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Effects of microbial processes on electrolytic and interfacial electrical

properties of unconsolidated sediments
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[1] The effect of microbial processes on electrical properties
of unconsolidated sediments was investigated in a laboratory
experiment consisting of biotic and abiotic sand columns.
The biotic column (nutrient, diesel and bacteria) showed
(a) temporal increase in the real, imaginary, and surface
conductivity, and (b) temporal decrease in the formation
factor. The abiotic columns (nutrient; and nutrient and diesel)
showed no significant changes. Increase in microbial
population numbers, decrease in organic carbon source,
nitrate, and sulfate and increase in dissolved inorganic carbon
and fluid conductivity were indicative of microbial activity in
the biotic column. We also measure relative increase in the
interfacial electrical properties that exceed relative increase in
the electrolytic conductivity. Thus changes in the real and
imaginary conductivity were induced bymicrobial processes.
These results suggest that interpretation of geoelectrical data
from near surface environments should consider effects of
microbial processes. INDEX TERMS: 0614 Electromagnetics:

Biological effects; 0925 Exploration Geophysics: Magnetic and

electrical methods; 1831 Hydrology: Groundwater quality; 5109

Physical Properties of Rocks: Magnetic and electrical properties.

Citation: Abdel Aal, G. Z., E. A. Atekwana, L. D. Slater, and E. A.

Atekwana (2004), Effects of microbial processes on electrolytic

and interfacial electrical properties of unconsolidated sediments,

Geophys. Res. Lett., 31, L12505, doi:10.1029/2004GL020030.

1. Introduction

[2] Replacement of water in sediments by hydrocarbon
contaminants (resistivity �106 ohm.m) results in a concur-
rent increase in the apparent resistivity of the sediments
[Lien and Enfield, 1998]. However, some field studies show
higher bulk electrical conductivity in unconsolidated aqui-
fers impacted by hydrocarbon [e.g., Werkema et al., 2003].
Over time, biotransformation of hydrocarbons by indigenous
microorganisms induces changes in the physicochemical
properties of the contaminated environment, potentially
impacting their electrical response [Atekwana et al., 2004].
Despite studies that show higher bulk electrical conductivity
in hydrocarbon contaminated sediments, it is not entirely
clear how the electrical properties of sediments are changed
due to microbial processes. Sauck [2000] has suggested
that increase in electrical conduction in hydrocarbon con-
taminated aquifers is due to increases in total dissolved
solids in pore water resulting from interaction between

by-products of hydrocarbon degradation and aquifer
minerals. In addition to increase in electrolytic properties
of aquifer pore fluids, microbial-mineral interactions may
induce changes in surface chemistry at solid-fluid interfaces.
Direct current (dc) resistivity methods are responsive to both
electrolyte and solid-fluid interface chemistry. While
diagnostic, dc resistivity does not differentiate between
the relative contributions of electrolytic vs. interface
conductivity to the enhanced conductivity observed for
hydrocarbon contaminated sediments.
[3] The induced polarization (IP) method is an extension

of the dc-resistivity method. The sensitivity of IP to changes
in surface chemical properties of rocks and soils [e.g., Lesmes
and Frye, 2001] makes IP suitable for investigating effects
of bio-physicochemical changes on electrical properties of
sediments. The objective of this study was to investigate
effects of microbial processes on low frequency electrical
properties of unconsolidated sediments. Results from this
study provide insights into how microbial activity impacts
both electrolytic and interfacial conductivity of sediments.

2. Materials and Methods

2.1. Column Construction and Setup

[4] The experimental columns were 50 cm long and
constructed of 7.6 cm inner diameter polyvinyl chloride
pipe (Figure 1). A fluid sampling port was installed in each
column. Two coiled silver current injection electrodes were
placed in each column 20 cm apart. Ag-AgCl potential
electrodes were located between the current electrodes.
Columns were filled with fine-grained (0.45–0.65 mm) sand
collected from a field site in Michigan, USA. The sands were
sterilized by autoclaving three times at 120�C for 30 minutes
prior to use in the experiment. Dissolved diesel was used as
an organic source and was prepared by adding 40 ml of diesel
to 1 L of deionized (DI) water, shaken at room temperature
(�23�C) for 72 hours after which the undissolved diesel was
decanted. The total hydrocarbon (benzene + toluene +
ethylbenzene + xylene (BTEX)) dissolved in DI water was
0.29 mg/l. The nutrient used for the experiment consisted of
25% Bushnell Hass (BH) medium (Becton Dickinson,
Detroit, MI). Two stock solutions of 25% BH medium were
prepared using the DI water with dissolved diesel and
another with sterilized DI water.
[5] Three experimental columns were prepared with the

