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Design, Optimization,  and  the  Prototyping of a  Small  Tuning-Fork  Ultrasonic 
Piezoelectric  Linear  Motor 

James R. Friend* 

Abstract: The design,  optimization,  and  proper- 
ties of a prototype  small traveling-wave ultrasonic 
piezoelectric  linear motor design are described. A 
method for optimizing the  geometry of the  motor 
to maximize  its  mechanical output for a given elec- 
trical  input is described, as is the  inherent  prop- 
erties of the design to maximize the  motors  dura- 
bility and  utilization of the piezoelectric material. 
Results from testing  the  motor  demonstrate  the 
design and  indicate a maximum  speed of 2.5 cm/s 
with a preload of 16 g due  to  an applied  voltage of 
80 VR.V,S at  an applied  current of 15 mA. 

INTRODUCTION 

The first practical piezoelectric motors  appeared 
in the  early 1970's, creations of H. V. Barth [l] in 
1972 at IBM's Watson  Laboratory  and  Galutva  et 
al. [2], in the Soviet Union,  among  others. How- 
ever,  they were not  the first.  Williams  and  Brown 
patented  what is generally believed to  be  the first 
piezoelectric motor in  1948 [3]. 

Discovering the  initial work  performed on piezo- 
electric  motor  systems,  research  began  in  earnest 
in Japan, quickly  overwhelming the meager  efforts 
in the U.S. and elsewhere. Shoji  Mishiro, at  Taga 
Electric,  designed  several  transducer  systems in 
the 1970's 141 and  motor  systems  in  the 1980's [5], 
but  the  revolutionary traveling-wave motor design 
by  Toshiiku Sashida  et al. [7] was among  the first 
successful  piezoelectric motor  designs. 

To  this  day, however, many  motor  systems suf- 
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fer from durability  problems  and  are expensive. 
The construction of a motor  system  that addresses 
these  problems  while  still  providing  decent  perfor- 
mance would allow the  advantages of the piezoelec- 
tric  motor  system  to  be available for applications 
that  demand inexpensive and  durable  components. 
The purpose of this  paper  is  to  describe  the design, 
construction,  and  testing of a linear traveling-wave 
motor  system  with  these  properties i n  its  design. 

DESIGN 

The design of the  motor  system is focused upon 
the design of the  stator-the  vibrating  part of the 
motor  system.  The slider-the part moved by the 
stator or the  part  that  the  stator moves upon-is 
assumed  to  be  compatible  with  the  stator. 

Initial Concept 
Virtually  all piezoelectric motors  require ellipti- 

cal  motion to  be  generated  along  the  output sur- 
faces of the  stator.  The  generation of that motion 
from the  extensional,  planar,  and  shearing  motions 
that piezoelectric materials  are  capable of devel- 
oping  has  been  the genesis of many  motor designs 
over the  past  twenty  years. The magnitude of the 
vibrations  that piezoelectric materials  can  generate 
is tiny-always less than one-hundred  micrometers 
along the   ou tput   sur facebut   the  frequency of the 
vibrations is typically  ultrasonic.  Acting  upon  an- 
other  surface,  the  elliptical  motion will cause sig- 
nificant  motion  since it is at  such  a  high  speed  and 
appears  to  be in a single direction. 

Obtaining  enough  elliptic  motion  to  cause  the 
movement of the slider  from the minuscule strain 
that  the piezoelectric material  can develop-one- 
tenth of one percent-is a challenge. The initial 
concept  amplifies the  output of the piezoelectric 
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Figure 1: The basis set  and  points along the solid model of the  miniature  tuning fork motor 

material  through a lever arm,  and, near resonance, 
the motion is further amplified through  the  inertia 
of the  arms. 

Parametric  Design  and  Optimization 
With  the initial design, shown in  Figure 1, the 

process of optimizing it through  parametric de- 
sign can  begin. It is necessary to form a basis, 
a  group of independent  parameters that define the 
design completely, and an objective function that 
describes how "good" the motor design is. With 
these definitions, the relationship between the pa- 
rameters and  the  quality of the design can he ex- 
plored through finite-element analysis that eventu- 
ally may lead to a  suitable design for prototyping. 

The definition of the basis for the  miniature  tun- 
ing fork motor is somewhat complicated. First, a 
set of assumptions  can be made  about  the geome- 
try; 

The geometry is symmetric  about  the y axis. 

The geometry  has the  same thickness through- 
out in the z direction. 

The center of the piezoelectric stack is aligned 
along a  radius of t,he circle about  the point F .  

The angle of the edge m is 45' from the 2: 

axis towards the y axis. 

- 
The angle of the edge E D  matches the an- 
gle that  the edge ?% forms at  the end of the 
piezoelectric stack. 

Edges BC and are aligned with the y axis 
and edges N A  and m are aligned with the z 
axis. 

- 

With  these  assumptions,  the  number of indepen- 
dent variables that describe the geometry is re- 
duced to twelve parameters as indicated in Fig- 
ure 1. 

