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Abstract

A graceful labeling of a graph G of size n is an injective assignment of integers
from the set {0, 1, . . . , n} to the vertices of G such that when each edge has assigned
a weight, given by the absolute value of the difference of the labels of its end vertices,
all the weights are distinct. A graceful labeling is called an α-labeling when the graph
G is bipartite, with stable sets A and B, and the labels assigned to the vertices in A
are smaller than the labels assigned to the vertices in B.

In this work we study graceful and α-labelings of graphs. We prove that the Carte-
sian product of two α-trees results in an α-tree when both trees admit α-labelings and
their stable sets are balanced. In addition, we present a tree that has the property that
when any number of pendant vertices are attached to the vertices of any subset of its
smaller stable set, the resulting graph is an α-tree. We also prove the existence of an
α-labeling of three types of graphs obtained by connecting, sequentially, any number
of paths of equal size.

1 Introduction

A difference vertex labeling of a graph G of size n is an injective mapping f from V (G) into
a set N of nonnegative integers, such that every edge uv of G has assigned a weight defined
by |f(u) − f(v)|. All labelings considered in this work are difference vertex labelings. A
labeling is called graceful when N = {0, 1, . . . , n} and the induced weights are 1, 2, . . . , n. If
G admits such a labeling, then it is called a graceful graph.

Let G be a bipartite graph where {A,B} is the natural bipartition of V (G), we refer to
A and B as the stable sets of V (G). A bipartite labeling of G is an injection f : V (G) →
{0, 1, . . . , t} for which there is an integer λ, named the boundary value of f , such that
f(u) ≤ λ < f(v) for every (u, v) ∈ A × B, that induces n different weights. This is an
extension of the definition given by Rosa and Širáň in [11]; there, they focused on bipartite
labelings of trees. From the definition we may conclude that t ≥ |E(G)| , furthermore, the
labels assigned by f on the vertices of A and B are in the integer intervals [0, λ] and [λ+1, t],
respectively. If t = n, the bipartite labeling f is an α-labeling. By an α-graph we mean a
graph that admits an α-labeling. If G is an α-graph, λ is the smaller of the two vertex labels
of the edge of weight 1. If G is an α-tree, then λ = |A| − 1.

Let f : V (G)→ {0, 1, ..., t} be a labeling of a graph G of size n :

• f : V (G) → {0, 1, ..., t}, defined for every v ∈ V (G) as f(v) = t − f(v), is the
complementary labeling of f. If f is graceful, f is also graceful. Moreover, if f is
an α-labeling with boundary value λ, then f is an α-labeling with boundary value
n− λ− 1.

• g : V (G)→ {c, c+1, ..., c+t}, defined for every v ∈ V (G) and c ∈ Z as g(v) = c+f(v),
is the shifting of f in c units. Note that this labeling preserves the weights induced by
f.

• h : V (G) → {0, κ, ..., tκ}, defined for every v ∈ V (G) and κ ∈ Z+ as h(v) = κf(v), is
the amplification of f in κ units. If w1, w2, ..., wt are the weights induced by f, then
the weights induced by h are κw1, κw2, ..., κwt.
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Suppose now that f : V (G)→ {0, 1, ..., t} is a bipartite labeling with boundary value λ.

• fr : V (G) → {0, 1, ..., t}, defined for every v ∈ V (G) as, fr(v) = λ− f(v) if f(v) ≤ λ,
and fr(v) = t+ λ+ 1− f(v) if f(v) > λ, is the reverse labeling of f. Note that if f is
an α-labeling, then fr is also an α-labeling with boundary value λ.

• fd : V (G)→ {0, 1, ..., t+d−1}, defined for every v ∈ V (G) and d ∈ Z as, fd(v) = f(v)
if f(v) ≤ λ and fd(v) = f(v)+d−1 if f(v) > λ, is the bipartite d-labeling of G obtained
from f. This labeling uses labels from {0, 1, ..., λ} ∪ {λ + d, λ + d + 1, ..., t + d − 1}
and induces the weights d, d + 1, ..., t + d − 1. In other terms, this labeling shifts the
weights induced by f in d−1 units. Thus, if f is an α-labeling of G and d is a positive
constant, then fd is the, well-known, d-graceful labeling of G.

Let f be an α-labeling of a tree G of size n with boundary value λ. Suppose that f is
transformed into a d-graceful labeling shifted c units. Then the stable set A receives the labels
c, c+1, ..., c+λ and the stable set B receives the labels c+λ+d, c+λ+d+1, ..., c+n+d−1.

Several authors have studied graceful and α-labelings of graphs that are the Cartesian
product of two graphs. Maheo [9] proved that if G is strongly graceful (a special type of
graceful labeling with some specific restrictions), then G ×K2 is strongly graceful. Fu and
Wu [5] showed, in one way, a stronger result. They proved that if T is a tree with an α-
labeling and the sizes of the two stable sets of T differ by at most one, then T × Pm has
an α-labeling. In [13], Wu went even further, proving that if G has size n, order n+ 1, and
admits an α-labeling with boundary value λ, where |n− 2λ− 1| ≤ 1, then G×Pm is graceful
for all m. Jungreis and Read [8] proved, among other results, that Pm×Pn is graceful. This
result is a special case of the main result of Fu and Wu [5]. El-Zanati and Vanden Eynden
[3] used a different hypothesis to prove that G× Pm is graceful. They proved that if G has
a strongly graceful labeling, then G× Pm has an α-labeling. Note that they used the name
strong α-labeling instead of strongly graceful labeling.

