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Nonlinear H1 Missile
Longitudinal Autopilot Design
with μ¡D Method

M. XIN, Member, IEEE

S. N. BALAKRISHNAN
University of Missouri—Rolla

In this paper, a new nonlinear H1 control technique, called

μ¡D H1 method, is employed to design a missile longitudinal

autopilot. The μ¡D H1 design has the same structure as that

of linear H1, except that the two Riccati equations that are part
of the solution process are state dependent. The μ¡D technique

yields suboptimal solutions to nonlinear optimal control problems

in the sense that it provides an approximate solution to the

Hamilton-Jacobi-Bellman (HJB) equation. It is also shown that

this method can be used to provide an approximate closed-form

solution to the state dependent Riccati equation (SDRE) and

consequently reduce the on-line computations associated with the

nonlinear H1 implementation. A missile longitudinal autopilot

design demonstrates the capabilities of μ¡D method. This new

nonlinear H1 design also shows favorable results as compared

with the linear H1 design based on the linearized model.
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I. INTRODUCTION

Missile autopilots are classically designed using
linear control approaches such as frequency domain
design, linear quadratic regulator or linear H1
robust control. The plant is linearized around fixed
operating points. Gain scheduling [1—3] can then be
used to cover the whole flight envelope. However,
the dynamics of high performance aircrafts and
missiles are inherently nonlinear due to inertial
coupling, aerodynamic effects, and actuator limits.
Though autopilot designs are typically based on
linearized dynamics models, modern missile systems
often operate in flight regimes where nonlinearities
significantly affect the dynamic response. Many
nonlinear control methods have been proposed for
missile autopilot design in the past. Among the
methods that have been investigated are nonlinear
optimal and robust control design approaches based
on the solutions to the Hamilton-Jacobi-Bellman
(HJB) and Hamilton-Jacobi-Isaacs (HJI) equations,
respectively. However solving these two partial
differential equations analytically is very difficult. In
[4], a power series expansion was used in the design
of nonlinear flight control systems undergoing high
angles of attack. This method was also applied to the
control of highly maneuverable aircraft in [5] and
compared with the performance of a conventional
proportional-integral (PI) gain scheduled controller.
The results showed similar performances. McLain
and Beard [6] employed the successive Galerkin
approximation technique to solve the HJB equation
and applied it to the nonlinear missile autopilot
design. But since the control laws are given as a
series of basis functions, they are inherently complex
to solve. In addition, to find an admissible control
to satisfy all the ten conditions proposed here is
not an easy task. Wise and Sedwick [7] employed
nonlinear H1 optimal control to design a pitch
plane autopilot for agile missiles. A control law was
obtained by approximating the solution to the HJI
equation using the classical method of characteristics.
However, the design is still based on a gain scheduled
linear H1 solution with the linearized dynamics.
The nonlinearity is treated as a deviation from the
linearized solution.
Another recently emerging technique that

systematically solves the nonlinear regulator problem
is the state dependent Riccati equation (SDRE)
method [8]. By turning the equations of motion
into a linear-like structure, this approach permits
the designer to employ linear optimal control
methods such as the linear quadratic regulator
(LQR) methodology and the H1 design technique
for the synthesis of nonlinear control systems.
It can be used for a broad class of nonlinear
regulator problems [9]. In [10], a state dependent
Riccati differential equation approach was used to
design an integrated missile guidance and control.
The problem was formulated as a nonlinear H1
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control problem. As stated in this paper, the SDRE
approach is computationally intensive and, thus,
requires significant processor capability for on-line
implementation. The reason is that the SDRE method
needs on-line computation of the algebraic Riccati
equation at each sample time when implemented. The
method developed in this study yields approximate
analytical solutions.
In this paper, a new suboptimal nonlinear

controller synthesis (μ¡D approximation) technique
based on an approximate solution to the HJB equation
is proposed. By introducing an intermediate variable
μ and perturbations to the cost function, the HJB
equation is reduced to a set of recursive algebraic
equations. Solving these equations successively
gives a closed-form expression for suboptimal
control. In [11], the μ¡D H2 formulation was
used to design a nonlinear missile longitudinal
autopilot to track normal accelerations. This
approach has also been successfully employed to
design a six degree-of-freedom nonlinear hybrid
bank-to-turn/skid-to-turn missile autopilot in [12].
In [8], the SDRE H1 problem was formulated and

shown to lead to solving two SDREs for a feedback
control. However, solving two Riccati equations
on-line is very time consuming. In this paper, the
μ¡D H1 design is proposed to address the same
problem as in [13]. We demonstrate that the μ¡D H1
design does not require on-line solutions of Riccati
equation and gives an approximate closed-form
solution to the two SDREs associated with the
nonlinear H1 problem. We also compare the linear
H1 control results based on the linearized dynamics
with our nonlinear H1 design and show that the linear
design is not able to produce good tracking response
in the face of large state variations.
The rest of the paper is organized as follows.

The nonlinear missile longitudinal dynamics are
described in Section II. In Section III, the μ¡D H1
formulation is presented; design of the missile
autopilot with this technique is developed in
Section IV. Numerical results and analysis are given
in Section V. Conclusions are made in Section VI.

