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Abstract 

A variant of Hopfield network, called modified 
Hopfield network is formulated. This network 
which consists of two mutually recurrent net- 
works has more free parameters than the well- 
known Hopfield network. Stability analysis of 
this network is presented in this study. The 
analysis is carried out in the time domain with 
an application of the Lyapunov method and 
robust control Lyapunov function. The cur- 
rent flow in the network is treated as a ‘con- 
trcll’. This ‘controller’ is shown to guarantee 
“a practically stabilizing control”. Analysis of 
the Hopfield network is also included for com- 
pletion. 

1 INTRODUCTION 

Neural networks, or artificial neural networks 
(ANN) to be more precise, represent an emerg- 
ing technology rooted in many disciplines. A 
neural network is a parallel, distributed infor- 
mation processing structure consisting of sev- 
eral processing elements [?I. Control theory is 
not only gaining benefits from ANN, but also 
contributing to the development of ANN. Neu- 
ral networks can be used to implement con- 
trcillers and be used as tools to identify sys- 
tern parameters [?I. Good control system per- 
formances and good identification results have 
been reported [?, ?, ?I.  However, Narendra [?I 
has stated that the stability analysis of the sys- 
tern models through neural networks had not 
been undertaken extensively. He feels that the 

stability theories built around the lineariza- 
tion of systems would not be adequate to fully 
describe the behavior of the neural networks, 
and that new concepts and techniques are re- 
quired to deal with large uncertainties that 
the controllers might face in practical appli- 
cations. In this paper, a class of more gen- 
eral Hopfield-type recurrent neural networks 
are developed. The stability and robustness 
properties of these recurrent neural networks, 
called Modified Hopfield Neural Network are 
presented. 

2 MHNN AND ITS STABILITY 

The structure of Modified Hopfield Neural 
Network (MHNN) is presented in this section. 
MHNN is a variant of the classical Hopfield 
networks. Its dynamical model is shown in 
Figure 1. The advantages of MHNN are read- 
ily apparent from its structure: it is mutually 
recurrent. (The Hopfield networks are self- 
recurrent.) It can be expanded in layers to 
suit higher-dimensional applications. 

2.1 Stability 
The stability of MHNN can be demonstrated 
by analyzing its dynamics and using an en- 
ergy function. The network has two clusters 
of neurons. The right part of the network is 
characterized by outputs + 1 , + ~ ,  . , 4, which 
are transformed by nonlinear functions f from 
their states ui, 212,. . . ,U,; m is the number of 
outputs of neurons in the right part. The con- 
ductance wIj connects the output of the j t h  
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neuron in the left part to the input of the ith 
neuron in the right part, which is indicated in 
Figure 1 as W. The superscript T indicates the 
location of weight wij in the right part of the 
network. 

I I 

I 
I I I 
I I I .. ., a, a, h . 1 

Figure 1: Modified Hopfield Neural Network 

The energy function derivation for the dynam- 
ical system of MHNN is similar to that of the 
Hopfield network. Define: 

It is assumed that all fi, i = 1 , 2 , .  . . , n are the 
same, and in effect, can be represented by f .  
Then, we have the dynamics of the system: 

d X  
dt  

C- = - A  - GX - WLf(WRV - B ) ,  
(2) 

For the network stability proof using the en- 
ergy function, please see [lo]. 

3 ROBUSTNESS ANALYSIS OF 
HOPFIELD AND MHNN WITH CLF 

AND RCLF 

3.1 Control Lyapunov Functions 
In this subsection, we investigate the stabil- 
ity of the Hopfield networks and MHNN by 
the use of Control Lyapunov Function (CLF). 
By [7], a CLF is simply a candidate Lyapunov 
function whose derivative can be made nega- 
tive point-wise by the choice of control values. 
Then we extend the studies to investigate the 

robustness of the Hopfield and MHNN with a 
Robust Control Lyapunov Function (RCLF). 

3.1.1 Stability of Hopfield Network 
with CLF: The Hopfield network is exam- 
ined with the help of CLF in this subsection. 
According to [6], one can have the following 
system equations for the Hopfield networks 

dU 
d t  

C- = - G U + W V + I  (3) 

v = fW) (4) 

In order to study them as a system with con- 
trol, let the state variables U be z E R", the 
control input I be U E R", and substitute V in 
Eqn. (4) into Eqn. (3). The capacity coefficient 
C is omitted to simplify the equations because 
it would not affect the stability conclusions. 

a: = -Gz + Wf(.) + U  ( 5 )  