following treatments: 1) a biotic column with 25% BH
medium + diesel + bacteria, 2) an abiotic column with 25%
BH medium (uncontaminated), and 3) an abiotic column
with 25% BH medium + diesel (contaminated). Indigenous
bacteria were cultured from diesel contaminated sediments
from the same field site as the experimental sands. The
bacteria was mixed with the BH + diesel solution and
pumped into the biotic column. To ensure no microbial
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growth in the abiotic columns, HgCl was added to the stock
solution of 25% BH medium and 25% BH medium + diesel.
The columns were kept in a vented hood at 22 to 25�C. A
peristaltic pump was used to circulate and homogenize
fluids in the columns periodically, and prior to sampling
and electrical measurements.

2.2. Sampling and Analyses

[6] Fluids (�45 ml) were periodically withdrawn
from each column for biological and chemical analyses.
After sampling, fluids from the appropriate stock solution
were injected into the columns to maintain full saturation.
Microbial population growth was measured from an aliquot
of the fluid using the Most Probable Number (MPN)
technique [Salama et al., 1978]. Fluid conductivity and
pH were measured by microelectrodes immediately after
sampling. BTEX was measured by gas chromatography
[Loffe and Vitenberg, 1984]. Nitrate, sulfate and calcium
(Ca) were determined by ion chromatography. Dissolved
inorganic carbon (DIC) was measured by the technique of
Atekwana and Krishnamurthy [1998].

2.3. Low Frequency Electrical Measurements

[7] Induced polarization measurements were made using
a National Instruments NI 4551 dynamic signal analyzer
(Figure 1) with a current density below 0.1 A/m2 [Slater
and Lesmes, 2002]. Phase shift (j) between current
stimulus-voltage signal and conductivity magnitude (jsj)
were measured at forty frequencies and equal logarithmic
intervals between 0.1 and 1000 Hz. Measurements were
made biweekly for the first 20 weeks and monthly for the
duration of the experiment. The real (s0) and imaginary
(s00) components of the complex surface conductivity were
calculated as follows:

s0 ¼ sj j cosj ð1Þ

s00 ¼ sj j sinj ð2Þ

[8] The real conductivity is an energy loss term that
contains an electrolytic (sel) and interfacial (s0surf) compo-
nent [e.g., Lesmes and Frye, 2001]

s0 ¼ sel þ s0surf ¼
sw
F

þ s0surf ð3Þ

where sw is the fluid conductivity and F is the sediment
formation factor. The s0surf results from ion migration within
the electrical double layer at grain-fluid interfaces and
increases with increase in surface area, surface charge
density, and surface ionic mobility [Revil and Glover,
1998]. The F for the sands was measured from s0 as a
function of sw (0.02–0.32 S/m for NaCl solutions) at the
beginning and end of the experiment. At high electrolyte
concentrations, the contribution of s0surf to s0 is insignificant
in the sands studied here, and F is derived from the gradient
of s0 vs. sw (mean R2 > 0.98).
[9] Imaginary conductivity is an energy storage or polar-

ization term, which at low frequencies (<1000 Hz) is an
interfacial phenomenon occurring at grain-fluid surfaces in
saturated porous media [e.g., Olhoeft, 1985]. Imaginary
conductivity is also sensitive to physicochemical properties
at grain-fluid interfaces [Slater and Lesmes, 2002] and is
linearly related to s0surf [e.g., Schön, 1996]. Consequently,
s00 shows an approximately linear dependence on surface
area to pore volume ratio [e.g., Slater and Glaser, 2003] and
sensitivity to surface chemistry that probably reflects the
competing effects of surface charge density and surface
ionic mobility [e.g., Lesmes and Frye, 2001].

3. Results

3.1. Microbial Population Growth and
Pore Fluid Chemistry

[10] The initial biological, chemical, and electrical mea-
surements are shown in Table 1. Temporal change in
MPN, BTEX, nitrate, sulfate, DIC, pH, Ca, and sw are
shown as percent change relative to values measured at the
start of the experiment (Figure 2). The biotic column
shows temporal increase in microbial population numbers,
which was concurrent with decrease in BTEX, nitrate, and
sulfate (Figure 2). No significant changes in the above
parameters are observed in the abiotic columns. Further,
the biotic column shows increase in DIC, decrease in pH,
and increase in Ca and sw compared to minimal changes
in the abiotic columns (Figure 2). Changes in biological
and chemical parameters in the biotic column increase
rapidly from the start of the experiment, becoming more
asymptotic after 24 weeks. Periodic, low magnitude
increases and decreases in nitrate, sulfate, and pH in the
contaminated abiotic column (Figure 2) are probably
experimental artifacts related to replacement of fluid in
the column after sampling.

