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Abstract

A graph G is said to be H-saturated if G contains no subgraph isomorphic to H
but the addition of any edge between non-adjacent vertices in G creates one. While
induced subgraphs are often studied in the extremal case with regard to the removal
of edges, we extend saturation to induced subgraphs. We say that G is induced H-
saturated if G contains no induced subgraph isomorphic to H and the addition of any
edge to G results in an induced copy of H. We demonstrate constructively that there
are non-trivial examples of saturated graphs for all cycles and an infinite family of
paths and find a lower bound on the size of some induced path-saturated graphs.

1 Introduction

In this paper we address the problem of graph saturation as it pertains to induced graphs, in
particular paths and cycles. We begin with some background and definitions, and complete
Section 1 with statements of the main theorems. In Section 2 we demonstrate that there are
non-trivial induced saturated graphs for an infinite family of paths, and prove lower bounds
on the number of edges in possible constructions. We continue on to demonstrate results
regarding induced cycles in Section 3 and claws in Section 4.

A number of results were discovered using the SAGE mathematics software [11], an open
source mathematics suite.

Throughout we use Kn to denote the complete graph on n vertices, Cn the cycle on n
vertices, Kn,m the complete bipartite graph with parts of order n and m, and Pn the path
on n vertices. All graphs in this paper are simple, and by G we mean the complement of
the graph G. If u, v are nonadjacent vertices in G then G+ uv is the graph G with edge uv
added. Given graphs G and H the graph join G ∨H is composed of a copy of G, a copy of
H, and all possible edges between the vertices of G and the vertices of H. The graph union
G∪H consists of disjoint copies of G and H. The graph kH consists of the union of k copies
of H. In particular a matching is a collection of pairwise disjoint edges, denoted kK2. The
order n(G) and size e(G) of G are the numbers of its vertices and edges, respectively. A
vertex v in a connected graph G is a cut vertex if its removal results in a disconnected graph.
If G has no cut vertex then it is 2-connected, and a maximal 2-connected subgraph of G is
a block. Note that a cut edge is also a block.

For simple graphs G and H we say that G is H-saturated if it contains no subgraph
isomorphic to H but the addition of any edge from G creates a copy of H. We refer to G
as the parent graph. The study of graph saturation began when Mantel and students [9]
determined the greatest number of edges in a K3-free graph on n vertices in 1907, which was
generalized by Turán in the middle of the last century [12] to graphs that avoid arbitrarily
large cliques. Erdős, Hajnal, and Moon then addressed the problem of finding the fewest
number of edges in a Km-saturated graph [3]. In particular, they proved the following
theorem.

Theorem 1.1. For m ≥ 3 and n ≥ m, the unique smallest graph on n vertices that is
Km-saturated is Km−2 ∨Kn−m+2. This graph contains

(
m−2
2

)
+ (n−m+ 2)(m− 2) edges.
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Since then, graph saturation has been studied extensively, having been generalized to
many other families of graphs, oriented graphs [7], topological minors [5], and numerous
other properties. A comprehensive collection of results in graph saturation is available in [4].

Given a graph G and a subset X of vertices of G, the subgraph induced by X is the
graph composed of the vertices X and all edges in G among those vertices. We say that a
subgraph H of G is an induced subgraph if there is a set of vertices in G that induces a graph
isomorphic to H. We say that G is H-free if G contains no induced subgraph isomorphic to
H.

Finding induced subgraphs of one graph isomorphic to another is a traditionally difficult
problem. Chung, Jiang, and West addressed the problem of finding the greatest number of
edges in degree-constrained Pn-free graphs [1]. Martin and Smith created the parameter of
induced saturation number [10]. We include their definition below for completeness.

Definition 1.2 (Martin, Smith 2012). Let T be a graph with edges colored black, white,
and gray. The graph T realizes H if the black edges and some subset of the gray edges of
T together include H as an induced subgraph. The induced saturation number of H with
respect to an integer n is the fewest number of gray edges in such a graph T on n vertices
that does not realize H but if any black or white edge is changed to gray then the resulting
graph realizes H.

In this paper we only consider adding edges to a simple non-colored graph.