The function V(x) = $zTz satisfies 

inf V V ( ~ ) ~  . f(z, U )  
U€ U 

inf [-zTGz + z T W f ( z )  + xTu] 
U€ U 

= 

0 when x = 0 
-ca whenx#O 

and is therefore a CLF for this system. It is 
concluded that this system is  globally asymp- 
totically stabilizable. [7] 

3.1.2 Stability Analysis of MHNN 
with CLF: The mathematical model of 
MHNN will be used to study its stability. We 
can rewrite Eqn.(2) as 

S = -Gx - ~1 - W L f ( W R g ( z )  - U Z )  

(7) 

The function V(z) = $zTz satisfies 

inf 
u1,uzEU 

V V ( Z ) ~  . f(z, U )  = inful,U2EU [-zTGx 

- z T u 1  - z T W L f ( W R g ( z )  - U Z ) ]  (8) 

0 when x = 0 = {  -ca otherwise 

and is therefore a CLF for this system. Hence, 
it is concluded that MHNN is globally asymp- 
totically stabilizable. In this case, the stabi- 
lizability also can be proved by constructing 
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a particular feedback control; indeed, the con- 
trols 

u~(x) = -Gx + 2 - WLf(WRg(x)) (9) 
.2(X) = 0 (10) 

render V ( x )  negative definite and thus guar- 
antet: the global asymptotic stability. 

3.2 Robust Control Lyapunov Function 
The advantage of defining the CLF is that we 
can (extend the argument to define a Robust 
Control Lyapunov Function (RCLF) and show 
the ItCLF to be a necessary and sufficient con- 
dition for the robust stabilizability of a system 
with the control inputs in the presence of un- 
certainties [7]. 

3.2.1 Robustness Analysis of Hop- 
field. Network: Either by training or by de- 
sign and implementation, the neural network 
weights are the most frequently changed pa- 
rameters and therefore are considered as dis- 
turbances in the studys. Let the Hopfield net- 
work be modified with an uncertainty to the 
weight as: W = W,, + 6W where W,, denotes 
nominal weight and 6W is an uncertainty. The 
true system, then, becomes 

i = -Gx + (W, + 6W)f(~) + U  

(11) 

Suppose the disturbance constraint is such 
that W(x,U) is bounded for every x E X. 
Consider the function V(x) = $xTx. If 
av(x) = $xTx is selected, then it has 

inf sup [LfV(x, U, W )  + ~ w ( x ) ]  
"EUwEW(s,u) 

= inf sup [-zTGx + xT(W,, + 6W)f(x) 
"EUw€W(z,")  

(12) 
0 when x = 0 
--CO when z # 0 

1 
2 

+ xTu+ -z%] = 

It c:an be concluded from the definition of 
RCLFthat V is an RCLF for the uncertain 
Hopfield network with cv = 0. This shows 
that the Hopfield network is robust. 

3.2.2 Robustness Analysis of 
Let W L  and W R  of MHNN vary MHNN: 

as W in the last subsection, the system 
uncertain model will become 

i = -Gz-u~-(W,L+SW,L)~ ((W," + 6W,")g(x) - U Z )  

The same suppositions about Y, U and W are 
used as with the Hopfield network. The same 
CLF as in the stability study of MHNN is used 
as an RCLF in this robustness study. Selecting 
av(x) = $xTx, one can obtain 

inf sup [LfV(x, U ,  w) + av(x)] 
"EUwEW(s,u)  

0 when x = 0 
-CO when x # 0 

1 
2 

+ -xTx] = 

Therefore, by using the same reasoning, V(x) 
is an RCLF of MHNN. Thus the MHNN is 
robust. 

4 A ROBUST CONTROLLER 

In this section, based on the study of the math- 
ematical models of the Hopfield networks and 
MHNN, a formulation [8] is proposed to build 
a family of controllers current to stabilize the 
Hopfield networks and MHNN. Though the 
disturbance model is accurate for the Hopfield 
network, it is approximate for MHNN. Both 
models reasonably abstract the dynamic char- 
acteristics of these two recurrent networks in 
their operational regions. By doing so, it can 
be seen in the following analysis that the de- 
sign take advantage of the network nonlinear- 
ity. 

4.1 Neural Network System Models 
with Uncertainty 
In order to  obtain a robust controller, we first 
need a generic formulation of the network sys- 
tems with disturbances. This will help us lead 
to certain assumptions and inequalities. 

Recall that the uncertain Hopfield network 
model can be written as 

i = -Gx + Wf(x) + 6Wf(~) + U  

(14) 
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with 6W is the uncertainty in weights . 

