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CHAPTER 1

INTRODUCTION

The standard model of particle is an attempt to describe the interactions between

the elementary particles and three of the four fundamental forces: electromagnetism,

weak interactions, and strong interactions. The standard model is not perfect; it

fails to describe some symmetries, gravity, dark matter, and a few other known facts.

However, the standard Model has successfully predicted the existence of previously

undiscovered particles such as the Higgs Boson which exemplifies how important of a

tool it is to modern physics.

Figure 1.1: Interaction between particles capture in a bubble chamber.

The derivation of the standard model begins with the fermions then the leptons.

Within the fermions, the nucleons and pions are the first the be represented. We will

derive this representation of nucleons and pions since the beginning of the standard

model. The entire standard model was derived over many years through the contri-

butions of numerous physicists. The physics behind the derivation of the standard

model is complicated to say the least. On the contrary The mathematics behind

the standard model is straight forward. Of course some physics preliminaries are

necessary such as how to model particles and describe forces mathematically. Given



these, the standard model can be derived mathematically using representations of Lie

groups, Lie algebras, and Hilbert spaces.
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CHAPTER 2

GROUPS AND LIE GROUPS

2.1 Groups

Groups are one of the fundamental notions in mathematics. They are the structure

that naturally encodes symmetries. Symmetries can be composed, reversed, etc. this

is the essence of a group.

Definition 2.1. A group is a pair (G, ∗) consisting of a set G and of a binary oper-

ation ∗ : G×G→ G satisfying the following axioms

1. ∗ is associative, that is ∀g, h, i ∈ G, g ∗ (h ∗ i) = (g ∗ h) ∗ i

2. there exists a neutral element e, i.e. there is an e ∈ G such that ∀g ∈ G, e ∗ g =

g ∗ e = g

3. each element has an inverse: ∀g ∈ G, ∃g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e

Some groups have the extra property that the operation ∗ is commutative, we

call these groups commutative or Abelian.

Definition 2.2. An Abelian group is a group (G, ∗) such that

1. ∗ is commutative, i.e. ∀g, h ∈ G we have g ∗ h = h ∗ g

Some of the most common examples of groups are (Z,+), (R,+), (R>,×) and

(R× = {x ∈ R, x 6= 0},×). All these examples are infinite and Abelian. Some

examples of finite groups are ({±1},×) and ({±1,±i},×) which are both Abelian.

A first example of non-Abelian group is the group GL(2,R) of 2 × 2 invertible real

matrices under multiplication.

When studying the relation between groups, we need a notion of functions com-

patible with the structure inherent to groups.



Definition 2.3. A group homomorphism between (G, ∗) and (H, ◦) is a function

φ : G→ H such that

∀a, b ∈ G, φ(a ∗ b) = φ(a) ◦ φ(b).

A typical example of group homomorphism is the determinant, det : GL(n,R)→

(R×,×) : A 7→ detA. Notice that while φ carries some of the structure between the

groups, these groups can still be very different; for example, the determinant map

here above sends a non-Abelian group to an Abelian group. A homomorphism that

preserves the whole group structure will be called an isomorphism:

Definition 2.4. A group isomorphism is a bijective homomorphism.

For example the exponential map, x 7→ ex, gives an isomorphism between (R,+)

and (R>,×).

2.2 Lie Groups

Some groups also have an additional geometric structure which is compatible with its

algebraic structure, we call these groups Lie groups.

We must diverge for a moment to discuss manifolds, for it is necessary to under-

stand Lie groups.

A n-dimensional manifold M is a topological space such that for all p ∈M there

a neighborhood of p which is homeomorphic to n-dimensional Euclidean space. If the

Euclidean space is Rn then its a real manifold and if Cn then its a complex manifold.

In practice, we require M to be covered by a collection of open sets Uα equipped

with charts, i.e. homeomorphisms xα : Uα → xα(Uα) ⊂ Rn,Cn.

A n-dimensional, real, smooth manifold M is real manifold such that all transition

maps xβ ◦ x−1α : xα
(
Uα ∩ Uβ

)
→ xβ

(
Uα ∩ Uβ

)
, when Uα ∩ Uβ 6= ∅, are smooth

functions on Rn.
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Definition 2.5. A Lie group is a group (G, ∗) such that

1. G is a manifold

2. The map G×G→ G : (g, h) 7→ g ∗ h is smooth.

3. The map G→ G : g 7→ g−1 is smooth.

The simplest example of Lie Group is (R,+). A more interesting example is

the group of rotations in the plane around the origin, SO(2) = {Rθ}, which can be

identified with the unit circle S1 = {(x, y), x2+y2 = 1} = {eiθ} via the map Rθ 7→ eiθ.