Definition 1.3. Given graphs G and H we say that G is induced H-saturated if G does
not contain an induced subgraph isomorphic to H but the addition of any edge from G to G
creates one.

Note that in Definition 1.3 we allow G to be a complete graph. This case provides for a
trivial family of induced H-saturated graphs for any non-complete graph H. Henceforth we
will be concerned with determining non-trivial induced H-saturated graphs.

1.1 Main results

We will prove the following results to show the existence of non-complete induced Pm-
saturated graphs for infinitely many values of m.

Theorem. (2.6) For any k ≥ 0 and n ≥ 14 + 8k there is a non-complete induced P9+6k-
saturated graph on n vertices. Further, if n is a multiple of (14 + 8k) there is such a graph
that is 3-regular.

As we will see in Section 2.1, these orders are the result of the search for a longest induced
path in a class of vertex transitive hamiltonian graphs of small size, visualizable with high
rotational symmetry.

Theorem. (2.11) If G is an induced Pm-saturated graph on n vertices with no pendant edges
except a K2 component, m > 4, then G has size at least 3

2
(n− 2) + 1. This bound is realized

when m = 9 + 6k and n ≡ 2 mod (14 + 8k).
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Figure 1: An induced P5-saturated graph

Theorem. (2.14) For every integer k > 0 there is a non-complete graph that is induced
P11+6k-saturated.

Regarding cycles, we will prove the following theorem.

Theorem. (3.3) For any k ≥ 3 and n ≥ 3(k − 2) there is a non-complete induced Ck-
saturated graph of order n.

Finally, we will demonstrate the following regarding induced claw-saturated graphs.

Theorem. (4.2) For all n ≥ 12, there is a graph on n vertices that is induced K1,3-saturated
and is non-complete.

2 Paths

2.1 An infinite family of paths

The only induced P2-saturated graph on n ≥ 2 vertices is Kn. The induced P3-saturated
graph of order n with the smallest size is either the matching n

2
K2 if n is even, or n−1

2
K2∪K1

if n is odd. The case for P4 is similar, consisting of the matching n
2
K2 if n is even and

n−3
2
K2 ∪K3 if n is odd. It is also easily seen that the graph of order 9 and size 12 consisting

of a triangle with each vertex sharing a vertex with another triangle, as in Figure 1, is
induced P5-saturated, and that the Petersen graph is induced P6-saturated.

We begin our analysis of induced path-saturated graphs by examining an infinite family
of cubic hamiltonian graphs developed by Lederberg [8] and modified by Coxeter and Frucht,
and later by Coxeter, Frucht, and Powers [6, 2]. For our purposes we will only consider graphs
from this family denoted in LCF (for Lederberg, Coxeter, Frucht) notation by [x,−x]a with
x odd. A graph of this form consists of a 3-regular cycle on 2a vertices {v0v1 . . . v2a−1} and
a matching that pairs each v2i with v2i+x, with arithmetic taken modulo 2a. See Figure 2
for an example.

Let Gk denote the graph with LCF notation [5,−5]7+4k. Note that the order of Gk is
14 + 8k. First we find a long induced cycle in Gk.

Fact 2.1. The graph Gk has an induced cycle of length 8 + 6k.
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Figure 2: The graph G2, which has LCF notation [5,−5]15, with an induced C20

Proof. Let n be the order of G, and let C = {v0, v1, v2, v3, vn−2, vn−3, vn−8, vn−9}. Then,
proceed to add 6 vertices at a time to C in the following way until v5 is included. Let vp be
the last vertex added to C. Add the vertices {vp−5, vp−4, vp−3, vp−2, vp−7, vp−8}. Once v5 is
added, the graph induced by C is a chordless cycle of order 8 + 6k (Figure 2).

Note that the closed neighborhoods of vn−5 and vn−6 are disjoint from the cycle C con-
structed in the proof of Fact 2.1. Therefore, the addition of any edge between any vertex on
this cycle and vn−5 or vn−6 generates an induced path of order 9 + 6k. A simple reflection
that reverses vn−5 and vn−6 shows that another induced cycle of the same length exists in
Gk.

