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Abstract— Combining the principles of dynamic inversion 

and optimization theory, a new approach is presented for 
stable control of a class of one-dimensional nonlinear 
distributed parameter systems with a finite number of 
actuators in the spatial domain. Unlike the existing 
‘approximate-then-design’ and ‘design-then-approximate’ 
techniques, this approach does not use any approximation 
either of the system dynamics or of the resulting controller. 
The formulation has more practical significance because one 
can implement a set of discrete controllers with relative ease. 
To demonstrate the potential of the proposed technique, a real-
life temperature control problem for a heat transfer 
application is solved through simulations. Numerical results 
are presented which show that the desired temperature profile 
can be achieved starting from any initial temperature profile. 

I. INTRODUCTION

ONTROL of distributed parameter systems has been 
studied from mathematical and engineering points of 
view. An interesting brief historical perspective of  

control of such systems can be found in [12]. There exist 
infinite-dimensional operator theory based methods for the 
control of distributed parameter systems. While there are 
many advantages, these operator theory based approaches 
are mainly limited to linear systems [9] and some limited 
class of problems like spatially invariant systems [3]. 
Moreover, for implementation purpose the infinite-
dimensional control solution needs to be approximated (e.g.
truncating an infinite series, reducing the size of feedback 
gain matrix etc.) and hence is not completely free from 
errors. Such a control design approach is known as “design-
then-approximate”.  

Another control design approach is “approximate-then-
design”. Here, the PDEs describing the system dynamics 
are first approximated to yield a finite dimensional 
approximate model. This approximate system is then used 
for controller synthesis. In this approach, it is relatively 
easy to design controllers using various concepts of finite-
dimensional control design. An interested reader can refer 
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to [aBurns] for discussions on the relative merits and 
limitations of the two approaches. 
An “approximate-then-design” approach to deal with the 
infinite dimensional systems is to have a finite dimensional 
approximation of the system using a set of orthogonal basis 
functions via Galerkin projection [11]. This technique 
normally leads to high order lumped system representations 
to adequately represent the properties of the original 
system, if arbitrary orthogonal functions are used as the 
basis functions. For this reason, in the recent literature 
attention is being increasingly given to new approximations. 
One powerful technique is called Proper Orthogonal 
Decomposition (POD). Out of numerous papers published 
on this topic and its use in control system design (both for 
linear and nonlinear DPS), we cite [4], [6]-[8], [11], [15]-
[16] for reference. There are a few important drawbacks in 
the POD approach: (i) the technique is problem dependent 
and not generic; (ii) there is no guarantee that the snap-
shots will capture all dominant modes of the system and, 
more important, (iii) it is very difficult to have a set of 
‘good’ snap-shot solutions for the closed-loop system prior 
to the control design. This is a serious limiting factor if one 
has to apply this technique for the closed-loop control 
design. Because of this reason, some attempts are being 
made in recent literature to adaptively redesign the basis 
functions, and hence the controller, in an iterative manner. 
An interested reader can see [1]-[2], [6] for a few ideas in 
this regard.  

Even though the “design-then-approximate” and 
“approximate-then-design” approaches have been used in 
practice for designing the controllers for DPS, and there are 
attempts being made to generalize and refine these 
techniques, it will be nice to have a method which is 
independent of any such approximation, and hence, will 
fundamentally be different. The main goal of this paper is to 
present such an approach, which is applicable for a class of 
one-dimensional nonlinear distributed parameter systems. 
This has been done by combining the ideas of dynamic 
inversion [10], [13], [17] and optimization theory [5]. The 
formulation, which assumes a number of discrete 
controllers in the spatial domain, has more practical 
significance because one can implement a set of discrete 
controllers with relative ease (as compared to a continuous 
actuator). To demonstrate the potential of the proposed 
techniques, a real-life temperature control problem for a 
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heat transfer application is solved. Numerical results from 
the simulations show that this method has great potential.. 