For MHNN, the uncertainties lie in W L  and 
W R ,  therefore the uncertainty model becomes 

5 = -Gz-(WL+6WL) (15) 
.f ((W" + 6WR)g(z) - U P )  + U 1  

In general, based on Eqns. (14) and (16) when 
summarizing the above analyses, one can ab- 
stract the uncertainty system equations of 
both Hopfield networks and MHNN as follow- 
ing: 

x =  f(., t )  + A f b ,  t ,  Q )  + B(z7 t>U 

+AB(z ,  t ,  w)u + C(z, t ) w  (16) 

where, q,  U, w are uncertainties. 

C(.) E R"". f(.),  At( . ) ,  El(.) ,  AB(-)  are 
continuous in all their arguments. 

~ , f ( . ) , A j ( . )  E R"; B( . ) ,AB( . )  E Rnxm; 

4.2 Assumptions And Modification of 
the System 
The structure in its current form is compli- 
cated for further analysis. Therefore, we make 
certain (practical) assumptions and observa- 
tions. Note that the neuro-nonlinearity is 
bounded. 

Assumption 1: For all ( z i t )  E R" x R+, the 
following conditions hold: 

a) 

c)  C(5, t )  = B(z ,  t )d(z,  t ) ;  (17) 
4 lle(z, t ,  w) l l  I 1. 

4 4)  = B(z ,  W z ,  t ,  q) ;  

b)  AB(z,  t ,  w) = B(z ,  t )e (z ,  t ,  w); 

Note that these conditions are properties of 
the system's structure only. They can guar- 
antee the uncertainty vectors do not influence 
the dynamics more than the control vector U .  

AS long as these conditions are maintained, the 
disturbances q and w can always be compen- 
sated by control U .  The magnitude of e is re- 
quired to be bounded since the control has no 
influence on this quantity. It can be verified 
that these conditions are feasible for the Hop- 
field networks and MHNN. 

With the use of Eqn. (18), Eqn. (16) can be 
reduced to 

x = f(z, t )  + B(z ,  t ) (u  + 77) (18) 

where q = h(z ,  t ,  q) + e(z, t ,  w ) ~  + d(z, t )w.  

Assumption 2: f(0,t) = 0 for all t E R and 
moreover, there exist a C1 function V(.)  : R" x 
R+ + R+ and class IC, functions y1, 7 2  and 
7 3  such that for all ( z , t )  E R" x R+ 

n(11~11) I V ( z ,  t )  I 7 2 ( l l 4 l ) .  (19) 

Moreover, defining the Lyapunov derivative 
LfVo(.) : R" x R+ + R by 

dV 
at - + TJzV(z, t>* . f(z, t> 5 -r3(11zII) 

(20) 

for all pairs (2, t )  E R" x R. This assumption, 
in effect, asserts that existence of a Lyapunov 
function for the uncontrolled nominal function. 
Consequently, the origin, z = 0, is a uniformly 
asymptotically stable equilibrium point for the 
uncontrolled nominal system. 

4.3 Controller Formulation 
A systematic development of a robust con- 
troller formulation for the system in Eqn. (16) 
is presented in this section. Due to the pres- 
ence of disturbance in the system, it is not al- 
ways possible to  drive it to the equilibrium. 
However, the controller "practically stabilizes" 
the system such that the final states remain 
bounded. 

4.3.1 Controller Construction: 
The first step is to select functions 
A,(.) : R" x R+ + R, i = 1,2,3, satis- 
fying: 

The inequalities in Eqn. (21) is needed so that 
the system with the uncertainty is controllable. 
(See system structure in Eqn. (16).) 

Now, one may simply select any continuous 
function y(-) : Rn x R+ -+ [0, CO) satisfying: 
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where C1 and C2 are any (designer chosen) 
nonnegative constants such that 

a) C1 < 1; 

b) either C1 # 0 or C2 # 0; 

Ai ( z ,t)+Aa (Z ,t)]' c) C2 # 0 whenever limZ,oL 

d) < ( 7 3  07T1 071)(d). 

Lf vo 
does not exist; 

where d is a disturbance index. Note that these 
conditions can indeed be satisfied because of 
the fact that limr+07i(r) = 0 for i = 1 ,2 ,3 .  

This construction then enables one to select a 
con.troller, pd 

Pd(2 ,  t )  A -7(z, t )BT(z ,  t)V,V(z, t ) .  
(23) 

4.3.2 Guaranteed Performance: 
The controller constructed in Eqn. (23) guar- 
antees practical stabilizability. Note that this 
construction has steps similar to that in [7], 
however the formulation and the conclusion 
are different. 