We next must bound the length of induced paths in Gk. Note that a simple counting
argument is not sufficient, since in general a 3-regular graph on 14 + 8k vertices may contain
an induced path on as many as 10+6k vertices as seen in the following construction. Consider
a path P on 10+6k vertices and an independent set X of 4+2k vertices. From each internal
vertex in P add a single edge to a vertex in X, and from the endpoints in P add two edges
to vertices in X, in such a way as to create a 3-regular graph. The resulting graph has order
14 + 8k and an induced path on 10 + 6k vertices.

Lemma 2.2. The graph Gk contains no induced path on more than 8 + 6k vertices.

Proof. First, note that an exhaustive search of G0 yields a longest induced path of or-
der 7. Consider the case where k ≥ 1. Let P be a longest induced path in Gk. Let
V be the m = 8 + 6k vertices in the cycle C from the proof of Fact 2.1. Let the sets
U,X, and Y contain the remaining vertices that have 3, 2, and 0, neighbors, respectively,
in V . Note that |X| = 4 and |Y | = 2, irrespective of k, and |U | = 2k. Consider the in-
duced path P 0 on m vertices in Figure 3. For example, in Figure 2 P 0 would be the path
v26v1v2v3v28v29v24v23v22v21v20v19v14v13v8v9v10v11v6v5. We claim P is no longer than P 0.
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Y

X
U

V
v0 v1 v2 v3vn−2 vn−3

vn−1 vn−4 vn−7 vn−10

v5v6

vn−6 vn−5

Figure 3: The graph Gk

with longest induced path P 0

For every vertex u ∈ U in P there is one neighbor (if u is an internal vertex of P ) or two
neighbors (if u is a terminal vertex) from V not in P . Let us assume that UP = {u1, . . . , ul} =
U ∩P , and denote by N(UP ) ⊂ V the neighbors of all vertices in UP . So P includes l vertices
from U and avoids at least l vertices from N(UP ).

Similarly, assume there is a vertex x in P ∩ V that is not in P 0. Then either a neighbor
of x in P 0 ∩ V is not in P , or a route through X ∪ Y on P 0 is diverted and hence a vertex
from P 0 ∩ (X ∪ Y ) is not in P . In either case, the inclusion of any vertex from U in P leads
to at least one fewer vertex from P 0, and hence does not lead to a longer induced path.

Finally, we consider the possible inclusion of vertices from X ∪ Y . It is easily seen that
no induced path can include all vertices from X ∪ Y . If P has no vertices from X ∪ Y then
it is strictly shorter than P 0. If P contains exactly one or two vertices from X then there
are at least three vertices in V not in P , making P at least as short as P 0. Any induced
path containing 5 vertices from X ∪ Y must exclude one from Y as in P 0, and so no other
induced path also containing 5 of these vertices will be longer that P 0. Therefore, P 0 is a
longest induced path in Gk, and hence Gk does not contain an induced path on more than
8 + 6k vertices.

Now we demonstrate that the graph Gk is saturated with respect to the property of long
induced paths.

Lemma 2.3. The graph Gk is induced P9+6k-saturated.

Proof. Once again we let n = 14 + 8k, the order of Gk. By Lemma 2.2 there is no induced
path of order 9 + 6k in the graph Gk. Define the bijections φ and ψ on the vertices of Gk by
φ(vi) = v1−i (reflection) and ψ(vi) = vi+1 (rotation), with arithmetic modulo n. Note that
both φ2 and ψ are automorphisms of Gk. Given vi, vj ∈ V (Gk) there is an automorphism of
the form φ2k ◦ ψm that takes vi to vj, where k is some integer and m ∈ {0, 1}. Therefore,
the graph Gk is vertex transitive under repeated applications of φ and ψ. In particular, the
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induced cycle Ck can be rotated and reflected via these functions to yield a function f such
that for any pair x, y of nonadjacent vertices in Gk there is an image f(Ck) so that x is on
f(Ck) and neither y nor its neighbors are on f(Ck). Therefore, between any two nonadjacent
vertices the addition of any edge creates an induced P9+6k.

We now generalize to an arbitrary number of vertices.

Lemma 2.4. The disjoint union H of m copies of Gk, with at most one complete graph on
at least 2 vertices, is induced P9+6k-saturated.