Figure 2.1: The trig circle or S1 = SO(2).

The composition of rotations, Rθ ◦Rψ = Rθ+ψ corresponds to the complex multi-

plication eiθeiψ = ei(θ+ψ), and the inversion of rotation Rθ 7→ R−θ corresponds to the

complex inverstion eiθ 7→ e−iθ and both these maps are smooth. Another important

example of Lie group is the group of three dimensional representations SO(3). Note

that SO(3), contrary to SO(2) is not Abelian: tilting an object forward and then to

the left is not the same as first tilting it to the left and then forward.
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CHAPTER 3

REPRESENTATION THEORY

3.1 Group Representations

In nature, groups often don’t appear in their full form bus as representations, i.e. they

appear as families of transformations, or symmetries, whose composition is compatible

with the group operation. The most common form of representation is that of linear

representation, i.e. transformations of vector spaces, or transformations which can

be put in matrix form (in the finite dimensional case). Let V be a vector space, we

denote by Aut(V ) the group of linear isomorphisms from V to itself.

Definition 3.1. A linear representation of a group (G, ∗) is a homomorphism σ :

G→ Aut(V ) : g 7→ λg

Concretely, a linear representation on V means a family of isomorphisms parametrized

by G, {λg}g∈G and whose composition is compatible with the group operation:

λg ◦ λh = λh∗g.

Let us study two examples of representations in detail :

Example 3.2. Consider the family of matrices Λx =

1 x

0 1

 , x ∈ R. It is easy to

check that Λx ◦Λy = Λx+y. In other words, the map σ : x 7→ Λx is a representation of

(R,+) on the vector space V = R2. Since the map σ is injective, i.e. distinct elements

of R are represented by different matrices, we talk about a faithfull representation.

Example 3.3. The determinant map det : GL(2,R)→ R× can also be thought of as

a one dimensional representation as Aut(R) = R×, i.e.

det : GL(2,R)→ Aut(R) : A 7→ detA

where detA : R→ R : x 7→ detAx.



Example 3.4. Consider now the group of rotations by multiples of 60o, C6 = {Rθ}θ=k π
3
,k=0,...,5.

One can check that the map

σ : Rθ=k π
3
→

1 0

0 (−1)k


is a representation.

Heuristically speaking, one could think of representations as being the ’shadow’

of groups. They preserve some of their structure but might not always encompass

the full story.

In what follows, we will try to get a better understanding of how representations

can be constructed and deconstructed.

Besides the concrete examples above, there are three essential types of represen-

tations of a group which are ubiquitous : trivial, regular, and permutation.

The trivial representation is a representation of a finite group G such that ρ (s) =

1∀s ∈ G. This is a representation of degree 1. Hence the basis of V is {1} and

dim (V ) = 1.

The regular representation of a finite group G on a finite dimensional vector

space V with basis (et)t∈G is such that ρs : V → V : et 7→ est. The degree of this

representation obviously equals the dimension of G given the basis of V is indexed by

the elements of G.

The permutation representation of a finite group G is like the previous but G

acts on a finite set X such that for each s ∈ G there exists a permutation x 7→ sx

satisfying 1x = x and s (tx) = (st)x for s, t ∈ G and x ∈ X. We then define a vector

space V having basis (ex)x∈X and hence ρs : ex → esx for s ∈ G. The degree of this

representation is the order (number of elements) of the group.
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3.2 Comparing Representations

A group G can have multiple representations which means we must be able to compare

two representations. Two representations ρ on V and ρ′ on V’ are isomorphic if there

exists τ : V → V ′ such that τ ◦ ρ = ρ′ ◦ τ or equivalently TR = R′T if ρ and ρ′ are

given in matrix form R and R’.

3.3 Building new Representations

Using different basic representations and machinery from (multi)linear algebra, we

can construct new representations.

