

Missouri University of Science and Technology Scholars' Mine

Physics Faculty Research & Creative Works

Physics

01 Jan 2002

Electrical and Magnetotransport Properties of Canted Antiferromagnet Dy₅Si₂Ge₂

R. Nirmala

V. Sankaranarayanan

K. Sethupathi

Zili Chu

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/279

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork

Part of the Chemistry Commons

Recommended Citation

R. Nirmala et al., "Electrical and Magnetotransport Properties of Canted Antiferromagnet Dy₅Si₂Ge₂," Institute of Electrical and Electronics Engineers (IEEE), Jan 2002. The definitive version is available at https://doi.org/10.1109/INTMAG.2002.1001082

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

ELECTRICAL AND MAGNETOTRANSPORT PROPERTIES OF CANTED ANTIFERROMAGNET Dy₅Si₂Ge₂

R. Nirmala¹, V. Sankaranarayanan¹, K. Sethupathi¹, A. V. Morozkin², Z. Chu³, W. B. Yelon⁴, S. K. Malik⁵, V. Prasad⁶ and S. V. Subramanyam⁶

¹Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India ²Department of Chemistry, Moscow Lumonosov State University, Moscow, GSP - 3, 119899, Russia

³ Department of Physics, University of Missouri-Columbia, Columbia, MO65211, USA ⁴ Graduate Center of Materials Research, University of Missouri-Rolla, Rolla, MO

65409, USA

⁵ Tata Institute of Fundamental Research, Colaba, Mumbai 400 005, India
⁶ Department of Physics, Indian Institute of Science, Bangalore 560 012 India

Since giant magnetocaloric effect is encountered in a ferromagnetic Gd₅Si₂Ge₂ alloy near room temperature it is considered as a suitable material for magnetic refrigerator applications. Also a commensurate structural transition occurs at the magnetic transition temperature and there is a good correlation between the crystal structure and magnetic properties. Such observations have triggered numerous experimental studies on similar rare earth alloys and compounds. We have synthesized its Dy- analogue, namely, Dy₅Si₂Ge₂ and have characterized it by means of room temperature X- ray diffraction, ac magnetic susceptibility (15 K - 300 K), electrical resistivity (at zero field and at 6 T), thermoelectric power (15 K - 300 K) and neutron diffraction (at 300 K and 9.2 K) experiments. The compound Dy₅Si₂Ge₂ has the orthorhombic Sm_5Ge_4 -type structure (space group Pnma) as the Gd_5X_4 (X = Si, Ge) end members. The cell parameters are a = 1.4575(2) nm, b = 0.7531(1) nm and c = 0.7632(1)nm. The ac magnetic susceptibility study suggests the presence of paramagnetic to antiferromagnetic-like transition at 57 K (T_N). DC electrical resistivity measurements confirm the magnetic crossover by a strong change of slope. The resistivity drops abruptly below T_N as the spin disorder contribution vanishes. The application of magnetic field suppresses the T_N by about 6 K thereby emphasizing the nature of the magnetic order to be antiferromagnetic. Electrical resistance falls almost monotonically with increasing applied field. Magnetoresistance (MR) is negative till about 50 K. At 77 K, it is 2.5 % in applied fields of 7 T. Just below T_N (at 50 K), MR ratio is observed to be the highest (8.1%), and at lower temperatures, field dependence of resistivity is anomalous. There is a peak feature around 2 T and a bump around 4.4 T followed by a smooth decrease at higher magnetic fields. The neutron diffraction data at 9.2 K reveals a canted spin arrangement giving rise to antiferromagnetism in this compound. The magnetic moment on Dy- ion at 9.2 K is found to be 7.54 μ_B . The thermoelectric power is positive (suggesting that the charge carriers are holes) and has a peak around 36 K.

DS 06

THE MAGNETOCALORIC EFFECT IN Gd7Pd3 AND Gd7Pd3.xNix compounds

F.Canepa¹, M.Napoletano¹ S.Cirafici², F.Merlo²

¹INFM-Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova ITALY

²Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova ITALY.

Magnetic refrigeration, based on materials showing high magnetocaloric properties, is at present a valuable alternative to gas compression technology, because of the high thermodynamic efficiency due to the reversibility of the magnetocaloric effect and the high energy densities exhibited in compact devices, coupled with the absence of ozone depleting CFC's as liquid refrigerants. As a part of a current research concerning the physical characterization of Rare Earth intermetallic compounds for magnetic refrigeration devices [1-3], the magnetocaloric properties of the Gd_7Pd_3 phase, which crystallises in the Th_7Fe_3 hexagonal structure type and shows a ferromagnetic transition below 318 K, are presented. Heat capacity measurements have been performed in the 5-360 K temperature range and for

applied magnetic fields up to 5T. Basing on the heat capacity data the isothermal entropy change S_M and the adiabatic temperature raise T_{ad} have been calculated ($S_M = 6.5 J/Kkg$ and $T_{ad} = 8.5K$ at 5T and 320K). From the S_M vs T plot the refrigerant capacity

 $Q = S_{M}(T)dT$ has been determined. The Q values obtained for the Gd₇Pd₃ phase together

with some reference data are reported in table 1. Furthermore, in this work the influence of partial Pd substitution with Ni on the transition temperature and on the magnetocaloric properties is also examined.

Compound	Temperature span	Applied magnetic	Refrigerant capacity	Reference
	[K]	field [T]	[J/kg]	
Gd7Pd3	260-360	5	380	This work
Gd	270-315	5	400	4
GdAb	130-185	5	350	5
Gd5Ge4	10-50	5	780	6
Table 1				

Table 1

References

[1] F.Canepa, M.Napoletano, A.Palenzona, F.Merlo, S.Cirafici, J.Phys.D:Appl.Phys. 32 (1999) 2721

[2]F.Canepa, M.Napoletano, P.Manfrinetti, F.Merlo, J.Mater.Chem. 10 (2000) 1

[3]F.Canepa, M.Napoletano, M.L.Fornasini, F.Merlo, M.Pani, *J.Alloys Comp.* 312 (2000) 12
[4]S.Yu.Dan'kov M.Tishin, V.K.Pecharsky, K.A.Gschneidner, Jr.*Phys.Rev.B* 57-6 (1998) 3478

[5] K.A.Gschneidner, Jr. H.Takeya,J.O.Moorman,V.K.Pecharsky, S.K.Malik and B.Zimm Adv.Cryog.Eng. 39 (1994) 1457

[6] K.A.Gschneidner, Jr. V.K.Pecharsky, Adv. Cryog. Eng. 42 (1996) 423