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Thermoelastic Problems of
Multilayered Cylinders

Victor Birman
University of Missouri - Rolla
Engineering Education Center
8001 Natural Bridge Road
St. Louis, MO 63121

Thermoelastic problems of long multilayered cylinders
manufactured from isotropic materials are considered.
The steady state thermal field corresponding to constant
difference between temperatures outside and inside the
assembly is used in the analysis. Both the case of a
hollow cylinder as well as that of a solid multilayered
assembly are discussed. A closed form exact solution is
shown for an arbitrary number of layers if the
properties of constituent materials remain unaffected by
temperature. Various strategies 1leading to an
analytical solution are proposed for the case where
material properties depend on temperature. The stresses
in a dual-coated fiber subject to a uniform temperature
are determined as a particular case.

Introduction

Multilayered cylinders subject to the action of a
nonuniform thermal field represent both theoretical as
well as practical interest. Examples of such structures
include pipes in projective coatings or multilayered
pressure vessels where temperature of fluid or gas
inside the pipe (vessel) differs from that of the
outside environment. An example of a solid multilayered
cylinder is a coated wire where temperature of the core
can increase due to electric current. Coated fibers
used in fiber optics represent another example.

Thermal fields acting on multilayered cylindrical
assemblies are often axisymmetric. Axisymmetric
thermoelastic problems are analyzed and solved for a
single-layered cylinder in classical books on the theory
of elasticity (Timoshenko and Goodier, 1970). A large
number of studies dealing with both axisymmetric as well
as asymmetric thermoelasticity of multilayered or non—
isotropic cylindrical tubes has been recently published.
Several thermoelastic problems for multilayered and
composite shells were formulated by Ambartsumian (1974).
Kalan and Tauchert considered thermal stresses in a
single-layered orthotropic cylinder subject to an
asymmetric thermal field (1978). Axisymmetric thermal
stresses in multilayered angle-ply composite cylinders
in a uniform thermal field were studied by Hyer and
Rousseau (1987). A theory of elasticity solution was
presented for an asymmetric thermal problem in composite

tubes subject to a circumferential gradient of
temperature by Hyer and Cooper (1986). Kardomateas
(1989) considered transient thermal stresses in a

single-layered orthotropic cylinder by assumption that
material properties are independent of temperature.
Suhir and Sullivan (1989) studied interface stresses in
bi-annular cylindrical assemblies subject to a uniform
temperature.

Numerical solutions of thermoelastic problems of non-
isotropic cylindrical assemblies have also been
published. Mention here the paper by Blandford, et.al.
(1988), and Thangaratnam, et.al. (1988).
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Another related area of research deals with
thermoelastic problems of solid cylinders. Avery and
Herakovich (1986) presented an analytical solution based
on the theory of elasticity approach for the stresses in
an orthotropic fiber surrounded by an isotropic matrix
and subject to a uniform temperature. Suhir solved a
number of problems related to applications in
electronics (1988, 1989). For example, thermal stress
and stability of dual coated optical fibers were
considered (Suhir, 1988). Another study presented the
analysis of solder joints in finite circular cylinders
subject to low temperature (Suhir, 1989).

Research of single-layered «cylinders with
temperature—dependent properties has been outlined in
the review of Noda (1986). In particular,
incompressible elastic cylindrical shells in a thermal
field symmetric with respect to the axis were first
considered by Hilton (1952) and Trostel (1958). The
closed form solution of the plane strain problem was
obtained. The solutions illustrated by Noda (1986) for
compressible elastic cylinders include:

-closed form solution in the case where one of

Lame's elastic coefficients is a power function

of radius;

—approximate solutions wutilizing the Gauss

hypergeometric equations in cases where one of

Lame’'s elastic coefficients is an exponential

function of radius as well as where this

coefficient is a power function of a sum of a

constant and the radius.

Perturbation technique was applied to obtain
solutions in case where shear modulus is dependent on
temperature. Transversely isotropic single-layered
cylinders were considered by Hata and Atsumi (1968) who
employed a perturbation method to obtain an approximate
solution. .

In this paper strategies for an analytical
solution of the axisymmetric thermal stress problem in
multilayered cylinders with a constant difference
between temperatures outside and inside the assembly are
discussed. The solutions are obtained by an assumption
that cylinders are in the state of plane strain. It is
shown that if the material properties of each
constituent layer can be supposed to remain constant, an
exact solution is available. Numerical results are
presented for a double-coated optical fiber in a uniform
thermal field.

