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Abstract 
A new method for optimal control design of distributed parameter 
systems is presented in this paper. The concept of proper 
orthogonal decomposition is used for the model reduction of 
distributed parameter systems to form a reduced order lumped 
parameter problem. The optimal control problem is then solved in 
the time domain, in a state feedback sense, following the 
philosophy of ‘adaptive critic’ neural networks. The control 
solution is then mapped back to the spatial domain using the same 
basis functions. Numerical simulation results are presented for a 
linear and a nonlinear one-dimensional heat equation problem in 
an infinite time regulator framework. 

1. Introduction 
Distributed Parameter Systems (DPS) are govemed by a set of 
partial differential equations. There exist theoretical methods for 
the control of distributed parameter systems [Curtain] in the 
infinite dimensional operator theory framework. While there are 
many advantages, these approaches are mainly confined to the 
linear systems besides having the usual difficulties in control 
implementation through an infinite dimensional operator. An 
engineering approach to deal with the infinite dimensional systems 
is to have a finite dimensional approximation of the system using a 
set of orthogonal basis functions before control design. Attention is 
being increasingly focused in the recent literature on the technique 
of proper orthogonal decomposition [Burns, Ravindran]. 

Many difficult real-life optimal control problems can be 
formulated in the framework of dynamic programming [Bryson], 
which handles this problem by producing a family of optimal 
paths, or what is known as the ‘‘j?eld of extremals”. One great 
drawback of this approach, however, is that it requires a 
prohibitive amount of computation and storage in producing this 
entire field of extremals. Towards designing a computational tool 
for finding a feedback form of the optimal control solution for 
nonlinear lumped parameter systems, an approximate dynamic 
programming approach, followed by the adaptive critic neuro 
control synthesis has been proposed in the literature [Balakrishnan, 
Werbos]. This makes it possible to synthesize the feedback optimal 
controllers for complex system. It allows the philosophy of 
dynamic programming to be carried out without the need for 
impossible computation and storage requirements. 

In this paper an attempt has been made to combine the ideas of 
proper orthogonal decomposition and adaptive critic based optimal 
control synthesis to come up with a powerful computational tool 
for the optimal control of DPS. We have presented numerical 
simulation results for one-dimensional linear and nonlinear heat 
equation problems, with an infinite time optimal control 
formulation. We have compared the numerical results with the 
closed form solution for the linear problem, which shows good 
agreement . 
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2. Proper Orthogonal Decomposition: A Review 
In this section we briefly summarize the process of proper 
orthogonal decomposition. For further readings, an interested 
reader can refer to [Bums, Ravindran]. 

Let { u , ( ~ ) :  l < i s ~ ,  ,,€QQ) be a set of N snapshot solutions 

(observations) of some physical process over the domain SZ at 
arbitrary instants of time. The goal of the POD technique is to 
design a basis function @ that has the largest mean square 
projection on the snapshots. As a standard notation the L’ inner 

product is defined as (@, Y)= /@Y d y .  We seek 

cp = cw, U, where the coefficients Wi are to be determined 

R 
N 

,= I  

such that @ maximizes ( 1 1 ~ )  

some algebra it can be shown [Ravindran] that this leads to: 

cw=ow 

In Eq.( 1) 0 E w and W = [ w, wN 3’ . So, we have 

a standard matrix eigenvalue and eigenvector problem to find W .  
Matrix C has N non-negative real eigenvalues and N 
orthogonal eigenvectors. Sorting the eigenvectors in descending 
order, we can write 0, 2 0, 2 2 0, 2 0. Let the 

corresponding eigenvectors be W1 = [ W: . . . W; ]’ , 
W*==[w: ... wi r... W N  =[wr ... w:J.Itcanbe 

noted that the eigenspectrum can be truncated judiciously such that 

E A j  = E A j  . In that case we obtain fi orthonormal 

eigenfunctions as: 

wz . 