Figure 2 illustrates how the parameters control 
the design. The ability of these  parameters to ac- 
curately represent the design model with a solid 
model over the possible domain of the basis para- 
meters is absolutely necessary. The design model 
represents the desired geometry of the design  for 
a  particular basis, but  the solid model only repre- 
sents whatever the geometric equations deliver. It 
is easy to define a  set of equations that, for  some 
chosen hasis,  either define ridiculous geometries or 
do not  replicate the design model accurately. 

The objectives of the design analysis are to max- 
imize the magnitude of the  output motion of the 
ends of the  stator forks compared to  the magnitude 
of the  input motion from the piezoelectric material 
vibration,  i.e.,  the  transfer  function of the  stator, 
place the frequency of operation above the audi- 
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Table 1: Values of the design  variables  before and 
after  the  optimization 

Figure 2: Result of changing the geometry  through 
its  parameters; (a) an increase  in 0 from 45" to 60", 
(h)  an increase  in n p ~ ~  from  two to  eight,  (c)  an 
increase  in w p ~ ~  from 25 to  50, and  (d)  an increase 
in TH from 10  to 20 

ble  frequency  range,  obtain  elliptical  motion  out 
of the  ends of the forks with a low ellipticity or 
a decent  aspect  ratio,  and  obtain  suitable  mode 
shapes, a subjective  requirement. The first three 
requirements  can all be  included in an objective 
function,  the  magnitude of which is related  to how 
well the design meets  the  requirements. 

Choosing all of the  stator's geometric  parame- 
ters as variables  would  present twelve degrees of 
freedom, so many  that  the  optimization is almost 
guaranteed  to fail.  Narrowing  down the  number of 
parameters  to four that  are  the  most influential, 
T H ,  0 ,  I F :  and w ~ ~ p ,  the  optimization becomes 
more  tenable.  It is also  necessary to specify a rea- 
sonable  range of values for each  parameter for the 
analysis;  together, the ranges  become the  parame- 
ter  space for the  problem.  An  objective  function 
must also be  defined;  one  way to define the func- 
tion such that it  considers the  resonant frequencies 
of the modes of the  stator  and  the  transfer  function 
of the motion  in the  stator is with  the following 
equation: 

@ = AlfFXN + A ~ X F X N ,  (1) 

where @ represents  the  objective  function com- 
posed of the  constants A I  and A2 each  multiplied 
with a function:  the  first, ~ F X N ,  dependent  upon 
the  resonant  frequencies,  the  second, X F X N ,  de- 
pendent  on  the  input-output  transfer  function of 
the  stat,or. 

The optimization of the  stator using  such  an ob- 
jective  function  improved the performance of the 
stator  dramatically over only  eight  iterations. The 
displacement  transfer  function  increased  from a 
value of 8.09 to 37.69. the frequency  function  in- 

 FORK (mm) 7.53 
8 (degrees) 

creased  from 2.24 to  3.07, and  the desired  mode 
shapes were still  present  despite  the changes. Com- 
paring  the values of the design  variables  before  and 
after  the  optimization,  Table 1 shows that  there 
was not a significant  change in  the hole's r a d' lusor 
fork separation  distance. The length of the forks 
and  the angle of the piezoelectric material were 
both increased, however. 

Final Design 
The resonant  frequencies  and the associated 

modes of the final  design  chosen for prototyping 
are  illustrated in Figures  3.  Two  modes  are very 
close together  near 16.4 kHz, but only the lower- 
frequency  mode at  16,297 Hz should  appear owing 
to  the configuration of the piezoelectric material; 
the  mode  at 16,557 Hz requires a twisting  motion 
that  the piezoelectric material  cannot force in  the 
stator  structure. 

TESTING 

Two  prototype  stators were  machined  to  the 
specifications of the final  design for testing. Un- 
fortunately,  the  machine  shops available were in- 
capable of machining the  prototypes  to  the  correct 
scale.  A  decision was made  to increase the size 
of the  prototypes by a factor of four, since scal- 
ing affects only the size of the  output motion and 
the resonant  frequencies of the  stator. At a fre- 
quency of twenty-six kHz, the  motor traveled in 
both directions  (along the  z-axis)  depending  on 
the phase. The applied  voltage? about one  hun- 
dred  volts, RMS, developed a current of around 
ten  milliamperes  on each  side.  A  speed of five cen- 
timeters  per second was achieved with the  motor 
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f = 16,297 Hz 

f = 16.557 Hz 

Figure 3: The lowest two  resonant  frequency 
modes of the final  design of the  miniature  tuning 
fork motor  with  open-circuited piezoelectric  mate- 
rial 

with a load of sixteen  grams  on  the  contact  inter- 
face between the  stator  and  the glass counterface 
(the preload). 

CONCLUSIONS 

The  miniature  tuning fork motor design was a 
success, as was the effort to design the  motor  to 
protect  the fragile piezoelectric  material  while dra- 
matically  amplifying  its output. An optimization 
technique was used to improve  t,he  motor’s  design; 
the  PZT-input  to  stator-output  transfer  function 
was increased  from about 1:8 to 1:35 at resonance. 
A  scaled-up  version of the design was tested, which 
moved at  a speed of five centimeters  per second 
under a load of sixteen  grams,  despite  using a dif- 
ferent mode  shape for the  motor’s  operation. 
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