The studies of thermoelasticity of multilayered and non—
isotropic cylinders usually disregard the fact that the
coefficients of thermal expansion depend on the stresses
in the material. This fact was brought to the attention

of the author by Prof. Bert (Bert, 1990). The
relationships between the coefficients of thermal
expansion and the stresses were developed for

orthotropic materials by Ungar, et.al. (1964). Such
relationships were not used in the present paper.
However, the present solution is still applicable (as
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well as other solutions cited above), although they have
to be iterative. This means that the coefficients of
thermal expansion must be corrected at each step
according to the level of stresses obtained in the
previous iteration,

Governing Equations

Consider a multilayered hollow or solid cylinder shown
in Fig. 1. Temperature inside the hollow cylinder
remains constant and equal to T;. In the case of a
solid cylinder it is assumed that the core retains
constant temperature T,. In both cases temperature
outside the assembly is equal to Tp.;. The steady state
thermal field within ry<r<r,; is described by the
conduction equation (Ingersoll, et. al., 1948) written
here by assumption that the thermal conductivity remains
constant within each layer.

d?r  1dT
2T = — —=20
VIt & (0

The solution of this equation for the j-th layer is

T = Bj gnr + Pj (2)

where TjSr<rj

e L= Tm T = T(xj)
1 gnrj —gnrjy
T gorjy — Ty 0L
Jognrgeg - pnrg (3)

The values of T; (1<j<n) can be obtained from the
continuity requirements. In this problem the length of
the assembly is much larger than its external radius.
The ends of the assembly are assumed to be restrained so
that the axial strain ¢, = 0 and the cylinder is in the
state of plane strain. Although this assumption
simplifies the analysis, other axial boundary conditions
could be also incorporated in a manner shown by
Timoshenko and Goodier (1970).

The problem being axisymmetric, the strain-displacement
relationships are
du -4
T T x

(&)

E du

-
op = (T+vj) (1-2v ;) dr

E.
J ) —
% = (T (=)

In these equations E and v denote the modulus of
elasticity and the Poisson’s ratio, a is a function of
the coefficient of thermal expansion &(T) chosen from
the requirement that

T

al = & (T) dT.

/
TD

The subscript j indicates
Shearing stresses 1, are excluded from the
consideration. This is justified for central portions
of long assemblies where one can assume that v,. = O.
The equilibrium equation is

the number of a layer.

(A-v)) g * Vi

[v; § + Ay

Cross section of a multilayered cylinder
with the numbers of 1layers. If the
cylinder is solid, the number of the core
is 0.

Fig. 1.

where u is the radial displacement.

The Hookean relations written here for the j-th
layer

Eje; = g,—vj(or+ag) + Eja;T = 0
Ejer = op—vj(ogto,) + Ejo;T

Ejeg = og—vj(op+oz) + EjoyT (5)
yield the axial stresses in the form
9z = vj(optog) — EjoyT (6)

and the plane constitutive equations known in the theory
of elasticity (Dugdale and Ruiz, 1971):

r 1—21/1
E] _ E;a;T
r 1-2v; 7

do Or— % _

&+ 0 (8)
Note that Poisson’s ratios of isotropic materials are
often insensitive to variations of temperature.
Therefore, they are supposed to remain constant. On. the
other hand, the moduli of elasticity of such materials
as steel, alluminum etc. are usually affected by
temperature. The effect of temperature on the
coefficient of thermal expansion can be also 1m‘ports-mt.
Therefore, given the distribution of temperature, i.e.
equation (2), one can derive the corresponding
analytical relationships Ej = Ej(r) and a;j =.a,-(r). Then
the substitution of (2) and (7) into (8) yields
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9
where

Fr(x) = gy

! 1ty )
f2(x) = 'i:_:f [Ej(r) + r 2D,
o) = ﬁ (A=) - vy 1)
d
fi(r) = 2 [Ej(r)ej(r)Tj(x)]

(10)

An important particular case is where both the moduli of
elasticity and the functions of coefficients of thermal
expandion are linear functions of temperature, i.e.

Ej = Ej; — Ejz gnr

an

aj = aj) — @jz L0

where Ej; and aj; (i=1,2) depend both on material
properties of the j-th layer as well as on Tj, Tj4, rj
and rjy.

r

Then the coefficients in equation (9) become
filx) = Ly (Ej;=Ej; £nr)
1 1+y; =2
1 1(g;, - Ejp) — Eja £nr])
fa(x) = Ttv; [( ji j2 j2
1
falx) = T, {[(1~vj)Ej; + vjEj2] — (1-vj)Ej, £ 0r]
fa(r) = % [Kp( 2nr)? + K; £nr + Kq)
(12
where 12
Ky = 3Ejy2j2Bj
K; = 2(PjEjaj; — BiEjajz — BjEjej)
Ky = BjEjiejy — PjEjpajy — PiEjiajs

A closed form exact solution is available if the
properties of each of the constituent materials remain
constant, i.e. independent on the radial co-—ordinate.
In this case, according to Timoshenko and Goodier (1970)
displacements and stresses in the j—th layer are