d N 

j=1 j=1 

N N 

The 11@11 = 1 condition is met when we normalize w’s by 

forcing 

(wj, wj) = 1/( N A j )  (3) 
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3. Finite Dimensional Approximations 
We consider the system described by: 

ax -=-+, axlay, azXiay2 ,  ..., .) at 
(4) 

with appropriate boundary conditions that minimizes the 
performance index: 

Here the state X and control U are functions of time t and 

spatial variable y ,  05 y L. The process of getting the 
snapshot solutions for our example problem will be discussed later 
in Section 6.3. With the snapshot solutions we design the POD 
basis functions following the idea from Section 2. After obtaining 
the basis functions, we propose to write: 

N d 
x = Cij(t). Q j ( Y ) ,  U = CCj(f). Q j ( Y )  (6) 

j=1 j= l  

We have assumed the same basis functions for X and U . In other 
words, we assume that the basis functions for the state are capable 
of representing the control as well. This is because our final aim is 
to design a state feedback controller. Substituting Eq.(6) in Eq.(4) 
and taking the inner product of this equation on a specific basis 
function we can write: 

. A  

ii = < ( i j , C j ,  j = l , 2  ,..., fi) (7) 

One can notice that by the definition of inner product all 
functionality dependence on y is now absorbed in the integrals. 
Collecting all equations for j = 1,2, ..., N we can write a fi 
dimensional lumped model for the system as: 

i = q q  (8) 

Similarly, we can substitute for X and U from Eq.(8) in the 
expression for the performance index in Eq.(7) to obtain: 

(9) 

Eq.(8) and (9) formulate an analogous optimal control problem in 
the time domain. We point out that the boundary conditions of the 
PDE are absorbed in Eq.(8). 

4. Optimalitv Conditions 
The necessary conditions of optimality for a lumped problem to 
minimize the performance index in Eq.(9) for a system driven by 
the dynamics in Eq.(8) is well known [Bryson]. First a 
Hamiltonian variable H is defined as: 

H =i+A'k (10) 

where A is the Lagrange multiplier variable. Then the so-called 
optimal control and costate equations are given by: 

awae =o (1 1) 

;i = - m a r i  (12) 

For the solution of optimal control, Eq.(8), (1 1) and (12) need to be 
solved simultaneously along with appropriate boundary conditions. 
The adaptive critic methodology using a set of neural networks 
needs discrete version of the optimality conditions. In this 
connection, it is well known that the state equation Eq.(8) develops 
forward, while the costate equation Eq.(12) develops backward in 
time. For this reason, at any instant of time k we can write: 

A n 

where Fd and Gd are the resulting algebraic functions of their 
arguments. In this paper we consider the larger class of problems 

for which at the time instant k the optimal control U, can 

explicitly solvable in terms of x, and Ak+, as: 

A 

A 

We have used the standard fourth order Runge-Kutta method to get 
Eq.(13) and (14) fromEq (8) and (12) respectively. 

5. Simplified Adaptive Critic Svnthesis 
We propose a set of neural networks, which solve the optimal 
control problem contained in Fq. (17), (18) & (19), together with 
appropriate boundary conditions. This control synthesis is 
essentially obtained through a set of critic networks. This is to 
retain the terminology of the adaptive critic, outlined earlier in 
[Balakrishnan, Werbos]. However, we have eliminated the need of 
the so-called action networks and hence, the need of iterative 
training between action and critic networks as well. This saves a 
lot of computations, besides eliminating the functional 
approximation error for having additional neural networks. 