3.3.1 Direct Sum

Let ρ1s : G → GL (V1) and ρ2s : G → GL (V2) be two representations of G. Then the

direct sum of the two representations is defined as (ρ1⊕ρ2) (s) = ρ1 (s)⊕ρ2 (s). If we

represent ρ1 ⊕ ρ2 as a matrix, then it is the matrix whose diagonal blocks are those

representing ρ1 and ρ2.

3.3.2 Tensor Product

An important operation between representations is the the tensor product.

Let ρ1s : G → GL (V1) and ρ2s : G → GL (V2) be two representations of G.

Then the tensor product of the two representations is defined as ρ1 (s1) ⊗ ρ2 (s2) =

ρ (s1 · s2) = ρ1 (s1) · ρ2 (s2) for si ∈ G and ρs ∈ GL (V1 ⊗ V2).

3.3.3 Symmetric Square and Alternating Square

There are two other important types of representations which appear naturally when

understanding the tensor product.

8



Let σ : V ⊗ V → V ⊗ V be the linear involution defined on the basis (ei · ej) of

V ⊗ V as σ (ei · ej) = ej · ei.

Then the tensor product can be decomposed as follows V ⊗ V = Sym2 (V ) ⊕

Alt2 (V ) where the symmetric square Sym2 and Alternating square Alt2 are the

eigenspaces of σ associated to ±1.

More precisely,

2

Sym (V ) = {z ∈ V ⊗ V : σ (z) = z}

with basis (ei · ej + ej · ei)i≤j and with dimension n(n+1)
2

and

2

Alt (V ) = {z ∈ V ⊗ V : σ (z) = −z}

with basis (ei · ej − ej · ei)i≤j and with dimension n(n−1)
2

.

This decomposition follows from the fact that σ (eiej + ejei) = ejei + eiej = z

and σ (eiej − ejei) = ejei − eiej = −z.

One can then show that a representation of G on V induces a representation on

the square, the Symmetric square and the Alternating square.

Example 3.5. Consider the representation of (Z/2Z = {0, 1},+) on V = C defined

by ρ(0) : z 7→ z and ρ(1) : z 7→ −z. The direct sum representation on C ⊕ C is

defined by (ρ⊕ρ)(1) =

−1 0

0 −1

. The tensor product representation on C⊗C = C

is the trivial representation as (ρ ⊗ ρ)(−1) = (−1) ⊗ (−1) = 1. In this example,

the Symmetric square Sym2C = C with the trivial representation as well and Alt2 is

trivial.

9



3.4 Reducible and Irreducible Representations

Given a representation on a vector space V, it is natural to ask what happens at the

level of subspaces of V.

Definition 3.6. A sub-representation of a representation of G on V is the data of W ,

a subspace of V invariant under the action of G and the restriction of each element

of Aut(V ) in the image of the representation to Aut(W ).

This means that if ρ : G → Aut(V ) is a representation on V , for all x ∈ W ,

ρs (x) ∈ W as soon as s ∈ W . We will denote ρs restricted to a subspace W as

ρWs or more simply ρW . Notice the sub-representation ρW : G → GL (W ) is an

automorphism which makes the subscript redundant.

A lot of properties regarding sub-representation descend directly from properties

of vector subspaces from linear algebra.

An example of sub-representation comes form decomposable representations, i.e.

representations V which can be constructed as the direct sum of two other non-trivial

representations V = V1 ⊕ V2. In that case, both V1 and V2 are sub-representations of

V .

Given a sub-representations then raises the question whether a representation

can be decomposed into ’smaller pieces’.

Definition 3.7. A representation is irreducible (also denoted by irrep) if there does

not exist a proper non trivial vector subspaces W of V invariant under the action of

G.

A reducible representation is a representation which is not irreducible.

One would now be tempted to reconstruct a reducible representation from its

sub-representations. However this is not always possible.

10



Proposition 3.8. A decomposable representation is reducible.

... But a reducible representation is not always decomposable.

Example 3.9. The representation of (R,+) given in Example 3.2 contains R =

{(x, 0)t} as an invariant subspace (it is reducible) but it is not hard to show that it is

not decomposable!

However, not all is lost, when working with finite groups and vector spaces over

fields of characteristic 0 (or not dividing the order of the group, then Maschke’s

theorem tells us that reducible and decomposable are the same. In its simplest form,

we have:

Theorem 3.10. (Maschke) Let G be a finite group, and let V be a vector field over

R or C. If U is a sub-representation of V , then there is a subrepresentation W of V

such that V = U ⊕W .