II. NONLINEAR MISSILE LONGITUDINAL DYNAMICS

The missile model used here is taken from [13].
The model assumes constant mass, i.e., post burnout,
no roll rate, zero roll angle, no sideslip, and no yaw
rate. The nonlinear equations of motion for a rigid
airframe reduce to two force equations, one moment
equation, and one kinematic equation

_U+ qW =

X
FBX
m

(1)

_W¡ qU =
X

FBZ
m

(2)

Fig. 1. Longitudinal forces and moment acting on missile.

_q=

X
MY

IY
(3)

_μ = q (4)

where U and W are components of velocity vector
~VT along the body-fixed X and Z axes; μ is the pitch
angle; q is the pitch rate about the body Y axis; m
is the missile mass. The forces along the body-fixed
coordinates and moments about the center of gravity
are shown in Fig. 1.
The forces and moment about the center of gravity

are described byX
FBX = Lsin®¡Dcos®¡mg sinμ (5)X
FBZ =¡Lcos®¡D sin®+mg cosμ (6)X
MY = M̄ (7)

where ® is the angle of attack, L denotes aerodynamic
lift, D denotes drag, and M̄ is the total pitching
moment. The lift, drag, and pitching moment are as
follows

L= 1
2½V

2
T SCL, D = 1

2½V
2
T SCD, M̄ = 1

2½V
2
T SdCm

(8)

where ½ is the air density and VT is the missile speed,
i.e., VT =

p
U2 +W2. Note that the normal force

coefficient is used to calculate the lift and drag
coefficients:

CL =¡CZ cos®, CD = CD0 ¡CZ sin® (9)

where CD0 is the drag coefficient at zero angle of
attack.
The nondimensional aerodynamic coefficients for

the missile at 20,000 ft altitude are [13]:

CZ = an®
3 +bn®j®j+ cn

μ
2¡ M

3

¶
®+ dn± (10)

Cm = am®
3 +bm®j®j+ cm

μ
¡7+ 8M

3

¶
®+dm±+ emq:

(11)

In this paper, we adopt Mach number M, angle of
attack ®, flight path angle °, and pitch rate q as the
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TABLE I
Aerodynamic Coefficients

Force Moment

an = 19:373 am = 40:440
bn =¡31:023 bm =¡64:015
cn =¡9:717 cm = 2:922
dn =¡1:948 dm =¡11:803
CD0

= 0:300 em =¡1:719

TABLE II
Physical Parameters

Symbol Name Value

P0 Static Pressure 973.3 lb/ft2

IY Moment of Inertia 182.5 slug¡ ft2
S Reference Area 0.44 ft2

d Reference Length 0.75 ft
m Mass 13.98 slug
a Speed of Sound 1036.4 ft/s
g Gravity 32.2 ft/s2

elements of the state space since they appear in the
expressions for the aerodynamic coefficients. Note
that

tan®=
W

U
, VT =U

2 +W2

M =
VT
a
, ° = μ¡®

(12)

and

_M =
_VT
a
, _VT =

_UU+ _WW
VT

: (13)

The state equations of motion can now be written as

_M =
0:7P0S
ma

[M2(CD0 ¡CZ sin®)]¡
g

a
sin° (14)

_®=
0:7P0S
ma

MCZ cos®+
g

aM
cos°+ q (15)

_° =¡0:7P0S
ma

MCZ cos®¡
g

aM
cos° (16)

_q=
0:7P0Sd
IY

M2Cm: (17)

Numerical values for the coefficients in (10) and
(11) are given in Table I and the physical parameters
associated with this missile are given in Table II.
Substitution of the parameter values into (14)—(17)

yields:

_M = 0:4008M2®3 sin®¡0:6419M2j®j®sin®

¡ 0:2010M2
μ
2¡ M

3

¶
®sin®¡0:0062M2

¡ 0:0403M2 sin®±¡ 0:0311sin° (18)

_®= 0:4008M®3 cos®¡0:6419Mj®j®cos®

¡0:2010M
μ
2¡ M

3

¶
®cos®

¡0:0403M cos®±¡ 0:0311cos°
M

+ q (19)

_° =¡0:4008M®3 cos®+0:6419Mj®j®cos®

+0:2010M
μ
2¡ M

3

¶
®cos®

+0:0403M cos®±+0:0311
cos°
M

(20)

_q= 49:82M2®3¡78:86M2j®j®

+3:60M2
μ
¡7+ 8M

3

¶
®¡ 14:54M2±¡2:12M2q:

(21)

A second-order actuator dynamics is included in the
design and analysis. This model is given by· _±

±̈

¸
=
·
0 1

¡!2a ¡2³!a

¸·
±
_±

¸
+
·
0

!2a

¸
±c (22)

where the damping ratio & = 0:7, and the natural
frequency !a = 50.

III. FORMULATION OF THE NONLINEAR H1
PROBLEM

Consider a general nonlinear system

_x= f(x)+Bw(x)w+Bu(x)u (23)

z = cz(x) +Dzu(x)u (24)

y = cy(x) +Dyw(x)w (25)

where x 2 Rn, u 2 Rm1 , w 2 Rm2 , w is the exogenous
input including tracking command and noises injected
into the system, u is the control, z is the performance
output, and y is the measurement output. Assume
that all these functions are smooth and f(0) = 0. It is
desired to find a controller such that the closed-loop
system is internally stable and for ° ¸ 0Z T

0
kz(t)k2dt· °2

Z T

0
kw(t)k2dt (26)

for all T ¸ 0 and all w 2 L2(0,T). Then the exogenous
signals will be attenuated by °. The μ¡D H1
formulation is a natural extension of the linear H1
design. Bring the nonlinear dynamics to the linear-like
structure