Proof. Since each connected component of H is induced P9+6k-saturated by Lemma 2.3 we
need only consider the addition of edges between components. Since Gk is vertex transitive
and contains an induced cycle on (8+6k) vertices (Fact 2.1), each vertex in Gk is the terminal
vertex of an induced path on (7 + 6k) vertices. Therefore, any edge between disjoint copies
of Gk creates an induced path on far more than the necessary (8+6k) vertices. The addition
of an edge between a copy of Gk and a complete component will also result in an induced
P9+6k Therefore, H is induced P9+6k-saturated.

Lemma 2.5. The join of any complete graph to any induced Pn-saturated graph, for any
n ≥ 4, generates a new induced Pn-saturated graph.

Proof. Note that joining a clique to a graph does not contribute to the length of the longest
induced path except in the most trivial cases of P1, P2, and P3, nor does it add any non-edges
to the graph which require testing for saturation.

Note that joining a complete graph to any induced H-saturated graph, for any non-
complete graph H, generates a new induced H-saturated graph. Therefore, we can prove
the main result of this section.

Theorem 2.6. For any k ≥ 0 and n ≥ 14 + 8k there is a non-complete induced P9+6k-
saturated graph on n vertices. Further, if n is a multiple of (14 + 8k) there is such a graph
that is 3-regular.

Proof. By Lemma 2.3 there is such a graph on n = 14 + 8k vertices, and Lemmas 2.4 and
2.5 demonstrate that n increases without bound.

2.2 Lower bounds

As an analogue to Theorem 1.1 by Erdős, Hajnal, and Moon [3], in which smallest Kn-
saturated graphs are studied, we now turn our attention to finding the smallest induced
Pm-saturated graphs. Assume throughout that m > 3.

First we look at some properties of induced Pm-saturated graphs with pendant edges, and
then we will turn our attention to graphs with minimum degree two.

Fact 2.7. If u and v are distinct pendant vertices in an induced Pm-saturated graph G then
the distance from u to v is greater than three.
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Proof. If u and v share a neighbor w then the addition of edge uv cannot create an induced
path that includes w, so their distance is at least three. If instead u has neighbor wu and v
has neighbor wv, with wu adjacent to wv, then the added edge uwv must begin an induced
Pm. However, this edge can be replaced in G by vwv, so G must already contain an induced
Pm. Therefore the neighbors of u and v cannot be adjacent.

Next we examine the neighbor of a pendant vertex in an induced Pm-saturated graph.

Fact 2.8. Let v be a pendant vertex in a non-complete component of an induced Pm-saturated
graph G, with neighbor u. Then u has degree at least four.

Proof. If deg(u) = 2 then the addition of the edge joining its neighbors cannot create a
longer induced path than one that includes u. Assume u only has neighbors v, a, and b. If a
and b are adjacent then the added edge va must begin an induced Pm that avoids b, but we
can then replace va with ua and get an induced path of the same length. If instead a and b
are not adjacent then adding edge ab to G does not result in an induced path longer than
one containing the path aub. Hence u has at least one other neighbor c.

For the remainder of the section we will consider non-complete graphs without pendant
edges.

Fact 2.9. If G is induced Pm-saturated and contains a vertex v of degree 2 then the neighbors
of v are adjacent.

Proof. Assume that deg(v) = 2 and v has neighborhood {u,w}. If u is not adjacent to w
then the addition of edge uw cannot generate a longer induced path than one originally
present in G that includes edges uv, vw. Therefore, u and w must already be adjacent.

As noted in the beginning of Section 2.1, a matching with possibly an isolated vertex or a
connected component isomorphic to K3 constitute an induced P3- and P4-saturated graph,
respectively. Note that when m > 4 an induced Pm-saturated graph cannot have more than
one complete component, as any edge between two such components generates an induced
path of order at most 4. We now demonstrate that any induced Pm-saturated graph on n
vertices, for m > 4, has average degree at least 3 among its non-complete components.

Lemma 2.10. For m > 5 all non-complete connected components of an induced Pm-saturated
graph with no pendant edges have average degree at least 3.

Proof. Let G be an induced Pm-saturated graph. If all vertices of G have degree 3 or more
then the result is clear, so let us assume that v is a vertex of G with degree 2 and with
neighbors u and w. By Lemma 2.9 u and w are adjacent. Without loss of generality we
may assume that deg(w) ≤ deg(u). We will consider the cases in which deg(w) = 2 and
deg(w) > 2.