3.5 Character Theory

Character theory is important tool for comparing representations. Let a : V → V be

a linear map. With respect to the basis (ei) of V, a can represented by the matrix

(aij).

Definition 3.11. The character χ of a equals Tr (a) =
∑

i aii.

This definiton is independent of the choice of basis the character of a is simply

the sum of its eigenvalues.

We can therefore define the character of a representation ρ : G→ GL (V ) as the

scalar function

χρ (s) = Tr (ρs) .

A few notable properties of χ:

11



1. χ (1) = n

2. χ (s−1) = χ (s)∗ such that ∗ denotes conjugate.

3. χ (tst−1) = χ (s) (characters are constant along conjugacy classes)

Proof. 1. ρ (1) = 1 and Tr (1) = n.

2. This follows from by the property of eigenvalues that λ∗ = λ−1.

3. Follows from the fact that Tr (uv) = Tr (vu).

Now let χ1 and χ2 be the characters of representation ρ1 and ρ2. Then the

character for the direct sum of representation is χ = χ1 + χ2 and the character for

tensor product is χ = χ1χ2.

An important lemma for character theory is Schur’s Lemma. Schur’s Lemma

states that two irreps of a group can only be trivially related.

Theorem 3.12. (Schur) Given two irreps of G ρ1 : G → GL (V1) and ρ2 : G →

GL (V2) and a linear map f : V1 → V2 st ρ1 ◦ f = f ◦ ρ2. If ρ1 and ρ2 are not

isomorphic then there no G equivariant maps between V1 and V2.

If ρ1 and ρ2 are isomorphic then the only G equivariant maps between V1 and V2 are

the trivial map and homotheties (a scalar multiple of identity).

Proof. (sketch) The former is trivial in that the two representation are not isomorphic

which means there does not exists f : V1 → V2 so f must be 0.

The latter follows from the fact that if V1 = V2 then f : V1 → V2 must equal one

of its eigenvalue.

Now let f 0 = 1
g

∑
t∈G (ρ2t )

−1
fρ1t . f

0 has properties defined by Schurs Lemma with

a homothety ratio of 1
n
Tr (f) with n = dim (V1). This ratio is found by the property

12



that f 0 equals an eigenvalue. Tr (λ) = nλ ⇒ λ = 1
n
Tr (f). The book denotes f 0 as

h0 and proving the previous simply requires showing ρ1 ◦ h0 = h0 ◦ ρ2

Now in order to calculate the characters of a representation we need the following

property of orthogonality of characters. Orthogonality of characters will help us

decompose representations into irreps.

Define

(χ1‖χ2) =< χ1, χ2 >=
1

|G|
∑
g∈G

χ1 (g)χ2 (g).

Then if χ is the character of an irreducible representation (χ‖χ) = 1. Furthermore

if two representations are not isomorphic with characters χ and χ′ then (χ‖χ′) =

δij/n = 0 given i 6= j.

One of consequences of this propertyis that two representations with the same

character are isomorphic. The basic idea behind this is a character χ = a1χ1 + . . .+

anχn where χi is the character of the irreducible representation Wi and (χ‖χ) =∑i=n
i=1 a

2
i .

The most important consequence is the irreducibility criteria. Assume (χ‖χ) >

0 then if (χ‖χ) = 1 then it is clear from what was previously stated that V is

isomorphic to an irreducible representation Wi. This seemingly trivial observation is

actually essential and makes characters the major tool in understanding the structure

of representations.

Example 3.13. Let us work out the character table of the symmetric group S3.

S3 has 3 conjugacy classes indexed by the partitions of 3: 1 + 1 + 1 = 1 + 2 = 3.

These conjugacy classes are represented by the identity (e) (1 element), the trans-

position (12) (3 elements), and the class of the cyclic rotations (123) (2 elements).