_x= A(x)x+Bw(x)w+Bu(x)u (27)

z = Cz(x)x+Dzu(x)u (28)

y = Cy(x)x+Dyw(x)w (29)

such that [A(x),Bw(x)], [A(x),Bu(x)] and [Cz(x),A(x)],
[Cy(x),A(x)] are pointwise stabilizable and detectable,
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respectively, for x 2 −, where − is a compact set
in Rn.
If the coefficient matrices A(x), Bw(x), Bu(x),

Cz(x), Dzu(x), Cy(x), Dyw(x) are constant matrices,
the standard linear H1 problem leads to solving the
two Riccati equations given below in terms of their
Hamiltonians [14]

H1 :
·
A¡BuR¡1u RT12 °¡2BwB

T
w¡BuR¡1u BTu

¡R1 +R12R¡1u RT12 ¡(A¡BuR¡1u RT12)T
¸
(30)

H2 :

"
(A¡V12R¡1w Cy)T °¡2CTz Cz ¡CTy R¡1w Cy
¡V1 +V12R¡1w VT12 ¡(A¡V12R¡1w Cy)

#
(31)where

V1 = BwB
T
w, V12 = BwD

T
yw

Rw =DywD
T
yw R1 = C

T
z Cz

R12 = C
T
z Dzu and Ru =D

T
zuDzu:

(32)

The nonlinear H1 formulation we are proposing is a
natural extension of the linear H1 formulation in the
sense that the matrices in Hamiltonians H1 and H2 are
state dependent. For later use, we assume that (30)
and (31) are state dependent and we omit the x for
brevity. Assume that the solution to the SDREs (30)
and (31) are X and Y, respectively.
Also, the nonlinear feedback controller is

constructed via

dx̂

dt
= Ac(x̂)x̂+Bc(x̂)y (33)

u= F(x̂)x̂ (34)

where Ac, Bc, and F are

Ac = A+BuF+ °
¡2BwB

T
wX +ZL(Cy + °

¡2DywB
T
wX)

(35)

Bc =¡ZL, Z = (I¡ °¡2YX)¡1 (36)

F =¡R¡1u [BTu X +RT12], L=¡(YCTy +BwDTyw)R¡1w :
(37)

° has to be sufficiently large such that the following
three conditions are satisfied [9]

(i) X(x̂)> 0 (ii) Y(x̂)> 0 and

(iii) ½[X(x̂)Y(x̂)]< °2

where ½ represents the maximum eigenvalue. Up to
this point, this is the same formulation as the SDRE
H1 [9]. However, to employ the SDRE H1 controller,
one needs to solve the algebraic Riccati equations (30)
and (31) on-line at each sample point.

IV. SOLUTION TO THE NONLINEAR H1 PROBLEM
USING μ¡D METHOD

The μ¡D suboptimal control technique [15]
can be used to find an approximate closed-form
solution to the SDRE-like equations (30) and (31).
The basic procedure of applying the μ¡D method is
summarized as follows [15].
The class of nonlinear time-invariant systems that

the μ¡D method is addressing is described by

_x= f(x)+B(x)u: (38)

The objective is to find a controller that minimizes the
quadratic cost function:

J =
1
2

Z 1

0
(xTQx+ uTRu)dt (39)

where x 2 − ½ Rn, f 2 Rn, B 2 Rn£m, u 2U ½ Rm,
Q 2 Rn£n, R 2 Rm£m, Q is a semi-positive definite
constant matrix, and R is a positive definite constant
matrix. It is assumed that − and U are compact sets in
Rn and Rm, respectively, and that f(x) is continuously
differentiable in x on − and f(0) = 0.
The solution to the infinite-horizon nonlinear

optimal control problem represented by (38), (39)
can be obtained by solving the HJB partial differential
equation [16]:

@VT

@x
f(x)¡ 1

2
@VT

@x
B(x)R¡1BT(x)

@V

@x
+
1
2
xTQx= 0

(40)

where V(0) = 0, V(x)> 0, and V(x) is continuously
differentiable.
The expression for optimal control is given by

u=¡R¡1BT(x)@V
@x

(41)

and the optimal cost is obtained by using (41) as

V(x) = min
u

1
2

Z 1

t

(xTQx+ uTRu)dt: (42)

Since a closed-form solution to @V=@x is difficult to
obtain, the μ¡D method is used to find approximate
solutions to the HJB equation. To this end,
perturbations are added to the cost function which
transfers equation (39) to

J =
1
2

Z 1

0

(
xT

"
Q+

1X
i=1

Diμ
i

#
x+uTRu

)
dt (43)

where μ is an intermediate variable used for the
purpose of power series expansion. μ and Di are
chosen such that Q+

P1
i=1Diμ

i is semi-positive
definite.
For later use, we rewrite the state equation as

_x= f(x) +B(x)u

=
½
A0 + μ

·
A(x)
μ

¸¾
x+

½
g0 + μ

·
g(x)
μ

¸¾
u (44)
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where A0 is chosen to be a constant matrix such
that (A0,g0) is a stabilizable pair and f[A0 +A(x)],
[g0 +g(x)]g is pointwise controllable. The resulting
perturbed HJB equation corresponding to (43)
becomes

@VT

@x
f(x)¡ 1

2
@VT

@x
B(x)R¡1BT(x)

@V

@x

+
1
2
xT

Ã
Q+

1X
i=1

Diμ
i

!
x= 0: (45)