First assume that both deg(u) and deg(w) are at least 3. We demonstrate that there are
sufficiently many vertices of high degree to yield an average degree of at least 3. Let a be a
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neighbor of u and b a neighbor of w, with a, b /∈ {u, v, w}. If deg(w) = 3 and a and b are
distinct then no induced path containing the new edge wa can be longer than an induced
path containing the sub-path wua. If instead a = b then the addition of va does not create
any induced path not already in G by means of edge wa. Thus, if deg(u) ≥ deg(w) ≥ 3 then
deg(u) ≥ deg(w) ≥ 4.

Now we consider the case in which deg(w) = 2. Vertex u is therefore a cut vertex of G.
Note that if there is another block containing u that is isomorphic to K3 then the addition of
an edge between two such blocks does not result in a longer induced path than one already
present in the graph. If deg(u) = 3, with u adjacent to a vertex a distinct from w and v,
then adding edge va to G does not create any induced path longer than one already present
in G that uses the edge ua. So deg(u) ≥ 4. Say that {v, w, u′, w′} are in the neighborhood of
u and note that, as above, if deg(u′) = deg(w′) = 3 then the the addition of edge w′a shows
that G is not induced Pm-saturated. So the graph G with vertices v, w removed must also
have average degree at least 3, and therefore G does as well.

Next consider the set T of vertices of degree 2 whose neighbors all have degree at least 3,
and the set S composed of neighbors of vertices in T . Since vertices in S all have degree at
least 4, if t = |T | ≤ |S| = s then the graph has at least as many vertices with degree greater
than three than those with degree 2 and we are done. Assume instead that t > s. Since the
two neighbors of each vertex in T are adjacent, we know that for each vertex in T there are
at least 3 edges in the induced graph < T ∪ S >. Hence the average degree among vertices
in < T ∪S > is at least 6t

s+t
> 6t

2t
= 3. Since all other vertices in G either have degree at least

3 or are part of a distinct triple with total degree at least 9 as shown above, the average
degree of any non-complete component of an induced Pm-saturated graph is at least 3.

This leads us to the proof of the lower bound for the size of a class of induced Pm-saturated
graphs.

Theorem 2.11. If G is an induced Pm-saturated graph on n vertices with no pendant edges
except for a K2 component, m > 5, then G has size at least 3

2
(n − 2) + 1. This bound is

realized when m = 9 + 6k and n ≡ 2 mod (14 + 8k).

Proof. In the graph G all but at most one connected component consists of vertices of average
degree at least 3, with potentially one component isomorphic to K2 or K3 by Lemma 2.10.
Therefore, e(G) ≥ 3

2
(n− 2) + 1. By Lemma 2.4 the graph consisting of disjoint copies of Gk

and a K2 has size 3
2
(n− 2) + 1 and is induced Pm-saturated.

2.3 Other path results

For certain induced Pm-saturated graphs we can create induced Pm+2-saturated graphs by
using the following constructions.

Construction 2.12. Generate the graph Tv(G) by identifying each vertex in G with one
vertex of a distinct triangle. The new graph Tv(G) has order 3n(G) and size e(G) + 3n(G)
(Figure 4).
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Figure 4: The graphs C5, Tv(C5), and Te(C5)

Construction 2.13. The graph Te(G) is composed of the graph G along with a new vertex
for each edge of G, adjoined to both endpoints of that edge. The graph Te(G) has order
n(G) + e(G) and size 3e(G) (Figure 4).

Now we will show that both constructions yield the expected results. First, we restate
and prove Theorem 2.14 in a different form than that given in Section 1.1.

Theorem 2.14. The graph Tv(Gk) is induced P11+6k-saturated.