II. PROBLEM DESCRIPTION 

A. System Dynamics 

For control synthesis, a set of discrete controllers mu  that 

are located at my  ( 1, ,m M= )are assumed. Assuming the 

width of the controller at my  to be mw , the control action 

mu  satisfy the following properties:  

• In the interval / 2, / 2m m m my w y w− + , the controller 

( ),mu t y  is assumed to have a constant magnitude. 

Outside this interval, 0mu = . Note that the interval mw

may or may not be small. 

• There is no overlapping of the controller located at my

with its neighboring controllers. 

• No controller is placed exactly at the boundary. This 
assumption eliminates situations where control enters 
the system dynamics through boundary actions. 

The system dynamics can now be written as follows: 

( ) ( )
1

, , , , , ,
M

m
m

x f x x x g x x x u
=

′ ′′ ′ ′′= +    (1) 

where the state ( ),x t y  is continuous functions of time 0t ≥

and spatial variable 0,y L∈ . x  represents /x t∂ ∂  and 

,x x′ ′′  represent /x y∂ ∂ , 2 2/x y∂ ∂  respectively. It is assumed 

that appropriate boundary conditions (e.g. Dirichlet, 
Neumann etc.) are available to make the system dynamics 
description Eq.(1) complete. The control variable appears 
linearly, and hence, the system dynamics is in the control 
affine form. Another assumption is that 

( ), , , ... 0 ,g x x x t y′ ′′ ≠ ∀ .

B. Goal for the Control Design 

The goal of the proposed controller is to ensure that the 
state variable ( ) ( )*, ,x t y x t y→  as t → ∞  for all [ ]0,y L∈ ,

where ( )* ,x t y  is a known (possibly time-varying) profile in 

the domain [ ]0, L , which is continuous in y  and satisfies 

the spatial boundary conditions. Note that ( )* ,x t y

satisfying the boundary conditions simplifies our task. This 
is because our discussion in this paper is limited to the class 
of problems where we do not have the control action at the 
boundary, and hence, it will be difficult to guarantee 

( ) ( )*,x t y x y→  at the boundary unless ( )*x y  itself satisfies 

the boundary condition.  

III. SYNTHESIS OF THE CONTROLLERS 

First, let us define an output (an integral error) as follows: 

( ) ( ) ( ) 2*

0

1
, ,

2

L
z t x t y x t y dy= −      (2) 

Note that when ( ) 0z t → , ( ) ( )*, ,x t y x t y→  everywhere in 

[ ]0,y L∈ . Next, the principle of dynamic inversion [10], 

[13], [17] is used to design a controller such that the 
following first-order equation is satisfied: 

0z k z+ =            (3) 

where 0k >  serves as a gain; an appropriate value of k has 
to be chosen by the control designer. For a better physical 
interpretation, one may choose it as ( )1/k τ= , where 0τ >

serves as a “time constant” for the error ( )z t  to decay. 

Using the definition of z  in Eq.(2), Eq.(3) leads to 

( )( ) ( )2* * *

0 02

L Lk
x x x x dy x x dy− − = − −     (4) 

Substituting for x  from Eq.(1) in Eq.(4) and simplifying we 
arrive at: 

( ) ( )*

0
, , , ...

L
x x g x x x u dy γ′ ′′− =       (5a) 

where 

( ) ( ) ( )
2

* * *

0 0
, , , ...

2

L Lk
x x f x x x x dy x x dyγ ′ ′′− − − − −   (5b) 

Expanding Eq.(5a), we can write 

( ) ( )
1

1

1
1

* *2 2
1

2 2

M
M

M
M

w w
y y

w w M
y y

x x g dy u x x g dy u γ
+ +

− −
− + + − =   (6) 

For convenience, we define 

( )*2

2

, 1, ,
m

m

m
m

w
y

wm
y

I x x g dy m M
+

−
− =    (7) 

Then from Eqs.(6) and (7), we can write 

1 1 M MI u I u γ+ + =        (8) 

Eq.(8) will guarantee that eventually ( ) 0z t →  as t → ∞ .