5.1 State generation for neural network training 

Once the snapshot solutions are generated and POD basis functions 
are designed, we observe that 

Using the snapshot solutions in Eq.(16) we fix the minimum and 
maximum values for the individual elements of 2,. Let i ~ o  
denote the vector for minimum values for 2, and d,, denote the 
vector of maximum values. Then fixing a positive constant 
OlC; 51, we select ikEq[inh,iM]. Let 

si = [ 2, : X, E ci.[imh, imx]]. One can notice that for 

C, IC ,  I . . .  , S, c S, c .... Thus, for some i =  I ,  C, = 1 
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and s, will include the domain of interest for initial conditions. In 
this paper, we have chosen C, = 0.05 , C, = C, + 0.05 ( i  - 1) for 

i = 2 ,  3, . . . till i = I 

5.2 Neural network training 

Fix ci and generate si. For each element x, of si follow the 
steps below [Figure 11. 

Input k, to the networks to get Ak+l. Let us denote it as A 
Calculate U,, knowing x, and 

A 

A A 

from optimal control 

equation Eq.(15). Get X,+lfrom the state equation (13), using 

k, and fi, . Input k,+, to the networks to get . Calculate 

Ak+l ,  form the costate equation (14). Let us denote this as 

A :+,. Train the networks, with alii, as input and all 

corresponding A as output. If proper convergence is achieved, 

stop and revert to step 1, with si+l . If not, go to step 1 and retrain 

the networks with a new si .  
One can notice that for faster convergence, one can take the 

convex combination [ p A:+, -I- (1 - p)  A:,j+, ] as the target 

output for training, where 0 < p < 1 is the learning rate for the 
neural network training. Moreover, to minimize the chance of 
getting trapped in a local minimum, we have followed the batch 
training philosophy. For the heat conduction examples presented 
in this paper, we have chosen p = 0.5 . 
5.3 Convergence check 

First, fix a tolerance value (we have fixed t d  = 0.1. for the heat 

conduction problem). By using the profiles from s,r, generate the 
target outputs, as described in Section 5.2. Say the outputs are 

2 :,A ,..., /z k .  Generate the actual output from the 
networks, by simulating the trained networks with the profiles 

from s i .  Say the values of the outputs are 

/z fi,n ,..., /z :. Check whether simultaneously 

I ~ A ;  -A: 112 1 I ~ A ;  112 < tal, v j = 1,2, . ..,N. If yes, we 

assume that the networks have converged. 

6. Motivating Examples: One-Dimensional Heat 
Conduction Equations 

6.1 Problem DescriDtion 

We consider a nonlinear one-dimensional heat conduction problem 
given by: 

ax/ at = a Z x  1 ay2 - x 3  + (17) 

The linear version of the problem is given by: 

axiat = azxIay2 + (18) 

We consider the infinite time quadratic regulator problem, for 
which the performance index to be minimized is given by: 

1''- L 

J = T  j ( q 2 + r u 2 ) d y d l  
0 0  

Boundary and Initial Conditions 

We assume that the boundary conditions are given by 
ax ax 
ay  ay 
-( t ,  0) = -( t ,  L )  = 0 and the initial condition can be any 

profile from the domain of interest. 

6.2 Domain of interest and state Drofile generation 

We assume an envelope profile 

fen, ( y )  = U + A COS( -n + ( 2 n y I  L ) )  (20) 

the domain of interest. The conditions put on X ensure that the 
profiles are smooth and they satisfy the boundary conditions. For 
our numerical experiments, we have chosen a = A = 0.25. For 
the envelope profile chosen we have 

After fixing 0 5 ci 5 1 ,  we assume 

We assume a Fourier cosine series expansion for X (  y )  : 

x = uo + 5 ancos (nn y 1 L )  (23) 
n=l 

where Nr is a large number. After some algebra, we observe: 

So we select random coefficients an, n =(),I,. . .,Nf to 
satisfy both the inequalities of Eq.(24) and generate a state profile 
using Eq. (23). 