TIheorem: The controller in Eqn. (23) prac- 
tically stabilizes the uncertain dynamical sys- 
tem, Eqn. (16). 

i = f(z, t )  + Af(z ,  t ,  4 )  + B ( z ,  t )u  (24) 
+AB(z,  t ,  w)u + C(z, t)w 

proof: i) For a given > 0 and given un- 
certainty vectors ( 4 ,  w, w) E Q, consider the 
fuc,ction g ( . )  : R" x R+ + R" such that 

9(z, t> = f(z, t )  + B(z ,  t)(P&, t )  + 77(z, t ) )  

As a consequence of the assumptions, g ( - )  is 
continuous in z for all t E R+ there exists a 
function m(.) : [a,b] + R such that for all 
( z , t )  E E x [.,bl 

119(G t)ll I m(t) 

Thus, given (20, t o ) ,  E and [a, b] such that 20 E 
in1 E and t E [a,b], there exists a solution 
z(.) : [ t O , t l ]  + R", z(t0) = 20. 

ii) The Lyapunov derivative for the closed loop 
system obtained with the feedback control, 
Eqn. (23), is given by: 

LfV(Z) LfVO(2) + VZVT(4{ Af(., 4 )  

+ [B(4  + AWz,  V)]Pd(4 + C(+} (25) 

There are two cases to  be considered. 

Case 1: The pair ( z , t )  is such that A,(z , t )  = 
A3 (2, t )  = 0. It then follows from the preced- 
ing inequality that 

LfV(", t )  I LfVO(Z, t ) .  

since A2(z, t )  < 1, and y(z, t )  > 0. 

Case 2: The pair (z, t )  is such that A1 (z, t )  # 
0,  or A3(z,t) # 0, or both A,(z , t )  and 
A3(z,t) # 0. Then it follows from Eqn. (22) 
that y(z, t )  > 0 because LfVo(z, t) < 0. More- 
over, in view of Eqn. (22) and the conditions 
on C1 and C2, it can be shown that after some 
algebra. 

LfV(Z, t )  I (1 - Cl)LJVO(Z, t )  + c2 

Combining Case 1 and Case 2, and noting that 
C1 < 1, one can conclude as a consequence of 
Assumption 2 in Eqn. 20) that 

LfV(X,t) I (1 - Cl)LfVo(Z,t) + c2 
I -(I - CI>Y3(II4> + c2 (27) 

for all ( ~ , t )  E R" x R+. 

The interpretation of Eqn. (27) is impor- 
tant. The Lyapunov approach is to show 
LfV(z,t) < 0. We can see 73(11zll) is positive, 
and - (1 -  C1)73(11zll) is always negative. But 
when C2 is present, L f V ( z ,  t )  may not always 
be negative. What we want to  show is that, 
even for these z and C2 that make LfV(z,t) 
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positive and lead to the system states diverge, 
the increasing 2 will make -(1 - C1)y3(11211) 
more negative to balance the positive C2 so 
that finally the overall summation go back to 
a negative quantity again, therefore the system 
is practically stabilized. It is easy to see from 
Eqn. (27) that the critical point is: 

Consider a solution x(.) : [ to ,  t1] + Rn, %(to) = 
20 with l lzoll 5 r.  Let i 4 max{r, R} so that 
llzoll 5 i and R 5 i. Define 

(29) 
- (7;' 0 ̂ 12)(R) if r I R, 
- {(7? 072)(r)  if r 2 R. 

This d(r )  captures the effect of the disturbance 
on the nonlinear system. After some algebra, 
we can show there must exist a t l  > t o  such 
that 

The implication of Eqn. (30) is that in time 
interval t o  and t l ,  the state is bounded. 

The proof for no escape for z ( t )  can be found 
in [lo]. 

The above construction has shown that the 
Hopfield and MHNN are robust with respect 
to their equilibrium solutions. Note that we 
have treated the exogenous variable current as 
the control in the dynamics of the networks. 
One always can apply extra control quantity 
to balance the deviation of the states due to 
the disturbances. The disturbances can make 
the derivative of Lyapunov function positive 
and the states diverge. But this change in 
states make the effect of the disturbances less 
influential, and make the derivative of Lya- 
punov function negative again. This behavior 
of the states staying bounded is called practi- 
cally stabilizability. 

5 CONCLUSIONS 

A variant of the Hopfield network called mod- 
ified Hopfield network has been formulated. A 

control theoretic approach has been used to 
study the robustness of the equilibrium of the 
Hopfield and modified Hopfield networks. Fur- 
thermore, theorems have been presented and 
a method has been formulated to show the 
bounds of deviations from equilibrium. 
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