Define

¸=
@V

@x
: (46)

Then, a power series solution to ¸ is assumed to be

¸=
@V

@x
=

1X
i=0

Tiμ
ix (47)

where Ti are assumed to be symmetric matrix. Now,
the problem reduces to determination of Ti.
A recursive μ¡D algorithm to calculate Ti is

obtained by substituting (47) into the HJB equation
(45) and equating the coefficients of powers of μ to
zero:

T0A0 +A
T
0T0¡T0g0R¡1gT0T0 +Q = 0 (48)

T1(A0¡ g0R¡1gT0T0)+ (AT0 ¡T0g0R¡1gT0 )T1

=¡T0A(x)
μ

¡ A
T(x)T0
μ

+T0g0R
¡1 g

T(x)
μ

T0

+T0
g(x)
μ
R¡1gT0T0¡D1 (49)

T2(A0¡ g0R¡1gT0T0)+ (AT0 ¡T0g0R¡1gT0 )T2

=¡T1A(x)
μ

¡ A
T(x)T1
μ

+T0g0R
¡1 g

T(x)
μ

T1

+T0
g(x)
μ
R¡1gT0T1 +T0

g(x)
μ
R¡1

gT(x)
μ

T0

+T1g0R
¡1gT0T1 +T1g0R

¡1 g
T(x)
μ

T0

+T1
g(x)
μ
R¡1gT0T0¡D2 (50)

Tn(A0¡ g0R¡1gT0T0)+ (AT0 ¡T0g0R¡1gT0 )Tn

=¡Tn¡1A(x)
μ

¡ A
T(x)Tn¡1

μ

+
n¡2X
j=0

Tj
g(x)
μ
R¡1

gT(x)
μ

Tn¡2¡j

+
n¡1X
j=0

Tj

·
g0R

¡1 g
T(x)
μ

+
g(x)
μ
R¡1gT0

¸
Tn¡1¡j

+
n¡1X
j=1

Tjg0R
¡1gT0Tn¡j ¡Dn: (51)

As the right-hand side of (49)—(51) is a function of
x and μ, we denote Ti as Ti(x,μ) accordingly. Note
that (48) is an algebraic Riccati equation and that
equations (49)—(51) are Lyapunov equations that
are linear in terms of Ti(x,μ). The resulting feedback
control can be written as

u=¡R¡1BT(x)@V
@x

=¡R¡1BT(x)
1X
i=0

Ti(x,μ)μ
ix:

(52)
The key component of the μ¡D approach is the
perturbation matrices Di, i= 1, : : :n constructed in the
following pattern:

D1 = k1e
¡l1t
·
¡T0A(x)

μ
¡ A

T(x)T0
μ

+T0g0R
¡1 g

T(x)
μ

T0 +T0
g(x)
μ
R¡1gT0T0

¸
(53)

D2 = k2e
¡l2t
·
¡ T1A(x)

μ
¡ A

T(x)T1
μ

+T0g0R
¡1 g

T(x)
μ

T1

+T0
g(x)
μ
R¡1gT0T1 +T0

g(x)
μ
R¡1

gT(x)
μ

T0

+T1g0R
¡1 g

T(x)
μ

T0 +T1
g(x)
μ
R¡1gT0T0

+T1g0R
¡1gT0T1

¸
(54)

...

Dn = kne
¡lnt

8<:¡Tn¡1A(x)μ
¡ A

T(x)Tn¡1
μ

+
n¡1X
j=0

Tj

·
g0R

¡1 g
T(x)
μ

+
g(x)
μ
R¡1gT0

¸
Tn¡1¡j

+
n¡2X
j=0

Tj
g(x)
μ
R¡1

gT(x)
μ

Tn¡2¡j

+
n¡1X
j=1

Tjg0R
¡1gT0Tn¡j

9=; (55)

where ki and li > 0, i= 1, : : :n are design parameters.
The justification of constructing Di in this manner

stems from the fact that large values for initial control
may be introduced by the μ¡D algorithm when
initial states are large if there are no Di terms on the
right-hand side of (49)—(51). This is due to the state
dependent terms A(x) and g(x) that could grow to
a high magnitude as x is large. For example, when
A(x) includes a cubic term, its magnitude could be
large if x is large. This large value will be reflected
in the solution for Ti, i.e., the left-hand side of
(49)—(51) as the Lyapunov equation is linear and has a
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constant coefficient. Due to the recursive nature of the
algorithm, this large value will be further propagated
into the solution for Ti+1 and amplified to even higher
values. Ultimately it could lead to higher levels of
control or even instability. So if Di is chosen such
that

¡ Ti¡1A(x)
μ

¡ A
T(x)Ti¡1

μ
+

i¡2X
j=0

Tj
g(x)
μ
R¡1

gT(x)
μ

Ti¡2¡j

+
i¡1X
j=0

Tj

μ
g0R

¡1 g
T(x)
μ

+
g(x)
μ
R¡1gT0

¶
Ti¡1¡j

+
i¡1X
j=1

Tjg0R
¡1gT0Ti¡j ¡Di

= "i(t)

8<:¡Ti¡1A(x)μ
¡ A

T(x)Ti¡1
μ

+
i¡1X
j=0

Tj

·
g0R

¡1 g
T(x)
μ

+
g(x)
μ
R¡1gT0

¸
Ti¡1¡j

+
i¡2X
j=0

Tj
g(x)
μ
R¡1

gT(x)
μ

Ti¡2¡j

+
i¡1X
j=1

Tjg0R
¡1gT0Ti¡j

9=; (56)

where
"i(t) = 1¡ kie¡li t (57)

is a small number, "i can be used to suppress this
large value from propagating in (49)—(51). In
summary, there are three functions for "i. The first
usage is to suppress the large control from occurring.
The second function is to satisfy some conditions
required in the proof of convergence and stability
of the above algorithm [15]. The third usage is
to modulate the system transient performance by
adjusting the parameters of ki and li. On the other
hand, the exponential term e¡lit with li > 0 is used to
make the perturbation terms in the cost function and
HJB equation die out very quickly.