Proof. First we establish that every vertex v in the graph Gk is the terminal vertex for two in-
duced paths of order 8+6k, each with a different terminal edge. Let P be the path that begins
{v0v5v6v7v2v3vn−2vn−3vn−4vn−5vn−6vn−7vn−12}. If i = (n − 12) then proceed similar to C in
Fact 2.1 by adding
{vivi−1vi−6vi−5vi−4vi−3vi−8} to P , repeating until the addition of edge v10v9. By apply-
ing the automorphism φ8 ◦ ψ we get another induced path of order 8 + 6k starting at v0,
P ′. Notice that P contains the edge v0v5 and P ′ the edge v0vn−1. Again, since Gk is vertex
transitive, we see that each vertex in Gk is the terminal vertex for two induced paths with
distinct terminal edges.

Next, we consider a pair x, y of distinct non-adjacent vertices in Gk. We need only consider
the cases in which a pair of nonadjacent vertices are both in the original graph Gk, neither
in the original graph Gk, or exactly one is in Gk.

Say that x, y ∈ Gk. Since the addition of edge xy to Gk creates an induced P9+6k, one
vertex from each added triangle to the endpoints of this path in Tv(Gk) yields an induced
P11+6k. If neither x nor y are in Gk and their neighbors in Gk, say x′ and y′ respectively, are
not adjacent then, since a new edge between x′ and y′ in Gk generates an induced P9+6k, this
path is extended similarly by two edges to create an induced P11+6k in Tv(Gk). If instead
x′y′ is an edge of Gk, consider the induced P8+6k in Gk that begins at x′ and avoids the
edge x′y′. This extends to an induced P9+6k in Tv(Gk). Since x′y′ is not in this path, then
the vertex y′ is also avoided entirely. The addition of edge xy to Tv(Gk) creates an induced
P11+6k beginning with y.

Lastly, consider the case in which x is a vertex of Gk and y is not. Let y′ be y’s neighbor
in Gk and y′′ the vertex of degree 2 adjacent to y in Tv(Gk). Again, since there is an induced
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P9+6k in Tv(Gk) that begins at x and avoids y′, the addition of the edge xy creates an induced
P11+6k beginning at y′′.

Theorem 2.15. If G is K3-free, induced Pm-saturated, and every vertex is in a component
of order at least three, then Te(G) is induced Pm+2-saturated.

Proof. Just as in the proof of Theorem 2.12 we need to consider the same three cases.

If x, y are nonadjacent vertices, both in G, then the addition of edge xy to G generates
an induced Pm. Since none of the neighbors of the end vertices are in the path, it can be
extended on both ends to the added vertices, yielding an induced Pm+2. If both x and y
are new vertices added in the construction of Te(G), then let the neighbors of x be x′, x′′

and the neighbors of y y′, y′′. If adding edge x′y′ or x′′y′′ creates an induced Pm that avoids
the edges x′x′′ and y′y′′ then the addition of edge xy generates an induced Pm+2. If instead
every induced Pm created by adding either edge x′y′ or x′′y′′ includes at least one of the
edges {x′x′′, y′y′′} then there is an induced Pm that includes the added edge x′y′′ that does
not since G is K3-free . Therefore the addition of edge xy is equivalent to adding an edge
between a neighbor of each in G, with the induced Pm extended by one edge toward x and
one toward y. Lastly, if x is in the original graph G and y is not, then we proceed as above
and extend the induced Pm that results from joining x to a neighbor of y not already adjacent
to x (which exists since G is K3-free) by one edge toward y and by another edge at a terminal
vertex of the path. Therefore, Te(G) is induced Pm+2-saturated.

We end this section by noting that a computer search using SAGE [11], in conjunction
with Constructions 2.12 and 2.13, has found induced Pm-saturated graphs for all 7 ≤ m ≤ 30.
The results are listed in Table 5, most in LCF notation. In the interest of space we have
omitted the proof that they are saturated, as each is simply a case analysis. Note that there
are induced Pm-saturated graphs that cannot be written in the form [x,−x]n, and further
some are the result of the operations Te and Tv. Therefore, not all induced Pm-saturated
graph are regular nor the result of a regular graph joined to a complete graph.

3 Cycles

The star K1,(n−1) is induced C3-saturated, and is in fact the graph on n vertices of smallest
size for n ≥ 3. This is a direct consequence of Theorem 1.1. The largest such graph is
Kdn

2
e,bn

2
c due to Mantel [9].

Note that C5 is trivially both induced C3-saturated and induced C4-saturated.

