, vol. 34(4), 1989, pp. 386-397. 

[2] R. W. Sutton and J. A. Drallmeier, 2000, “Development of nonlinear 
cyclic dispersion in spark ignition engines under the influence of high 
levels of EGR”, in Proc. of the Central States Section of the 
Combustion Institute, Indianapolis, Indiana, April 16-18, 2000, pp. 
175-180. 

[3] P. He and S. Jagannathan, “Neuroemission controller for reducing 
cyclic dispersion in lean combustion spark ignition engines,” in 
Automatica, vol. 41, April 2005, pp. 1133-1142. 

[4] C. S. Daw, C. E. A. Finney, M. B. Kennel and F. T. Connolly, 
“Observing and modeling nonlinear dynamics in an internal 
combustion engine,” in Physical Review. E, vol. 57(3), pp. 2811 – 
2819, 1998. 

[5] C. S. Daw, C. E. A. Finney, J. B. Green, M. B.  Kennel and J. F. 
Thomas, “A simple model for cyclic variations in a spark-ignition 
engine,” SAE, 962086, May 1996.  

[6] J.B. Heywood, Internal combustion engine fundamentals, MGraw-
Hill, New York, 1998.  

[7] T. Inoue, S. Matsushita, K. Nakanishi, and H. Okano, Toyota lean 
combustion system-The third generation system. SAE Technical Paper 
series, 930873, 1993. 

[8] R. M. Wagner, “Identification and characterization of complex 
dynamic structure in spark ignition engines,” Ph.D. dissertation, Univ. 
Missouri – Rolla, Dept. Mech. Eng. Rolla, MO, 1998. 

[9] R. M. Wagner, J. A. Drallmeier, & C. S. Daw, “Nonlinear cycle 
dynamics in lean spark ignition combustion,” presented at the 27th 
Symposium (International) of Combustion, 1999. 

[10] P. C. Yeh and P. V. Kokotovic, “Adaptive output feedback design for 
a class of nonlinear discrete-time systems,” IEEE Trans. Automat. 
Contr., vol. 40, no. 9, Sep. 1995, pp. 1663–1668. 

[11] F. C. Chen and H. K. Khalil, “Adaptive control of a class of nonlinear 
discrete-time systems using neural networks,” IEEE Trans. 
Automat.Contr., vol. 40, no. 5, May 1995, pp. 791–801. 

[12] S. S. Ge, T. H. Lee, G. Y. Li and J. Zhang, “Adaptive NN control for a 
class of discrete-time nonlinear systems,” Int. J. Contr., vol. 76, no. 4, 
2003, pp. 334–354. 

[13] B. Igelnik and Y. H. Pao, "Stochastic choice of basis functions in 
adaptive function approximation and the functional-link net," IEEE 
Trans. Neural Networks, vol. 6, Nov.1995, pp. 1320-1329. 

[14] S. Jagannathan, “Robust backstepping control of robotic systems 
using neural networks,” in Proc. 37th IEEE Conf. on Decision and 
Control, 1998. 

[15] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, 2002. 
[16] P. He, Z. Chen and S. Jagannathan, “Reinforcement learning based 

neural network control of nonstrict feedback nonlinear systems”, Proc. 
of IEEE Conference on Decision and Control, Dec 2005. 

[17] F. L. Lewis, S. Jagannathan, and A. Yesilderek, Neural Network 
Control of Robot Manipulator and Nonlinear Systems, Taylor & 
Francis Inc., UK, 1999. 

[18] F. L. Lewis, J. Campos, and R. Selmic, Neuro-Fuzzy Control of 
Industrial Systems with Actuator Nonlinearities, Society for Industrial 
and Applied Mathematics, Philadelphia, 2002.  

4985


	Neural Network Control of Spark Ignition Engines with High EGR Levels
	Recommended Citation

	Neural Network Control of Spark Ignition Engines with High EGR Levels [IJCNN1418]