REMARK μ is just an intermediate variable. The
introduction of μ is for the convenience of power
series expansion. It turns out to be cancelled when we
multiply μi in the final control calculation, i.e., (52).

The μ¡D method can be summarized in the
following steps:

1) The first algebraic Riccati equation (48) is
solved to get T0 once A0, g0, Q, and R are determined.
Note that the resulting T0 is a positive definite constant
matrix.
2) Solve the Lyapunov equation (49) to get

T1(x,μ). An interesting property of this as well as the

rest of equations is that the coefficient matrices A0¡
g0R

¡1gT0T0 and A
T
0 ¡T0g0R¡1gT0 are constant matrices.

Let Ac0 = A0¡ g0R¡1gT0T0. Through linear algebra,
(49) can be brought into a form like Â0Vec(T1) =
Vec[Q1(x,μ, t)] where Q1(x,μ, t) is the right-hand side
of (49); Vec(M) denotes stacking the elements of
matrix M by rows in a column vector form; Â0 =
I−ATc0 +ATc0 − I is a constant matrix and the symbol −
denotes the Kronecker product. The resulting solution
of T1 can be written as a closed-form expression
Vec(T1) = Â

¡1
0 Vec[Q1(x,μ, t)].

3) Solve (50)—(51) by following the procedure
in step 2. The number of Tis needed depends on the
applications. Simulation results show that T0, T1, and
T2 are sufficient to achieve satisfactory performance
for this missile autopilot problem.

As can be seen, closed-form solutions for T1, : : : ,Tn can
be obtained with just one matrix inverse operation.
The expression of Qi(x,μ, t) on the right-hand side
of the equations is already known and needs simple
matrix multiplications and additions.
From the above procedure we can observe that

the μ¡D method gives an approximate closed-form
solution to the HJB equation if we take a finite
number of terms in the expression for control. Next
we show that this approach in fact also gives an
approximate solution to the SDRE.
The first step to show relationship between the

SDRE and μ¡D methods is to assume that P(x) =P1
i=0Ti(x,μ)μ

i. As seen from (46) and (47),

@V

@x
= P(x)x: (58)

Also write f(x) in (38) as a state dependent coefficient
form:

f(x) = Ā(x)x: (59)

Substituting (58) and (59) into the HJB equation (40)
we can obtain the SDRE:

ĀT(x)P(x) +P(x)Ā(x)¡P(x)B(x)R¡1BT(x)P(x) +Q = 0:
(60)

Therefore the μ¡D approach gives an approximate
closed-form solution to this SDRE (60) if we take a
finite number of terms of Ti. To be more specific, in
the nonlinear H1 formulation, the two Hamiltonians
(30) and (31) can be related to (60) respectively as
follows.
For Hamiltonian (30):

A¡BuR¡1u RT12 = Ā(x)
BuR

¡1
u B

T
u ¡ °¡2BwBTw = B(x)R¡1B(x)

R1¡R12R¡1u RT12 =Q:
(61)
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Fig. 2. Tracking block diagram.

For Hamiltonian (31):

[A¡V12R¡1w Cy]T = Ā(x)

CTy R
¡1
w Cy ¡ °¡2CTz Cz = B(x)R¡1B(x)

V1¡V12R¡1w VT12 =Q:

(62)

In the next section, the μ¡D approach is used to
solve the nonlinear H1 problem by solving the two
state dependent Hamiltonian (30) and (31).

V. MISSILE LONGITUDINAL AUTOPILOT DESIGN

The controller objective is to design a suboptimal
controller which is able to drive the system to track
the commanded normal acceleration (in g) in the
presence of process noise and measurement noise. The
tracking block diagram is shown in Fig. 2.
The Kalman gain K1 and K2 are the solutions

of the dynamic feedback controller (33)—(34). The
control weight is ½c, the plant disturbance weight
is ½w, and the output disturbance weight is ½¢. The
performance weighting function for tracking error:
nZc ¡ nZ :

Wt(s) =
1

s+0:001
(63)

or in a state space form:

Wt =
·
At Bt

Ct 0

¸
=
·¡0:001 1

1 0

¸
: (64)

The performance output is

z = [zt zc]
T (65)

where zt is the weighted tracking error and zc is the
weighted control output.
The states for the design and simulation are chosen

to be
x= [M,®,°,q,±, _±,xt]

T (66)

where xt is the state associated with the weighting
function Wt.