To compute χ1:

< χ1, χ1 >= 1
6
(χ2

1(e) + 3χ2
1(12) + 2χ2

1(123)) = 1

13



→ χ2
1(e) + 3χ2

1(12) + 2χ2
1(123) = 6

→ χ1(e) = χ1(12) = χ1(123) = 1

To compute χ2:

< χ1, χ2 >= 1
6
(χ1(e)χ2(e) + 3χ1(12)χ2(12) + 2χ1(123)χ2(123)) = 0

→ χ2(e) + 3χ2(12) + 2χ2(123) = 0

and

< χ2, χ2 >= 1
6
(χ2

2(e) + 3χ2
2(12) + 2χ2

2(123)) = 1

→ χ2
2(e) + 3χ2

2(12) + 2χ2
2(123) = 6

→ χ2(e), χ2(12), χ2(123) = ±1 so χ2(e) = χ2(123) = 1 and χ2(12) = −1.

To compute χ3:

< χ1, χ3 >= 1
6
(χ1(e)χ3(e) + 3χ1(12)χ3(12) + 2χ1(123)χ3(123)) = 0

⇒ χ3(e) + 3χ3(12) + 2χ3(123) = 0 → χ3(e) + 2χ3(123) = −3χ3(12)

and

< χ2, χ3 >= 1
6
(χ2(e)χ3(e) + 3χ2(12)χ3(12) + 2χ2(123)χ3(123)) = 0

→ χ3(e)− 3χ3(12) + 2χ3(123) = 0 → χ3(e) + 2χ3(123) = 3χ3(12)

→ χ3(12) = 0 so χ3(e) + 2χ3(123) = 0.

Finally,

< χ3, χ3 >= 1
6
(χ2

3(e) + 3χ2
3(12) + 2χ2

3(123)) = 1 and

→ χ2
3(e) + 2χ2

3(123) = 6 so χ3(e) = 2 and χ3(123) = −1.

3.6 Compact Groups and Unitary Representations

Our discussion above focused mainly on finite groups whence the summation appear-

ing everywhere. If we allow G to be a compact Lie group, a lot of the theory can

simply be transferred. If G is a compact group we can can associate a G-invariant (in

the words of Hurwitz) or Haar measure. This measure plays the role of the summa-

tion and allows a.o. to compute the average of group elements, mimicking the finite

14



case.

A Hilbert space H is a vector space with inner product < f, g > such that H is

a complete metric space under the norm. (This means that every Cauchy sequence

in the metric space converges.) Given a complex Hilbert space, we can look at a

special class of operators, unitary operators. These are surjective bounded operator

on a Hilbert space preserving the inner product. They are the complex analogue of

orthogonal operators. For a complex Hilbert space V , we denote by U(V ) the group

of unitary operators. A crucial type of representations for physicist is that of unitary

representation. Namely,

Definition 3.14. A unitary representation of a Lie group G on V is a group homo-

morphism

ρ : G→ U(V )

such that that for each fixed v ∈ V the map g 7→ ρ(g)v is continuous.

Example 3.15. Let V = L2(R) be the space of square integrable functions on the real

line. Take G to be the additive group of real numbers. There is a unitary representa-

tion of the real numbers on V through shifting :

(a ∈ R, f ∈ V ) 7→ f(x− a)

Examples of unitary representations are ubiquitous in quantum mechanics and

quantum field theory where they encode the symmetries, G, to which a set of states

are constrained.
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CHAPTER 4

MODELING PARTICLES

4.1 Physics Preliminaries

Since the darkest ages, humans have tried to give a meaning to the world around them.

Myths and legends are nothing but an attempt to give a sense to our surroundings.

As civilization and science developed, mankind was able to offer deeper and deeper

insight on why our world is the way it is. In particular, over the last centuries, we have

observed that there are several essential forces holding everything together. The first

one, gravity, is the force guiding planets through the sky and apples to the ground.

It affects massive objects and sends them one to another. Since Newton we have had

the chance to get a good local understanding of gravity, but it is thanks to Einstein’s

theory of relativity that we now have a pretty comprehensive model of how our world

is shaped by gravity. The second force is the electro-magnetic force. Known first to

us in the form or lightning, or to classical civilizations as the capacity of wool fibers

to stick to amber (ἤλεκτρον, elektron(!) in greek). The observation by Danish scholar

Hans Christian Ørsted in 1820 that electric currents affect compasses led nineteenth

century physicist searching for a theory of electro-magnetism.

Figure 4.1: School apparatus (1876) used to replicate Ørsted’s experiment.

Their quest proved successful and culminated in the notorious Maxwell equations.