We now show that for all integers k ≥ 3, n ≥ 3(k − 2) there is an induced Ck-saturated
graph on n vertices that is non-complete. We begin with another construction.

Construction 3.1. Define the graph G[k] on 3k vertices, k ≥ 3, in the following way. Let
v0v1 . . . vk−1v0 be a k-cycle, the internal cycle of G[k]. Add the matching uiwi and the edges
uivi, wivi, and wiui+1, 0 ≤ i ≤ (k− 1) with addition modulo k, the external cycle (Figure 6).
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m induced Pm-saturated graph
7 [4,−4, 5,−5]3

8, 9 [5,−5]7

10 [4, 6]10

11 Te([5,−5]7])
12, 13 [5,−5, 9,−9]5

14, 15 [5, 9]13

16 [9, 15]12

17 Te([5, 9]13)
18 [5, 17]15

19, 20 [7, 23]15

21, 22 [5,−5, 13,−13]8

23 [−17, 9]20

24 Te([5,−5, 13,−13]8)
25, 26 [−15, 15]19

27 [−13, 13]19

28 [−15, 15]21

29, 30 [−13, 13]22

Figure 5: Induced path-saturated graphs

v1

v2

v3

v4
v0

u2
w2

u3

w3

u4

w4

u0

w0

u1

w1

Figure 6: The graph G[5], which is induced C7-saturated

11

Tennenhouse: Induced Subgraph Saturated Graphs

Published by Digital Commons@Georgia Southern, 2016



Claim 3.2. The graph G[k] is induced Ck+2-saturated.

Proof. First we show that G[k] does not contain an induced cycle of length k + 2. Note
that every copy of Ck+2 in G[k] contains vertices from both the internal and external cycles.
Any induced cycle C in G[k] contains paths on the internal cycle of the form vivi+1vi+2 . . . vj
and/or paths on the outer cycle, and edges joining these paths into a cycle. The cycle C
therefore has length either k (if i = j) or at least (k + 3).

Now we show that the addition of any edge e to G[k] results in an induced Ck+2. Note that
there are three potential forms that e can take: an edge among the vertices of the internal
cycle, an external cycle edge, or an edge between these cycles. If e = vivj then we need only
consider k > 3. There is a newly created induced cycle of length l ≥ (dk

2
e + 1) along the

internal cycle. This can be extended by considering an edge from vi to one of its neighbors
on the external cycle, and traversing an appropriate number of edges before rejoining the
internal cycle. In this way we create an induced cycle of every length between (dk

2
e+ 4) and

(k + 3), inclusive.

If instead e joins vertices between the internal and external cycles, then we create an
induced Ck+2 in the following way. Without loss of generality we assume that e = viu0.
We get an induced Ck−i+2 by proceeding around the internal cycle from vi to vk−1 then to
wk−1. Other induced cycles result from returning to the outer cycle sooner, creating cycles
of length (k − i + 3) through (2k − 2i + 1). We can also find induced cycles proceeding in
the other direction along the internal cycle from vi down to v1 (or v0 if i 6= (k − 1)), then
back to u1, yielding induced cycles with lengths from (i+ 3) through (2i+ 2). Therefore, an
induced cycle of length (k + 2) can be found in G[k] with the added edge for 1 ≤ i ≤ k−1

2
in

the latter case and k
2
≤ i ≤ (k − 1) in the former.

Finally, if the new edge joins vertices on the external cycle of G[k] then an induced cycle
of length (k+ 2) can be formed by utilizing an edge from vi to the internal cycle, continuing
along a sufficiently long path, then rejoining the described induced path along the external
cycle.

Theorem 3.3. For any k ≥ 3 and n ≥ 3(k−2) there is a non-complete induced Ck-saturated
graph of order n.

Proof. By Claim 3.2 there is an n and a graph G[k − 2] on n vertices that is induced Ck-
saturated. We can extend Construction 3.1 to a larger number of vertices by joining it to a
clique, since any vertex in the joined clique is adjacent to all other vertices so cannot be in
the induced cycle.