The control variable is the fin deflection:

u= ±c: (67)

The measurement vector is

ym = [nz M q]T (68)

where nz is the normal acceleration (in gs) which is
described by the equation:

nz =

P
FBZ
mg

+cosμ =
0:7P0S
mg

M2CZ +cos(°+®):

(69)

In terms of the flight conditions at 20,000 ft altitude
nz is

nz = 12:901M
2®3¡ 20:659M2j®j®

¡ 6:471M2
μ
2¡ M

3

¶
®¡ 1:297M2±+cos(°+®):

(70)
The acceleration command

yr = nzc : (71)

So the output vector in the controller design is

y = [yr ym]
T = [nzc ym]

T = [nzc nz M q]T:

(72)

The exogenous input w consists of the commanded
normal acceleration nzc , process noise ¢plant, and
measurement noise ¢nZ , ¢M , and ¢q which are
associated with the measured normal acceleration,
Mach number, and pitch rate, respectively, i.e.,

w = [nzc ¢plant ¢nz ¢M ¢q]
T: (73)

In the simulation, they are assumed Gaussian with unit
variance.
The plant noise weights are chosen to be

½w = [0:2 0:01 0:01 0:2 0:01 0:01]T: (74)

The measurement noise weights on nz, M, and q are,
respectively, the diagonal elements of

½¢ =

2640:01 0 0

0 0:001 0

0 0 0:01

375 : (75)

The noise weights are chosen to be the same as the
variance of the random number generator used in the
simulation. The control weight ½c is used as the design
parameter which appears in Dzu matrix in (28).
The state dependent coefficient matrix A(x) and

Cy(x) in (27) and (29) are given in (76) and (77):
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A(x) =

2666666666666666666664

¡0:0062M
0:4008M2®2 sin®¡ 0:6419M2j®jsin®

¡0:2010M2
³
2¡ M

3

´
sin®

¡0:0311 sin°
°

0 ¡0:0403M2 sin® 0 0

¡0:0311 cos°
M2

0:4008M®2 cos®¡ 0:6419M j®jcos®

¡0:2010M
³
2¡ M

3

´
cos®

0 1 ¡0:0403M cos® 0 0

0:0311
cos°
M2

¡0:4008M®2 cos®+0:6419Mj®jcos®

+0:2010M
³
2¡ M

3

´
cos®

0 0 0:0403M cos® 0 0

0 49:82M2®2¡ 78:86M2j®j+3:6M2
³
¡7+ 8M

3

´
0 ¡2:12M2 ¡14:54M2 0 0

0 0 0 0 0 1 0

0 0 0 0 ¡2500 ¡70 0

¡ cos(°+®)
M

¡12:901M2®2 + 20:659M2j®j+6:471M2
³
2¡ M

3

´
0 0 1:297M2 0 At

3777777777777777777775
(76)

Cy(x) =

26664
0 0 0 0 0 0 0

cos(°+®)
M

12:901M2®2 ¡ 20:659M2j®j ¡ 6:471M2
³
2¡ M

3

´
0 0 1:297M2 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

37775 : (77)

The other coefficient matrices in state space (27)—(29)
are given by

Bw =

"
06£1 ½w 06£1 06£2
Bt 0 Bt½¢nz 01£2

#
Bu = [0 0 0 0 0 !2a 0]T

Cz =
·
01£6 Ct

01£6 0

¸
Dzu =

·
0

½c

¸
Dyw =

·
1 0 01£3
03£1 03£1 ½¢

¸
where ½¢nz is the measurement noise weight on nz that
is 0.01.
In order to avoid numerical problems during the

simulation, in (76), sin°=° is set to 1 when ° is less
than 10¡4.
The factorization of nonlinear equation (44) is as

follows:

_x=

(
Ā(x0)+ μ

"
Ā(x)¡ Ā(x0)

μ

#)
x

+
½
B(x0)+ μ

·
B(x)¡B(x0)

μ

¸¾
u (78)

with Ā(x) defined by (61) and (62). The advantage
of choosing this factorization is that in the μ¡D
formulation T0 is solved from A0 and g0. If we select
A0 = Ā(x0) and g0 = B(x0), we have a good starting
point for T0 because Ā(x0) and B(x0) retain much

more system information than an arbitrary choice of
A0 and g0.

VI. NUMERICAL RESULTS AND ANALYSIS

The simulation scenario is to initially command
zero g then at 1 s start a square wave normal
acceleration command of 10 gs returning to zero at
3 s. The initial conditions for the simulation were:
Mach number 2.5 with the rest of variables being 0.
The simulation was run at 100 samples per second. In
solving the two SDREs (30) and (31) with the μ¡D
method, we used T0, T1, and T2 in (52). Three terms
have been found to be a good enough approximation
in this problem. More terms could be added if needed.
The μ¡D design parameters were chosen as

D1 = e
¡10t

"
¡T0Ā(x)

μ
¡ Ā

T(x)T0
μ

+T0g0R
¡1 g

T(x)
μ

T0

+T0
g(x)
μ
R¡1gT0T0

#
(79)

D2 = e
¡10t

"
¡T1Ā(x)

μ
¡ Ā

T(x)T1
μ

+T0g0R
¡1 g

T(x)
μ

T1

+T0
g(x)
μ
R¡1gT0T1 +T0

g(x)
μ
R¡1

gT(x)
μ

T0

+T1g0R
¡1 g

T(x)
μ

T0 +T1
g(x)
μ
R¡1gT0T0

+T1g0R
¡1gT0T1

#
: (80)
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Fig. 3. Normal acceleration with ½c = 1:3, ° = 4.

Fig. 4. Control usage with ½c = 1:3, ° = 4.