However, note that Eq.(8) is a single equation with M
variables  , 1, ,mu m M=  and hence we have infinitely 

many solutions. In order to obtain a unique solution, we 
formulate an optimal control problem that that will have 
Eq.(8) as a control while minimizing the following cost 
function  

( )2 2
1 1 1

1

2 m m mJ r w u r w u= + +           (9) 

In other words, we wish to minimize the cost function in 
Eq.(9), subjected to the constraint in Eq.(8). It can be seen 
that that the resulting solutions will lead to a minimum 
control effort. In Eq.(9), choosing appropriate values for 

1, , 0mr r >  gives a control designer the flexibility of putting 

relative importance of the control magnitude at different 
spatial locations my  , 1, ,m M= .

To use techniques of constrained optimization [5], we 
first formulate the following augmented cost function 

( ) ( )2 2
1 1 1 1 1

1
...

2 m m m m mJ r w u r w u I u I uλ γ= + + + + + −   (10) 

where λ  is a Lagrange multiplier, which is a free variable 
needed to convert the constrained optimization problem to a 
free optimization problem. In Eq.(10), λ  and 
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, 1, ,mu m M=  are free variables, with respect to which the 

minimization has to be carried out. 
The necessary condition of optimality is given by [Bryson] 

0, 1, ,
m

J
m M

u

∂ = =
∂

        (11) 

0
J

λ
∂

=
∂

              (12) 

Expanding Eqs.(11) and (12) leads to: 
0, 1, ,m m m mr w u I m Mλ+ = =     (13) 

1 1 M MI u I u γ+ + =         (14) 

Solving for 1, , Mu u  from Eq.(13), substituting those in 

Eq.(14) and solving for λ  we get 

( )2

1

/ /
M

m m m
m

I r wλ γ
=

= −         (15) 

Eqs.(13) and (15) lead to the following expression 

( )2

1

/ /
M

m m m m m m m
m

u I r w I r wγ
=

= , 1, ,m M=  (16) 

As a special case, when 1 Mr r= =  (i.e. equal importance 

is given for minimization of all controllers) and 1 mw w= =
(i.e. widths of all controllers are same), we have 

( )2

2
/m mu I Iγ=          (17) 

where [ ]1

T

MI I I . Note that in cases where a number 

of controllers are being used over different control 
application widths (i.e. , 1, ,mu m M=  are different), we 

can still use the simplified formula in Eq.(17), by selecting 

1, , Mr r  such that 1 1 M Mr w r w= = .

Singularity in Control Solution and Revised Goal:
From Eqs.(16) and (17), it is clear that when 2

2 0I →

(which happens when all of  1, , 0MI I → ) and 0γ → , we 

have the problem of control singularity in the sense that 

mu → ∞  (since the denominators of Eqs.(16) and (17) go to 

zero faster than the corresponding numerators). Note that if 
the number of controllers M  is large, probably the 
occurrence of such a singularity is a rare possibility, since 
all of 1, , 0MI I →  simultaneously is a strong condition. 

Nonetheless such a case may arise in transition. More 
important, this issue of control singularity will always arise 
when ( ) ( )*, ,x t y x t y→ , [ ]0,y L∀ ∈  (which is the primary 

goal of the control design). This happens probably because 
we have only limited control authority (controllers are 
available only in a subset of the spatial domain), where as 
we have aimed to achieve a much bigger goal of tracking 
the state profile [ ]0,y L∀ ∈  - something that is beyond the 

capability of the controllers. Hence whenever such a case 
arises (i.e. when all of 1, , 0MI I →  or, equivalently, 

2 0I → ), to avoid the issue of control singularity, we 

propose to redefine the goal as follows. 