1+ 1 P D;j
uj = 71 4. = N =)
j jE aj T I T(x)rdr + Cjr + ¢
i
r - -
Ja ol 1 By &G _Dy
or ) = !}T(r)rdr * Tay, (1—2u,- =)
J
. r p N
aj=a_j_}§‘.jl _M+EJ_EJ__+2
o =15 w [ T T Ty b am
i
where éj and ﬁj are constants of integration and aj = aj.
Substituting T(r) from (2) one obtains
. D.
u = % %{ ajB; (r 2nr+Cire)
i
) E:a:B: D; Eja;T
S PR ) 1. S § PRy —(1=20:)2h] - %
o 2(1_Vj)(1"21/j)[1 W+ £nr+Ci—( uj)r“ T-2v;
E:aiB; D; Ejo;T
iy = ———1—1—1———5»11' + pnr+Ci+(1-2v;)=i] - =5
%6 T 3(1—v;) (I-2v;y ) i k=4 1-2vj (15)
2,
where C; and Dj are new constants of integration. There d’u + 1_ du _ ‘iz =0
. N drZ rdr r (18)
are 2n constants of integration for a n-layered )
assembly. These constants can be determined from two

boundary conditions at r
1) conditions at
(n-1) interfaces.

ry and ¥ = rpy and from 2(n—

The conditions at the j—th interface

are the continuity of the displacements and radial
stresses:
uj =y, o =g U (16)

Boundary conditions at internal and external surfaces of
a hollow assembly are

al(ry) =0 and o.M (xrmy) = 0 17)
respectively.
If the assembly is solid and the elastic core
temperature is constant, T = T,;, the equilibrium

equation for the core is

35

The solution of (18) for a solid cylinder is

u = Cpr (19)

where Cp is a constant.

The number of constants of integration for a solid n—
layered cylinder is equal to 2nil (obviously, the core
is not counted as a layer). These constants can be
determined from 2n continuity conditions including the
conditions at the interface between the core and the
first layer plus the boundary condition at r = Tp;.

1f one of the surfaces of the assembly is attached to a

rigid body, the corresponding boundary condition is u =

1990 InterSociety Conference on Thermal Phenomena



Strategies for Analytical Solution: Temperature—
Dependent Properties

It is interesting to note that numerical approaches
based on application of such initial value methods as
Runge-Kutta or predictor—corrector are not appropriate
for this problem. This is due to difficulties in
satisfying the condition of continuity of radial
stresses when integrating equation (9) numerically.
Therefore, analytical methods of solution can be
attractive. Three of such methods are considered in
this section.

1. Piece-wise approximation of material properties

This method discussed by Birman (1989) in application to
calculations of thermal response of reinforced panels
can be used in the present problem as well. Accoridng
to the method, the layers are subdivided into a number
of narrow rings such that the properties of material
within each ring remain constant. Then the analytical
solution within a j—th ring is given by (15) while the
interface conditions are still (16). Therefore, this
approach enables us to obtain a closed form solution of
the problem with very high accurasy.

Note that a standard finite element or a finite
difference code would usually require a similar
assumption regarding the properties of materials within
circular regions of the assembly. The advantage of the
proposed method is that it provides a closed form
solution of the problem once an approximation of the
properties is introduced.

2. Reduction to Gauss equation
If the coefficients of equation (9) are given by (12),
the problem can be reduced to a hypergeometric Gauss

equation (Whittaker and Watson, 1952; Kamke, 1959).

Consider a j-~th layer and introduce nondimensional

parameters
— r _
r=—" o=
Tjs+r Tjsy

(20)

Obviously, the solution of the conduction equation (1)
is

T ~B; &nt + P; (21)
where
B; = Ti= T P: = T
Lnr; J A
J (22)

The equilibrium equation (9) becomes

@

—u —
= - fa(l’)iz' fi(x)

—.d& =1
fl(r)ﬁz + fz(r)i (23)

where f;(r¥) can be obtained from the corresponding
functions in (12) by replacement of r with <.
Obviously, the constants Eji and aj; in fi(x) are
different from those in (12).

If the thickness of the layer is small compared to Tjs,
£nr=r-1. Then (23) becomes
&5

Tk )52 = — du - —
(k1t-ky)r = * (aTHk,) T d_‘;‘ - (ksTHkg) T =

kT® + keT? + koT (24)

36

The coefficients k; which can be obtained from fi(x) by
trivial transformations which are omitted for brevity.

The solution of the homogeneous equation obtained from
(24) is

—. KT
C. (_.1_
y K,

u =

(25)

where y(x) is a solution of the hypergeometric equation

H(a, B, 7, ¥, %) = x(x-1)y" + [(e+p+l)x—] y' +

afy - 0 (26)
and the constants ¢, a, 8 and vy can be calculated as
shown by Kamke (1959).