The graph G[k] can also be extended to more vertices by replacing each vertex with
a clique. If the vertices are distributed in a balanced way the resulting graph has size
approximately 3k

(
n/(3k)

2

)
+ 5k n2

9k2
.
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v0

v1

v2

v3

v4

v5

u0u1

u2

u3

u4

u5

Figure 7: A claw K1,3 and the induced K1,3-saturated graph G

4 Claws

We now turn our attention to the claw graph K1,3 (Figure 7). We build a graph that is
induced K1,3-saturated.

Construction 4.1. Let G be a 6-cycle on the vertices {v0, . . . , v5}. To this set, we add the
vertices {u0, . . . , u5} and for each i join ui to vi, vi+1, and ui+3 with addition taken modulo
6 (Figure 7).

It is easy to see that the graph in Construction 4.1 is claw-free. We can now prove the
following theorem.

Theorem 4.2. For all n ≥ 12, there is a graph on n vertices that is induced K1,3-saturated
and is non-complete graph.

Proof. First we demonstrate that the graph G in Construction 4.1 is induced K1,3-saturated.
If we join ui to uj then ui is the center of a claw with neighbors uj, ui+3, and vi. If we join
ui to vj then vj has pairwise nonadjacent neighbors ui, vj−1 or vj+1, and either uj or uj−1.
Finally, if edge vivj is added to G then vi is the center of a claw along with vj, ui, and ui−1.

Since the disjoint union of induced K1,3-saturated graphs is itself induced K1,3-saturated
we can generate a graph on n vertices with disjoint copies of G and possibly a complete
connected component.

5 Future Work

It would be interesting to find a smallest construction G(m) that is induced Pm-saturated
for all m > 1, or determine that no such construction exists. It is suspected that G(m) has
size 3

2
n(G(m)), but the largest such graph, in the spirit of Turán’s Theorem [12], would also

be worth investigating. Induced Pm-saturated graphs with pendant edges also remain to be
studied, as these graphs may be smaller than those in Theorem 2.11. Indeed, it is not hard
to construct such a graph by joining K1∪Gk to a single vertex, but this graph is quite large.
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Further, as we have considered paths and claw graphs in this paper the study of induced
saturation could be furthered by considering the family of trees.

We wish to thank the referees for their very helpful comments and suggestions, which
improved this manuscript measurably.
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[3] P. Erdős, A. Hajnal, J.W. Moon “A problem in graph theory”, Amer. Math. Monthly
71 (1964), 1107-1110.

[4] J.R. Faudree, R.J. Faudree, J.R. Schmitt “A survey of minimum saturated graphs”,
Elec. J. of Comb. DS19 (2011), 36 pp.

[5] M. Ferrara, M. Jacobson, K. Milans, C. Tennenhouse, P. Wenger “Saturation numbers
for families of graph subdivisions”, J. Graph Theory 71,4 (2012), 416-434.

[6] R. Frucht “A canonical representation of trivalent Hamiltonian graphs”, J. Graph The-
ory 1,1 (1976), 45-60.

[7] M.S. Jacobson, C. Tennenhouse “Oriented graph saturation”, J. Comb. Math. Comb.
Comp. 80 (2012), 157-169.

[8] J. Lederberg “DENDRAL-64: A System for Computer Construction, Enumeration and
Notation of Organic Molecules as Tree Structures and Cyclic Graphs. Part II. Topology
of Cyclic Graphs”, Interim Report to the National Aeronautics and Space Administration
(1965).

[9] W. Mantel, “Problem 28”, solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes,
F. Schuh, W.A. Wythoff, Wiskundige Opgaven 10 (1907), 60-61.

[10] R.R. Martin, J.J. Smith “Induced saturation number”, Disc. Math. 312 21 (2012),
3096-3106.

[11] W. Stein et al. “Sage Mathematics Software (Version 5.8)”, The SAGE Development
Team (2013), http://www.sagemath.org.

[12] P. Turán “On the theory of graphs”, Colloq. Math 3 (1954), 19-30, MR 15,976b.

14

Theory and Applications of Graphs, Vol. 3 [2016], Iss. 2, Art. 1

https://digitalcommons.georgiasouthern.edu/tag/vol3/iss2/1
DOI: 10.20429/tag.2017.030201


	Theory and Applications of Graphs
	2016

	Induced Subgraph Saturated Graphs
	Craig M. Tennenhouse
	Recommended Citation


	Induced Subgraph Saturated Graphs