First, define [ ]1, ,
T

MX x x , * * *
1 , ,

M

T
X x x  and the 

error vector ( )*E X X− . Next, design a controller such 

that 0E →  as t → ∞ . In other words, the aim is to 
guarantee that the values of the state variable at the node 
points ( , 1, ,my m M= ) track their corresponding desired 

values. To accomplish this goal, select a positive definite 
gain matrix K  such that: 

0E K E+ =            (18) 

One way of selecting such a gain matrix K  is to choose it 
a diagonal matrix with thm  diagonal element being 

( )1/m mk τ=  where 0mτ >  is the desired time constant of the 

error dynamics. In such a case, the thm  channel of Eq.(18) 
can be written as 
       0m m me k e+ =           (19) 

Expanding the expressions for me  and me  and solving for 

mu  ( 1, ,m M= ), we obtain 

( )* *1
m m m m m m

m

u x f k x x
g

= − − −     (20a) 

where  
( ),m mx x t y , ( )* * ,m mx x t y , ( ),m mf f t y , ( ),m mg g t y (20b) 

Final Control Solution for Implementation
Combining the results in Eqs.(16) and (20a), we finally 

write the control solution as 

( )

( ) ( )

* *

2

2

1

1
 , if 

/ / , otherwise

m m m m m
m

m M

m m m m m m
m

x f k x x I tol
g

u

I r w I r wγ
=

− − − <
=  (21) 

where tol  represents a tolerance value. An appropriate 
value for it can be fixed by the control designer (a 
convenient way to fix a good value for it is from trial-and-
error simulation studies). Note that some discontinuity/jump 
in control magnitude is expected when switching takes 
place. However, this jump can be minimized by selecting a 
sufficiently low value for tol  within achievable limits of the 
control magnitude. Moreover, this behavior will be further 
reduced by considering the actuator dynamics (not 
considered here).  

IV. A MOTIVATING NONLINEAR PROBLEM 

A.   Mathematical Model 
The problem used to demonstrate the theories presented 

in Section III is a real-life problem. It involves the heat 
transfer in a fin of a heat exchanger, as depicted in Figure 2.  
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Figure 2: Schematic of the physics of the problem 

First, a mathematical model is developed from the 
principles of heat transfer [14]. Using the law of 
conservation of energy in an infinitesimal volume at a 
distance y  having a length y∆ ,

y gen y y conv rad chgQ Q Q Q Q Q+∆+ = + + +    (22) 

where yQ  is the rate of heat conducted in, genQ  is the rate of 

heat generated, y yQ +∆  is the rate of heat conducted out, convQ

is the rate of heat convected out, radQ  is the rate of heat 

radiated out and chgQ  is the rate of heat change. Next, from 

the laws of physics for heat transfer [14], the following 
expressions can be obtained 

( )/yQ kA T y= − ∂ ∂          (23a) 

genQ S A y= ∆           (23b) 

( )
1convQ h P y T T∞= ∆ −        (23c) 

( )
2

4 4
radQ P y T Tε σ ∞= ∆ −       (23d) 

( )/chgQ C A y T tρ= ∆ ∂ ∂        (23e) 

In Eqs.(23a-e), ( ),T t y  represents the temperature (this is 

the state ( ),x t y  in the context of discussion in Section III), 

which is a function of both time t  and spatial location y .

( ),S t y  is the rate of heat generation per unit volume (this is 

the control u  in the context of discussion in Section 3) for 
this problem. The meanings of various parameters and their 
numerical values used and are given in Table 1. 

Table 1: Definitions and numerical values of the parameters 

Parameter Meaning Numerical value 

k Thermal conductivity ( )180 / oW m C

A Cross sectional area 22 cm

P Perimeter 9 cm

h Convective heat transfer 
coefficient 

( )2 05 /W m C

1
T∞ Temperature of the medium 

in the immediate 
surrounding of the surface

30 C°

2
T∞ Temperature at a far away 

place in the direction normal 
to the surface 

40 C− °

∈ Emissivity of the material 0.2

σ Stefan-Boltzmann constant 8 2 45.669 10 /W m K−×

ρ Density of the material 32700 /kg m

C Specific heat of the material ( )860 /J kg C°

These representative values are valid for Aluminum. The 
area A  and perimeter P  have been computed assuming a 
fin of dimension 40 4 0.5cm cm cm× × . Note that a one-
dimensional approximation has been assumed which means 
that uniform temperatures in the other two dimensions are 
assumed to be arrived at instantaneously. 