The problem with these two forces is that they could not explain how protons stuck

together in the nucleus of atoms. This apparent paradox led physicist to hypothesize

the existence of a third force, the strong force, which would be reason why protons

stay together –at close ranges– in the nucleus. Eventually, physicist also had to deduce

that there was a fourth force, the weak force, that would affect sub-atomic particles

and cause radioactive decay. While these four forces seem sufficient to explain (most

of) our world, physicists were trying to understand if it would be possible to find a

unique canvas in which all these forces would fit. This quest for a unified theory has

been the grail of theoretical physicists for the last hundred years.

So far, the quest has been pretty succesfull. Electricity and Magnetism were

combined in the nineteenth century into electromagnetism. Electromagnetism and

the weak force were then united in the electro weak force. The electro weak and the

strong force at higher energies combine then into Grand Unified Theories.

However, the search is not over as there is yet to be a model model combining

the above forces with gravity.

In the quest to unify forces, physicists have discovered that the atoms that make

our universe and were supposed to be fundamental (atom comes from the greek ἄτο-

μος , which cannot be cut) were actually made of smaller particles.

This particles which carry matter and forces are the basic building blocks of the

theories described above and form the Standard Model of particles.

In this chapter, we will mainly focus on the first three forces and show how

representation theory offers us a canvas to understand and model the different forces

and particles appearing in our world.

While we will not be able to offer a detailed view of the standard model, we will

explain the basic ideas behind
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Figure 4.2: The Standard Model of elementary particles with bosons and fermions.

4.2 Representations and Particles

Theories studied by physicists have “internal symmetry groups” known as gauge

group, which usually takes the form of a compact Lie group G. In terms of repre-

sentation theory, elementary particles are considered as elements of a Hilbert space

endowed with a unitary representation of G. More precisely, fundamental particles

are basis elements of irreducible representations of G.

In this framework, different theories (electromagnetism,...) correspond to differ-

ent Hilbert Spaces and gauge groups and unifying forces means finding a larger group

containing the previous groups as gauge groups.

Ideally, an ultimate theory should be based on a simple group, i.e. which cannot

be decomposed.
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4.3 Hilbert Spaces in Physics

In quantum mechanics, the state of any physical system by a unit vector in a complex

Hilbert Space. For example, the state of a particle on a live is described by an element

ψ ∈ L2(R)

. When studying the atom, Heisenberg hypothesized that the neutron and proton

would be two facets of a same particle which was named nucleon.

As a nucleon is a proton or a neutron, we can assume that it is an element of

C2 = C⊕ C where we take that both neutron and proton live in C.

With respect to this decomposition, the basis vectors of C2 then correspond to

the proton and neutron:

proton =

1

0

 , neutron =

0

1

 .

For a given Hilbert space, the probability that a system in state σ ∈ H will be

observed in state ϕ ∈ H is | < σ, ϕ > |2. In our case, the proton and neutron

are orthogonal hence cannot exist at the same time. However, nothing prevents a

generalized nucleon to take the form

αp+ βn

where α2 + β2 = 1.

While Heisenberg’s assumption proved to be too simplistic, the nucleon model

was a good start to further understand how to mathematically understand particles.

The next step to model particles was made when Cassen and Condon supposed

that the difference between proton and neutron might be similar to the difference in

spin measured between particles. They called this new invariant isospin.
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In practice, there is an action of SU(2) on C2 and therefore an induced action of

its Lie Algebra su(2).

They expected that at certain level of energies, forces should be invariant under

the action, i.e. that our particles are part of a representation and not only a self-

standing Hilbert space.

Now, for forces to be invariant under a symmetry, it means that physical processes

are linear maps compatible with the group action : they are intertwining operators.

An intertwining operator F : V → V is a linear operator such that F (gσ) =

gF (σ) for every σ ∈ V and g ∈ G where G is a group with unitary representation on

V.

Now it is know that any intertwining operator respects the action of the lie

algebra, in this case su (2). Hence for any T ∈ su (2) and c ∈ C2 we have that

F (Tc) = TF (c).

Now consider the eigen vectors Tj ∈ C2 of su (2); we know there exist an eigen

value for each Tj. So for g ∈ su (2), Tjg = (iλ) g for some eigen value λ

Thus we have that F (Tjg) = F (iλg) = iλF (g). So F (g) is also an eigen vector

of Ti ∈ C2 with the same eigen value.

We know that the eigenvectors of su (2) are simply the basis vectors, hence our

particles.