6.3 SnaDshot solution generation 

We have followed the steps below to generate the snapshot 
solutions. 
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Fix 0 2 ci 2 1 and generate a random initial state profile ii = - ~ k  - ( A ~  + ay '  82) A (32) 

For the linear problem, the optimal control equation remains same 
as Eq, (31). However, the costate equation is given by: 

X (  0, U) . Generate a random control profile as well, similar to 

the state profile generation. This is done under the assumption that 

the controller will satisfy l l~ l l< 11. (0, r)ll and 

IIU"II 5 IIX"( 0, y)II . Holding the control as constant, simulate 

the original system Eq.(17). Randomly select some profiles at 
arbitrary instants of time and assume that those are the snapshot 
solutions. We propose to repeat the steps outlined above a number 
of times and to collect some snapshot solutions each time, till 
enough number of snapshots is collected. 

6.4 Finite dimension amroximations 

= - Q2 - ATA (33) 

Then, as pointed out in Section 4, Runge-Kutta method was used 
to derive the discrete versions of the optimality conditions. 

form for linear Drob'em 

For the linear problem, the closed form solution for the optimal 
control can be derived [Curtain]. The solution is given by: 

First the snapshot solutions are generated and POD basis functions 
are designed. Substituting Eq.(6) in Eq.(17), taking the inner 
product with ai we get: 

u ( t ~ y ) = - ~ ~ o L x ( r 7 ~ )  

R 
(25) 6.7 Choice of neural network structure 

We have taken five 7T5,5,5,1 neural networks, one each for each of 

the costates. A 7T5,5,5,1 neural network means 5 neurons in the 

j=1 

Using the boundary conditions after some algebra, it leads to: 

where, 

(26) 
input layer, 5 neurons in the first hidden layer, 5 neurons in the 
second hidden layer and 1 neuron 'in the output layer. For 
activation functions, we have taken a tangent sigmoid function for 
all the hidden layers and a linear function for the output layer. 

A=[a,], a,=- 6.8 Numerical results 

(27) For the numerical experimentation we chose = r = 1, L = 4. 
For implementing the control we assumed a control update scheme 
with A t = 0.1 . In the finite difference scheme for generating the 

snapshot solutions we assumed A t  = 0.002, Ay = 0.1. 
However for simulating the system after control synthesis, we have 
assumed A t  = 0.00 1, Ay = 0.05 . The choice of this two 
different set of values was to emphasize the point that the control 
synthesis methodology presented is independent of the grid size. 
This &as also to see that the results are not bad because of the 
spillover effects, by assuming a particular grid size for generating 
the snapshot solutions and hence the basis functions. However to 
compute the values of the basis functions at a location other than 
where it was constructed, we have opted for an interpolation 
scheme based on the Fourier cosine series having the same number 
of terms as the number of points for which the function values 
exist. 

The first objective was to show that the approach is a viable tool 

f"' ( x )  is a 

term in Eq.( 17). For the linear problem in Eq.(18), this term will be 
absent and we will have the following system dynamics. 

function that comes from *e 

k = A k + B C  
For the performance index, we observe: 

(28) 

q(n, x )  = g'Q2, r (u ,  U )  = c T R c  
where Q = q I , R = r I  

(29) 

Using Eq.(29), the performance index in Eq.(19) can be written as: 

for the optimal control synthesis of the distributed parameter 
systems. We notice that the problems we considered for numerical 
experimentation represent infinite time regulator problems. So 
both the state and control over the entire spatial domain should 

(30) 

6.5 ODtimalitv conditions 

equations can be derived as 

proceed towards zero as time progresses. In Figures 2 and 3, we 
present a typical result for the nonlinear problem, after 

state and control histories from a random initial condition develop 

Using Eq'(30), ('O), (I1) and (I2), the Optimal and costate synthesizing the POD based optimal neurO control, As expected, 

towards zero with the increase of time. We present the simulation 
results for the linear problem in Figures 4 and 5 from another 
random initial condition. These figures again show the same 

(31) 
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expected trend that the state and control develop towards zero as 
time increases. 