Using Taylor series expansion and considering a small 
0y∆ → , we can write 

y

y y y

Q
Q Q y

y+∆

∂
≈ + ∆

∂
       (24) 

Using Eqs.(23a-e) and (24) in Eq.(22) and simplifying, 
we can write 

( ) ( )
1 2

2
4 4

2

1
[ ]

T k T P
h T T T T S

t C y A C C
ε σ

ρ ρ ρ∞ ∞

∂ ∂= − − + − +
∂ ∂

  (25) 

For convenience, define ( )1 /k Cα ρ , ( ) ( )2 /Ph A Cα ρ− ,

( ) ( )3 /P A Cα εσ ρ−  and ( )1/ Cβ ρ , Eq.(25) can  be re-

written as 

( ) ( )
1 2

2
4 4

1 2 32

T T
T T T T S

t y
α α α β∞ ∞

∂ ∂= + − + − +
∂ ∂

  (26) 

However, since the source (control) is not present for the 
entire spatial domain, S  is not a continuous function of y .
There is a discrete set of controllers, located at 

/ 2, / 2m m m my w y w− + , 1, ,m M= . Further, by our 

assumption, the controller has a constant magnitude mS  in 

the interval / 2, / 2m m m my w y w− + . Because of this, the 

system dynamics is given by: 

( ) ( )
1 2

2
4 4

1 2 32
1

M

m
m

T T
T T T T S

t y
α α α β∞ ∞

=

∂ ∂= + − + − +
∂ ∂

 (27) 

Along with Eq.(26), the following boundary conditions are 
assumed. 

( )0 , / 0y w y L
T T T y= =

= ∂ ∂ =         (28) 

where wT  is the wall temperature. Insulated boundary 

condition at the tip is assumed with the assumption that 
either there is some physical insulation at the tip or heat loss 
at the tip due to convection and radiation is negligible 
(mainly because of its low surface area). The goal of the 
controller was to make sure that the actual temperature 
profile ( ) ( )*,T t y T y→ , where ( )*T y was chosen to be a 

constant (with respect to time) temperature profile given by 
the following expression  

( ) ( )* y

w w tipT y T T T
ζ−

= + −       (29) 
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where we selected the wall temperature 0150wT C= , fin tip 

temperature 0130tipT C=  and the decaying parameter  

20ζ = . The selection such a ( )*T y  from Eq.(29) was 

motivated by the fact that it leads to a smooth continuous 
temperature profile across the spatial dimension y . Note 
that this ( )*T y  satisfies the boundary condition at 0y =

exactly and at y L=  approximately, with a very small 
(rather negligible) approximation error (because of the 
selection for a high value of ζ ). Note that the system 

dynamics is in control-affine form and ( ), , ,g x x x β′ ′′ = , a 

constant number that is not equal to zero. Moreover, there is 
no boundary control action. This is compatible with the 
class of DPS for which control synthesis theories were 
developed in Section III. 

In our simulation studies, the control gain was set as 
( )1/k τ= , where 30 secτ = and the tolerance value 

0.001tol = . After switching, the control gain 
( )1 MK diag k k=  was used and selected 1/m mk τ= ,

mτ τ=  for 1, ,m M= . The parameters 1 2Mw w cm= = =
and it was assumed 1 Mr r= = . With this assumption, we 

could use the simplified expression for the controller 
(Eq.(17)) whenever 

2
I tol>  and did not need numerical 

values for 1, , Mr r .  To begin with, five ( )5M =  equally 

spaced controllers were used. 