At this stage, one sees that up to a change of variable, the isospin invariant is

nothing but the eigenvalue of Lie algebra operator associated to the sub-representation

in which the particle lives.

Isopin distinguishes the proton and neutron states of a nucleon; the proton is the

isopin up state and the neutron is the the isopin down state.

While so far we have only talked about the ’static’ particles, it is essential to

also understand phenomena that allow a particle to transit from one stage to another

20



(e.g. from neutron to proton). To do this we would need to look at larger groups

than SU(2) and allow for new particles as the pion. This extension is a topic that I

plan to explore further in the future.
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CHAPTER 5

CONCLUSION

Thus we have shown how operators and representations of groups can serve to model

particles. By studying the representation of nucleons in C2 we see how it is possible to

build representations that model the relations between fundamental particles. While

this introduction is very pedestrian, it is important to remember that finding these

representations and operators required the tremendous efforts of numerous physicist;

so while in hindsight the mathematical process seems straight forward, creating such

a straight forward model was not simple. We encourage the interested reader in

further examining the standard models intricacies discovering the beauties behind

this carefully crafted model.



REFERENCES & ICONOGRAPHY

[1] Baez, John, and John Huerta. “The Algebra of Grand Unified Theories.”
Bulletin of the American Mathematical Society, vol. 47, no. 3, 2010, pp.
483–552., arXiv:0904.1556 .

[2] Georgi, Howard Lie Algebras in Particle Physics. Reading, Mas-
sachusetts: Perseus Books. 1999

[3] Gutowski, Jan. Symmetry and Particle Physics Cambridge: Cam-
bridge, 2007. Web. http://www.academia.edu/11518239/Symmetry_

and_Particle_Physics

[4] Serre, Jean-Pierre. linear Representations of Finite Groups New York:
Springer, 1977. Print.

[5] Simon, Barry. Representations of Finite and Compact Groups Provi-
dence, RI: American Math. Soc., 1996. Print.

[6] ”File:Standard Model of Elementary Particles.svg.” Wikimedia Com-
mons, the free media repository. 18 Oct 2018, 12:37 UTC. 1 Nov 2018,
22:54 https://commons.wikimedia.org/w/index.php?title=File:

Standard_Model_of_Elementary_Particles.svg&oldid=324483243

[7] ”File:Oersted experiment.png.” Wikimedia Commons, the free media
repository. 15 May 2018,
13:09 UTC. 1 Nov 2018, 22:56 https://commons.wikimedia.org/w/

index.php?title=File:Oersted_experiment.png&oldid=301273394

[8] ”File:FR229.png” Stackexchange. 9 March 2012.
https://stackoverflow.com/questions/9631642/

what-is-the-rotation-that-gives-an-horizontal-flip-and-a-vertical-flip

[9] ”File:omega-spin-LG.jpg” SLAC Today. ”BaBar Steadies Omega-minus
Spin” http://today.slac.stanford.edu/feature/omegaspin.asp

23

arXiv:0904.1556
http://www.academia.edu/11518239/Symmetry_and_Particle_Physics
http://www.academia.edu/11518239/Symmetry_and_Particle_Physics
https://commons.wikimedia.org/w/index.php?title=File:Standard_Model_of_Elementary_Particles.svg&oldid=324483243
https://commons.wikimedia.org/w/index.php?title=File:Standard_Model_of_Elementary_Particles.svg&oldid=324483243
https://commons.wikimedia.org/w/index.php?title=File:Oersted_experiment.png&oldid=301273394
https://commons.wikimedia.org/w/index.php?title=File:Oersted_experiment.png&oldid=301273394
https://stackoverflow.com/questions/9631642/what-is-the-rotation-that-gives-an-horizontal-flip-and-a-vertical-flip
https://stackoverflow.com/questions/9631642/what-is-the-rotation-that-gives-an-horizontal-flip-and-a-vertical-flip
http://today.slac.stanford.edu/feature/omegaspin.asp

	Georgia Southern University
	Digital Commons@Georgia Southern
	2018

	Group Theory and Particles
	Elizabeth v. Hawkins
	Recommended Citation


	Acknowledgments
	Introduction
	Groups and Lie Groups
	Representation Theory
	Modeling Particles
	Conclusion
	REFERENCES & ICONOGRAPHY