3.2. Low Frequency Electrical Measurements

[11] Temporal percent change in temperature corrected s0

and s00 at 1 Hz are presented in Figure 3. We show data at
1 Hz here as it is close to the typical frequency used in field
IP measurements. Similar trends are observed at all other
measured frequencies. There is concurrent increase in s0 and
s00 in the biotic column and little change in the abiotic
columns (Figure 3). The trend of the s0 response is similar
to that observed in some biological and chemical parameters
(e.g., MPN and Ca), showing rapid changes in the early
stages (<20 weeks) of the experiment. This indicates
sensitivity of s0 to the electrolyte composition. In contrast, s00

shows small increases during the first 14 weeks, increasing
more rapidly thereafter (Figure 3). Periodic small fluctua-
tions in the s0 and s00 are evident in the contaminated abiotic

Figure 1. Schematic of column setup and instrumentation
used in low frequency electrical measurements.
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column and likely attributable to the removal/addition of
fluid after sampling.
[12] The formation factor for the sands at the beginning

of the experiment was 7.7 and decreased in all columns
(biotic (4.5); abiotic contaminated (6.1); and abiotic uncon-
taminated (6.8)). Further, s0surf (based on equation (3)) for
the biotic column increased to 7.68 � 10	3 S/m, while there
was no significant change in the abiotic columns (Table 1).

4. Discussion and Conclusions

[13] The results of this study suggest that microbial
processes alter the electrical properties of unconsolidated
sediments rich in organic carbon. Lithologic variability
between columns and variable water saturation are not
responsible for the differences in temporal electrical
changes observed between biotic and abiotic columns, since
all columns were fully saturated and the sands were similar
and of uniform size. We show temporal increase in s0 and s00

in the biotic column (Figure 3), which we attribute to
microbial processes. Concomitant increase in MPN, de-
crease in nitrate, sulfate, BTEX, and pH and increase in
DIC, Ca and sw are consistent with microbial activity in the
biotic column (Figure 2). In the biotic column, the relative
increase in s0 (100%) exceeded the relative increase in
sw (80%). This is consistent with the increase in s0surf for
the sediments in the biotic column. The 120% relative
increase in s00, exceeding the 100% relative increase in s0,
demonstrates that interfacial electrical properties are modi-
fied due to microbial activity.
[14] The formation factor is related to petrophysical prop-

erties (porosity, tortuosity, sample packing) and determines
the electrolytic conductivity of sediments and rocks [Archie,
1942]. The larger decrease in F in the biotic column (58%)
indicates either increase in porosity or decrease in tortuosity
of electrolytic current flow path. During microbial mineral-
ization of organic compounds, organic acids produced as
metabolites and carbonic acids from degradation enhance
mineral weathering [Bennett et al., 1996]. Decrease in pH
and increase in Ca (Figure 2) provide strong evidence for
mineral weathering. It is possible that this enhanced mineral
weathering resulted in an increase in porosity, causing the
decrease in F for the biotic column. The electrolytic conduc-

tivity in the columns is determined by sw and F. Variation in
sw is primarily responsible for the observed variation in the
measured s0. Enhanced mineral weathering will release ions
into solution, increasing sw (Figure 2). Ca from mineral
weathering is positively correlated to sw (R2 = 0.95). The
increase in s0 in large part derives from increase in sel
associated with increasing sw during mineral weathering.
Decrease in F, as observed in the biotic column also con-
tribute to increase in sel and hence s0.
[15] Interfacial electrical properties (s0surf and s00) are

determined by mineral grain surface area, surface charge
density, ionic mobility, and interfacial tortuosity [Börner et
al., 1996]. The increase in interfacial conductivity and
polarization observed in this experiment may be associated
with the large surface area (�30–100 m2/g) of bacteria [Van
Der Wal et al., 1997a] and wall counterion charge density
(�0.5–1.0 Coulombs/m2) of bacterial cells [Van Der Wal et