B.    Analysis of Numerical Results 

First an initial condition (profile) for the temperature was 
obtained from the expression ( ) ( )0, 0,mT y T x y= + , where 

0150mT C=  (a constant value) serves as the mean 

temperature and ( )0,x y  represents the deviation from mT .

Taking 50A =  we computed ( )0,x y  as 

( ) ( ) ( ) ( )0, / 2 / 2 cos 2 /x y A A y Lπ π= + − + .  Applying the 

controller as synthesized in Eq.(21), the system was 
simulated as given in Eqs.(27-28) from time 0 0t t= =  to 

5minft t= = . The simulation results obtained are presented 

in Figures 3-4. Note from Figure 3 that the goal of tracking 
( )*T y  is roughly met. The associated control (rate of 

energy input) profile ( ),S t y  obtained is as shown in Figure 

4. The figure shows that the required control magnitude to 
achieve the objective is not high, in the entire spatial 
domain [ ]0, L  and for all time 0 , ft t t∈ .

There are also some concerns evident from Figures 3-4. 
First, there are small jumps in the control histories when the 
control switching takes place (at about 2.5 min). Moreover, 
there is a weaving pattern to the state profile as 

( ) ( )*,T t y T y→ , and hence, the goal of the control design is 

not met fully. Both of these probably happened because we 
assumed a small number of discrete controllers. As pointed 

out in Section III, one way of minimizing this effect is to 
increase the number of controllers. Hence, next we selected 
ten controllers (instead of five) and carried out the 
simulation again. The results are shown in Figures 5-6.  

Figure 3: Evolution of the temperature (state) profile from a 
sinusoidal initial condition 

Figure 4: Rate of energy inputs (controllers) for the evolution of 
temperature profile in Figure 4 

Figure 5: Evolution of the temperature (state) profile from a 
sinusoidal initial condition 
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Figure 6: Rate of energy inputs (controllers) for the evolution of 
temperature profile in Figure 7 

It is quite clear from Figures 5-6 that the weaving nature 
is substantially smaller and the goal 

( ) ( ) [ ]*, , 0,T t y T y y L→ ∀ ∈  is met more accurately. 

Moreover, note that as compared to the case with five 
controllers, the control effectiveness now is higher a fact 
which leads to smaller magnitudes of the controllers 
(compare Figures 4 and 6).  

To demonstrate the generality of this technique, a number 
of random profiles for ( )0,T y were considered. A number 

of random profiles were generated using the relationship 
( ) ( )0, 0,mT y T x y= + , where ( )0,x y  came through a Fourier 

Series, such that it satisfies ( ) 2 2

1 max
0,x y k x≤ ,

( ) 2 2

2 max
0,x y k x′ ′≤  and ( ) 2 2

3 max
0,x y k x′′ ′′≤ . The values 

for 
max

x ,
max

x′  and 
max

x′′  were computed using an 

envelope profile ( ) ( )sin /envx y A y Lπ= . The norm used is 

the 2L  norm defined by ( )( )1/2
2

0

L

x x y dy . The value of 

parameter A  was set at 50 with  1 2k = , 2 3 10k k= = . For 

more details about the generation of these random profiles, 
the reader is referred to [15]. A large number of random 
initial conditions (state profiles) were led to results very 
similar to ones presented in Figures 3-6 and are omitted 
here, for lack of space. However, this confirms to the claim 
that the method presented in this paper is independent of the 
initial condition and can be used for any arbitrary initial 
condition. 

V. CONCLUSIONS 

Principles of dynamic inversion and optimization theory, 
have been used to develop a fairly general control synthesis 
technique for a class of one-dimensional nonlinear 
distributed parameter systems. The formulation has good 
practical significance because one can implement a set of 
discrete controllers with relative ease (as compared to a 
continuous actuator). The technique presented in this paper 
can be implemented online(feedback), since we obtain 
closed form solution for the control variable.  
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