The control weight ½c is set to 1.3. Figs. 3—9
demonstrate the results when ° is set to 4. The process
of seeking ° is started with a large enough value for
the constant ° to make sure the three conditions for
the existence of the H1 solution, i.e., X(x̂)> 0, Y(x̂)
> 0 and ½[X(x̂)Y(x̂)]< °2 are satisfied. Systematically,
the value of ° is reduced until one of these conditions
is violated. Setting a constant ° is for the purpose of
estimating a lower bound of ° that can be used as a
starting point for seeking a varying value of ° as the
feedback control is calculated at each instant. In doing
so, the on-line iteration time is reduced. As can be
seen in Fig. 3, the achieved normal acceleration tracks
the command very well. The control trajectory and
state responses are all well behaved which are shown
in Figs. 4—8. Fig. 9 shows that ½[X(x̂)Y(x̂)] is less than
°2. We present the plot of ½[X(x̂)Y(x̂)] because usually
the condition of ½[X(x̂)Y(x̂)]< °2 is most likely to
fail before the other two conditions, i.e., X(x̂)> 0 and

Fig. 5. Mach number response with ½c = 1:3, ° = 4.

Fig. 6. Pitch rate response with ½c = 1:3, ° = 4.

Fig. 7. Angle of attack response with ½c = 1:3, ° = 4.
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Fig. 8. Flight path angle response with ½c = 1:3, ° = 4.

Fig. 9. Variation of ½(X̂Ŷ) with ½c = 1:3, ° = 4.

Y(x̂)> 0 fail (see [14]). In order to show the effect of
the control weight ½c, we set it to 2 and the results for
this case are presented in Figs. 10—11. As can be seen,
the maximum control usage is reduced but normal
acceleration tracking is slower than the tracking with
smaller ½c.
Figs. 12—14 demonstrate the tracking performance

when ° is set to 3.65. As can be seen, the tracking
performance degrades after about 2.5 s. This can
be related very well to the history of ½[X(x̂)Y(x̂)] in
Fig. 14. The condition ½[X(x̂)Y(x̂)]< °2 is violated
quickly after 2.5 s.
Since we are dealing with nonlinear systems, we

expect to find a varying and tighter ° which will
satisfy the three conditions of the H1 problem at each
time. After we know a rough lower bound of ° as 4,
we proceed to search for smaller ° when applying
the μ¡D H1 controller at each time. An iterative
process is used at each epoch to find a ° starting from
4 such that the three conditions (i—iii) are satisfied.
Figs. 15—16 show the results where ° is found to be

Fig. 10. Normal acceleration with ½c = 2, ° = 4.

Fig. 11. Control usage with ½c = 2, ° = 4.

further reduced to the range of [0:05,1]. As observed
from Fig. 15, tracking history is good and is not
much different from Fig. 3. The only discernible
difference occurs from 0.1 s to 0.2 s. Fig. 16 presents
½[X(x̂)Y(x̂)] history. They are all well behaved.
Another issue associated with this design is

the parameter (k1, l1) and (k2, l2) in D1 and D2
matrices. They are chosen as (1,¡10) for both.
These parameters are selected based upon many
initial conditions of interest. For the initial state
x0 = [2:5 0 0 0 0 0 0]

T, the tracking is good and
the control usage is reasonable even without D1
and D2. To demonstrate the function of D1 and
D2, the results from a different initial state x0 =
[3:5 5± 5± 10±=s 0 0 0]T are given in Figs. 17—20.
As can be seen from Fig. 18, the initial maximum
control is about 56± without D1 and D2 but is reduced
to 24± with D1 and D2 added in Fig. 20. The selection
of (ki, li) in Di terms is problem dependent. A large
exponential parameter is chosen in this particular
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Fig. 12. Normal acceleration with ½c = 1:3, ° = 3:65.

Fig. 13. Control usage with ½c = 1:3, ° = 3:65.

Fig. 14. Variation of ½(X̂Ŷ) with ½c = 1:3, ° = 3:65.

Fig. 15. Normal acceleration with varying °.

Fig. 16. Variation of ½(X̂Ŷ) with respect to varying °.

problem because we found that the large control only
happens at a very early stage. It may not be the case
[12, 17] for other problems in which (ki, li) could be
small values. These are design parameters that need
tuning.
To demonstrate the effectiveness of the nonlinear

μ¡D H1 design, a linear H1 design is employed on
the linearized missile dynamics and is compared with
the nonlinear μ¡D H1 design. The linearization is
performed by taking the Jacobian of f(x) and cy(x) in
(23) and (25), respectively

_̃x= Ãx̃+Bww+Buu (81)

z̃ = Czx̃+Dzuu (82)

ỹ = C̃yx̃+Dyww (83)

where

x̃= x¡ x0, Ã=
@f(x)
@x

¯̄̄̄
x0

, C̃y =
@cy(x)

@x

¯̄̄̄
x0
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Fig. 17. Normal acceleration with x0 = [3:5 5
± 5± 10±=s 0 0 0]T

and ½c = 1:3 without Di.

Fig. 18. Control usage with x0 = [3:5 5
± 5± 10±=s 0 0 0]T and

½c = 1:3 without Di.

Fig. 19. Normal acceleration with x0 = [3:5 5
± 5± 10±=s 0 0 0]T

and ½c = 1:3 with Di added.