Table 1. Results of Initial Biological, Chemical and Electrical

Measurements (1Hz) for Biotic and Abiotic Sand Columns: MPN

(Most Probable Number); BTEX (Benzene, Toluene, Ethylbenzene,

Xylene); DIC (Dissolved Inorganic Carbon); sw (Fluid

Conductivity); s0 (Real Conductivity); s00 (Imaginary Conductivity);

and s0surf (Surface Conductivity)

Measured
Parameter

Biotic Column
Contaminated

Abiotic Column
Contaminated

Abiotic Column
Uncontaminated

MPN/ml 220 30 10
BTEX (mg/l) 0.29 0.28 0
NO3 (mg/l) 56.50 43.49 41.46
SO4 (mg/l) 72.50 75.98 86.20
DIC (mg C/l) 17.04 15.96 5.56
pH 6.89 6.86 6.99
Ca (mg/l) 16.42 16.80 20.45
sw (S/m) 4.89 � 10	2 1.05 � 10	1 1.13 � 10	1

s0 (S/m) 9.27 � 10	3 1.13 � 10	2 1.63 � 10	2

s00 (S/m) 7.45 � 10	6 7.03 � 10	6 1.24 � 10	5

ssurf (S/m) 2.92 � 10	3 1.69 � 10	3 1.66 � 10	3

Figure 2. Temporal percent change in microbial popula-
tion numbers (MPN), benzene + toluene + ethylbenzene +
xylene (BTEX), nitrate, sulfate, dissolved inorganic carbon
(DIC), pH, calcium, and fluid conductivity from pore water
from biotic and abiotic sand columns.

Figure 3. Temporal percent change in real and imaginary
conductivity in biotic and abiotic sand columns.
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al., 1997b]. Surface area exerts a primary control on
interfacial electrical properties [e.g., Revil and Glover,
1998], with surface charge density and surface ionic
mobility being second order effects [e.g., Lesmes and Frye,
2001]. The large surface area of clays is responsible for
enhanced IP effect observed in clay containing materials
[e.g., Garrouch and Sharma, 1994]. Bacterial surface areas
are estimated to equal or exceed those of kaolinite (10–
22 m2/g) [Bickmore et al., 2002]. Therefore, we speculate
that the increase in surface area due to microbial growth
(Figure 2) and attachment to mineral surfaces contributed to
and enhanced the surface area of mineral grains. This,
coupled with increases in surface charge density at the
mineral grain-electrolyte interface (due to enhanced mineral
weathering), enhanced electrical double layer polarization
and caused temporal increase in s0surf and s00. Increasing the
ionic strength of the bulk solution increases the likelihood
of bacteria attachment to mineral surfaces [Newby et al.,
2000]. Thus the time lag (0–14 weeks) observed in the s00

response (Figure 2) may perhaps relate to the time required
for microbial colonization of mineral surfaces, such that the
interfacial conductivity measured with IP is impacted. It is
conceivable that the IP response due to microbial activity is
not impacted until sufficient biofilms form on mineral
surfaces.
[16] An alternative mechanism for the observed s00

behavior might relate to redox chemistry associated with
microbial activity. Induced polarization is enhanced when
metals are present in a soil; this polarization enhancement is
generally attributed to migration of redox active ions to and
from mineral surfaces, where electron transfer accompanies
the transition from electrolytic to electronic conduction (see
Olhoeft [1985] for review). Naudet et al. [2003] suggest
the possibility of redox-driven energy transfer between
electrolytic current flow and electronic conduction in
biofilms. Such a process could conceivably generate an IP
response. We are unable to quantify the direct relationship
between different redox process in our experiment and
electrical properties in this dataset. Further studies are
required to quantify how microbial induced redox processes
may contribute to changes in electrical properties.
[17] The results presented in this study are consistent with

results of low frequency electrical measurements made on
sediments from a hydrocarbon contaminated site under-
going intrinsic bioremediation [Abdel Aal et al., 2003]. In
the Abdel Aal et al. [2003] study, contaminated samples
showed higher s00 magnitudes relative to uncontaminated
samples, with the highest s00 magnitudes measured for
samples within zones where peak microbial populations
and activity are known to occur [Atekwana et al., 2004].
We conclude that microbial processes play a significant role
in altering both electrolytic and interfacial geoelectrical
properties.

[18] Acknowledgments. This work was funded in part by the Uni-
versity of Missouri Research Board and United States Geological Survey
(Award # 000457). M. Mormile and J. Burken provided their laboratory
facilities. We acknowledge comments from two anonymous reviewers.
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