To boost the confidence on the methodology presented, we 
simulated the system with this closed form control starting from 
the same initial state profiles. The state and control results are 
presented in Figures 6 and 7 respectively. Comparing Figures 4 
and 6 as well as 5, 7 the closeness of the results is obvious. 
However, we have exclusively plotted the errors between the states 
and controls coming from the two approaches in Figures 8 and 9. 
From these plots it can be clearly seen that the magnitude of the 
error in states is two-order less, as compared to the magnitude of 
states. Similarly, the magnitude of the error in control is one-order 
less, as compared to the magnitude of control. This good 
agreement of results successfully verifies the proposed technique 
of optimal control synthesis for DPS. 

Even though we have presented the results only from a single 
initial condition (because of space limitations), the same behavior 
was observed from a large number of arbitrarily chosen random 
initial conditions in the domain of interest. This shows that the 
control synthesis methodology presented can be implemented in a 
feedback sense. We also point out that computation of the control 
only uses the neural networks already synthesized off-line. Since 
using the networks are not at all computationally intensive, this 
methodology can be implemented on-line. 

7. Conclusions 
In this paper a systematic computational tool for the optimal 
control synthesis of distributed parameter systems is presented. 
Using the concept of POD a low-dimensional lumped model 
representation of the infinite dimensional system was developed. 
This low dimensional model was used to synthesize the optimal 
control, in a state feedback sense, following the philosophy of 
adaptive critic neural networks. The synthesized control in time 
domain was then extended to the spatial domain using the same 
basis functions. We have synthesized the optimal control for a one- 
dimensional nonlinear and a linear heat conduction problem. 
Simulations show good results for all cases. The results for this 
case were successfully compared with the closed form solution, for 
some typical initial conditions, showing close matching. 
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Figure 2: State of the nonlinear system from a random initial 
condition 
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Figure 3: Associated control of the nonlinear system from the 
random initial condition 
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Figure 4: State of the linear system from a random initial condition 
with POD control 

Figure 1 : Schematic of simplified adaptive critic neural network 
synthesis 
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Figure 5: Associated POD control of the linear system for the 
random initial condition 
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Figure 8: Error in state of the linear system for the random initial 
condition 
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Figure 6: State of the linear system from a random initial condition 
with closed form control 
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Figure 7: Associated closed form control of the linear system for 
the random initial condition 
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Figure 9: Error in control of the linear system for the random initial 
condition 

Acknowledgement 
This research was supported by NSF-USA grant ECS 9976588. 

References 
1 .  

2. 

3. 

4. 

5 .  

6.  

Balakrishnan S .  N. and Biega V., Adaptive-Critic Based 
Neural Networks for Aircraft Optimal Control, Journal of 
Guidance, Control and Dynamics, Vol. 19, No. 4, July-Aug. 

Bryson A. E. and Ho Y. C., Applied Optimal Control, 
London: Taylor and Francis, 1975. 

Bums J. and King B. B., A Reduced Basis Approach to the 
Design of Low-order Feedback Controllers for Nonlinear 
Continuous Systems, Joumal of Vibration and Control, Vol. 

Curtain R. F. and Zwart H. J., An Introduction to Infinite 
Dimensional Linear Systems Theory, Springer-Verlag, New 
York, 1995. 

Ravindran S .  S., Proper Orthogonal Decomposition in 
Optimal Control of Fluids, NASA/TM-1999-209113. 

Werbos P. J., Neuro control and Supervised Learning: An 
Overview and Evaluation, Handbook of Intelligent Control: 
Neural. Fuzzy and Adaptive Approaches, White D. and Sofge 
D. (Eds.), Van Nostrand Reinhold, 1992. 

1996, pp. 893-898. 

4, NO. 3, 1998, pp. 297-323. 

4394 


	Proper Orthogonal Decomposition Based Feedback Optimal Control Synthesis of Distributed Parameter Systems Using Neural Networks
	Recommended Citation

	Proper orthogonal decomposition based feedback optimal control synthesis of distributed parameter systems using neural networks