Fig. 20. Control usage with x0 = [3:5 5
± 5± 10±=s 0 0 0]T and

½c = 1:3 with Di added.

and x0 is the operation point at which the linearization
is taken. Bw, Bu, Cz , Dzu, and Dyw are constant
matrices. The linear H1 controller is designed based
upon the linearized model (81)—(83) and applied
to the original nonlinear model. The simulation
results are shown in Figs. 21—28. Figs. 21—26
demonstrate the results at the operating point x0 =
[2:5,0,0,0,0,0,0]T which is the same as the initial
states. As can be seen, the tracking performance
is only good during the first second. They do not
work well after 1 s because the jump in the normal
acceleration gives rise to large deviations of the
states from the linearized point. The minimum ° in
linear H1 design is 6.05. Note that the nonlinear
μ¡D H1 controller is designed with a constant ° = 4.
Figs. 27—28 show the normal acceleration tracking
and control usage when the operating point is chosen
to be x0 = [2:5,¡5±,5±,¡20±=s,0,0,0]T. It can be
observed that the performance after 1 s is better than
that at the first operating point. However, the normal
acceleration history is worse during the first second
and the maximum control usage goes up to 46±.
The minimum ° in this case is 6.25. In comparison,
the nonlinear μ¡D H1 controller performs much
better than the linear H1 controller at both
operating points. In addition, the ° value of nonlinear
H1 design is smaller than that of the linear H1
design.
As for implementation of the μ¡D H1 controller,

the major advantage the μ¡D technique provides is a
closed-form solution to the SDRE for the nonlinear
H1 problem. Thus, evaluating the closed-form
expression for X(x̂)Y(x̂) obtained from the μ¡D
algorithm is much easier. Specifically, the μ¡D
algorithm needs only one matrix inverse operation
off-line when solving the linear Lyapunov equations
(49)—(51). When implemented online, this method
involves only three 7£ 7 matrix multiplications
and three 7£ 7 matrix additions if we take three
terms in control. However, in comparison, SDRE
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Fig. 21. Normal acceleration comparison.

Fig. 22. Control usage comparison.

Fig. 23. Mach number comparison.

Fig. 24. Pitch rate comparison.

Fig. 25. Angle of attack comparison.

Fig. 26. Flight path angle comparison.
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Fig. 27. Normal acceleration comparison at different operating
point.

Fig. 28. Control usage comparison at different operating point.

needs computation of the 7£ 7 algebraic Riccati
equation at each sample time which consumes much
computational power. The number of computations
will become more significant if we want to solve
higher order problems with the SDRE method. For
this nonlinear H1 control problem, one needs to
check the condition ½[X(x̂)Y(x̂)]< °2 at each state.
If this condition was violated, ° needs to be raised
accordingly. So to implement the SDRE technique,
one needs to solve the state dependent Riccati
equation at every instant plus check the eigenvalue
condition. But for the μ¡D method, the only thing
that demands computational power is to check the
eigenvalues of X(x̂)Y(x̂). On the other hand, to avoid
the computation of eigenvalue, one could select a
large enough (lower bound) constant ° to ensure that
the eigenvalue condition is valid for the whole state
space. In [7], [18], a constant ° is adopted although
the eigenvalue condition is not used. This design may
be conservative. But the performance results in this

study do not show much variation for a constant °
and a varying ° as can be seen from Figs. 3—8 and
Figs. 15—16.
In the feedback controller design, it was assumed

that the missile model described by (18)—(21)
is accurate. In reality, this is not true due to the
inevitable parameter uncertainties in the aerodynamic
coefficients. There are many papers in literature
that investigate robust H1 design in the presence of
structured model uncertainties. For linear systems,
some effective synthesis tools for robust linear
H1 design such as ¹ synthesis [14] are available.
However, for nonlinear systems, this is still an
open area. Some analysis for the existence of
the robust nonlinear H1 controller have been
carried out and one can refer to [19], [20] and
the references therein. However, there still exists
the gap between the analysis and synthesis for
the robust nonlinear H1 control problem. In this
paper, we consider the standard nonlinear H1
control problem described by (23)—(25) without
uncertainties. The objective of our nonlinear H1
controller synthesis is to achieve closed-loop stability
and to attenuate the influence of the exogenous
input w on the regulated variable z by °. The
major contribution of this paper is to provide a
new solution to this nonlinear control problem.
Robustness to the parameter uncertainties will form
future research work and is beyond the scope of
this paper. The μ¡D H1 controller in this study
does show robustness to the parameter variations.
To study this, we perturbed the force coefficient
CZ and moment coefficient Cm in the missile
model by §25% in the simulations while using
the controller based on the exact model similar
to [2]. The results are shown in Figs. 29—30. As
can be seen, the controller is still able to stabilize
the system with acceptable performance. Other
successful applications of the μ¡D technique in the
face of large parameter variations can be found in
[12], [17].

VII. CONCLUSIONS

In this paper, a new suboptimal nonlinear
H1 control technique was applied to the missile
longitudinal autopilot design. Approximate
closed-form solutions to the resulting SDREs in
the nonlinear H1 formulation can be obtained by
the μ¡D method. Compared with an SDRE H1
design, this approach does not need intensive on-line
computation of Riccati equation and thus is easy to
implement. Performance comparison with a linearized
H1 design has shown the potential of a nonlinear
design. It should however be noted that as in the case
of the SDRE solution, the three conditions for the
existence of solutions of the H1 problem have to be
evaluated on-line.
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Fig. 29. Normal acceleration under §25% parameter uncertainty.

Fig. 30. Control history under §25% parameter uncertainty.
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