The general solution of (24) is

U= 6yf "‘% dr-4.f B2 ¥ + 64, + Dy, @7)

were ¢; are solutions of the hypergeometric equation
(26) and Cj, Dj are constants of integration,.

W= ¢1d_q_52
dr dr

R =k + kgr? + kg (28)

The expressions under the integrals in (27) can be
represented by proper algebraic fractions. Integration
of such fractions was considered by Fichtengoltz (1966)

who provc?.d that any proper fraction can be represented
by a finite sum of the following simple fractions:

A A Mr+N

=, (k=2,3,... _—

r-a’ (r-a)k ) r24pT+q and
Mr+N (m=2,3,...)

(r2+pr+ qQ"

where A,M,N,a,p and q are real numbers and p?<4q. The
methods of calculations of these numbers and the
integrals of simple fractions were also shown by
Fichtengoltz (1966).

The constants of integration C; and Dj can be determined
from the conditions (16) and (17).

3. The method of Frobenius (Power series solution)

This method can provide a simpler and less laborious
solution than the procedure based on reduction to a
Gauss equation. The method requires expansion of the
coefficients fi(;) in (23) in Maclaurin’s series.
Suppose, for example, that (24) can provide a
satisfactory accurasy. A solution can be sought in the
form

U =1%(ay + ar + arz + ...)  (29)

where a; and ¢ are unknown coefficients. Substituting
(29) into the homogeneous equation obtained from (24),
combining the like powers of r and equating to zero the

coefficients of the like powers yield a set of algegraic
equations:

1990 InterSociety Conference on Thermal Phenomena



[~e(e-1)k; + ck, — kg] ap = O

[=(e+l)ck, + (c+l)k, — kg] a; + [c(c-1)k; + cky — ks] ay = O

[—(c+2) (c+D)k, + (c42)k, — kg] a5 + [(cH+l)ck, + (c+l)ky — kg] a; = O

Assuming that a, is a constant of integration one can
obtain two values c¢; and c; from the first equation
(30). Then the consequent coefficents can be expressed

in terms of a, using

a = Septi-1) (epti-2)kgH(epti-1yky ks
17 (e #1) (e +i-Dk,y—(c +i)ky+ks

aj-1

(31

The similar relationships aj(a,) can be obtained if c,
is replaced by c; in (31). The values of a, can be
chosen arbitrary. Then the general solution for the j—
tt-\ layer is represented by (27) where ¢, and ¢, are
given by (29): ¢; = u(ey,ai), ¢, = uley,a).

.(30)

Applications to Fiber Optics

An interesting particular case is the calculation of
thermal stresses in a stretched optical fiber. In this
problem temperature is usually constant throughout the
assembly which represents a solid cylinder with the
fiber as a core and one or two layers of coating. The
cross section of a dual-coated optical fiber is shown in
Fib. 2. The study of dual-coated fibers based on the
strength of materials solutions has been recently
published by Suhir (1988). The closed form solution
obtained in our paper is based on the theory of
elasticity and on the assumption that the fiber is
stretched and there is no slipping between the core and
the layers. Displacements and stresses in the assembly
subject to temperature T are:

Fiber: ug = Gor
E EgaoT
0 o g0 = 0 - 350
or(® = o T (T=vg) ° ~ 1-2v;
Layers (j=1,2):
1+v; ;T 2_,..2 R D;
DIl =t i R L
. E: T i C; D;
Gy . _ @ 2_p.2 ) M oi.J R
ort T-v; 2c? S RIS Fl = )
. iEj i i Dj
Gy _oiEi T oo o2y _ BT B G
0" iJ_T,‘LJ' ﬁz(r ;%) 1—u;+ 1+ui(1—2u1 I‘Jz) (32)
where aj = aj.
Five constants of integration are found from the
continuity conditions (16) for j=1 and 2 and from
O I o, B (r;)=0.
1 [‘é The calculations were performed for an assembly
consisting of a fiber coated by silicon (primary

wl

Fig. 2. Cross
fiber

0 = fiber, 1,2 = coatings.

section of a dual-coated optical

37

coating, layer 1) and nylon (secondary coating, layer
2). The properties of constituent materials and the
dimensions of the cross section are given in Table 1.
The distribution of radial and circumferential normal
stresses is shown in Fig. 3. This Figure also presents
the axial stress o, calculated from (6). This stress
can be used to check stability of the assembly.

Acknowledgement Discussion with Dr. E. Suhir of AT & T
Bell Laboratories and Professor C.W. Bert of the
University of Oklahoma are warmly appreciated.
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Table 1: Properties of constituent materials in
dual-coated fiber

Number E; 10%rj,, vj 10‘5ch-e
Layer of layer, j (MPa) (m) (1/°C)
Fiber (core) 0 65x10°% 62.5 0.16 80
Primary coating 1 18.2 250 0.48 2.6
Secondary coating 2 2139 471 0.33 100
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