In Section 2 we consider the family R of all trees of size n such that when T ∈ R, the
cardinality of the two stable sets of T differ by at most one. We prove that for any two
α-trees, T1 and T2, in R, the Cartesian product T1 × T2 results in an α-graph.

Frucht and Harary [4] defined the corona of two graphs as the graph obtained by taking
one copy of a graph G of order n, and n copies of a graph H, and then joining, by an edge,
the kth vertex of G to every vertex in the kth copy of H. The corona of G and H is denoted
by G � H. As a consequence of the results of Stanton and Zarnke [12], we know that if G
is a graceful tree, then G� rK1 is graceful for every r ≥ 1; in other terms, when r pendant
vertices are attached to every vertex of a graceful tree G, the resulting tree, G� rK1 is also
graceful. In Section 3 we study a related problem, presenting a tree of size 12 and stable
sets with cardinalities 5 and 8. This tree has the property that we can attach any number of
pendant vertices to the vertices of any nonempty subset of the stable set with five elements
and the resulting tree can be α-labeled. The path Pn is the only graph, that we know, with
the same property; that is, we can attach any number of vertices to any subset of vertices
of Pn.

In Section 4, we give α-labelings for three families of trees obtained by connecting, se-
quentially, any number of copies of Pn with paths of length 2. We discuss here the connection
between these trees and other types of combinatorial structures.
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The reader interested in graph labeling is referred to Gallian’ survey [6] for more infor-
mation about the subject. In this paper we follow the notation and terminology used in [2]
and [6].

2 Cartesian Product of Regular α-Trees

Jungreis and Read [8] proved that the Cartesian product of the paths Pm and Pn is an
α-graph. For any given path Pn, the difference of the cardinalities of its stable sets is at
most one and Pn is an α-tree. These facts motivate the study of the Cartesian product
of other trees satisfying these conditions. A tree of order n is said to be regular when the
cardinalities of its stable sets are equal or differ by one. We claim that the Cartesian product
of two regular α-trees is an α-graph.

Theorem 2.1. If S and T are regular α-trees, then S × T is an α-graph.

Proof. Suppose that S and T are regular α-trees of order m and n, respectively. Thus, S×T
is a graph of order µ = mn and size ξ = (m − 1)n + (n − 1)m. Let S1, S2, ..., Sn be the n
copies of S in S×T. Assume that f is an α-labeling of S with boundary value λ such that the
label λ is assigned to a vertex of the largest stable set of V (S). Recall that f corresponds to
the complementary labeling of f. For all odd values of i, the labeling fi of Si is obtained by
transforming f into a (1 + (2m− 1)(n− i))-graceful labeling shifted (2m− 1)(i− 1)/2 units.
When i is even, the labeling fi of Si is obtained by transforming f into a (1+(2m−1)(n−i))-
graceful labeling shifted m+ (2m−1)(i−2)/2 units. Hence, the weights obtained on the lth
copy of S form the set Vn+1−l = {j + (2m− 1)(l − 1) : 1 ≤ j ≤ m− 1 and 1 ≤ l ≤ n}. The
smallest label used is 0 and the largest one is m−1+(2m−1)(n−1) = m(n−1)+n(m−1) = ξ.
In addition, the shiftings guarantee that every label is used exactly once.

Fu and Wu (see [5], Proposition 2.6) proved that if S is a regular α-tree of order m, then
S × P2 is an α-graph. In their labeling of S × P2, the first copy of S has an α-labeling f
transformed into a 2m-graceful labeling; the second copy of S is labeled using f shifted m
units. The edges connecting both copies of S have weights m, m+ 1, ..., 2m−1. In our case,
for every edge uv of T, we have a graph of the form S × P2.

Applying the result of Fu and Wu to our case, we have that for every edge uv of T, there
is a subgraph S×P2 of S×T , such that the weights of the edges, connecting the two copies
of S, are consecutive integers. Hence, the weights of the edges connecting the copies of Sl

and Sl+1 in S × T form the set Hn−l = {(2m− 1)l+ j −m : 1 ≤ j ≤ m and 1 ≤ l ≤ n− 1}.
Therefore, for a fixed value of l ∈ {1, 2, . . . , n− 1},

Vn+1−l ∪Hn−l =

[(2m− 1)(l − 1) + 1, (2m− 1)(l − 1) +m− 1] ∪ [(2m− 1)(l − 1) + 1, (2m− 1)l −m] =

[(2m− 1)(l − 1) + 1, (2m− 1)l −m] ∪ [(2m− 1)l −m+ 1, (2m− 1)l] =

[(2m− 1)(l − 1) + 1, (2m− 1)l].

In addition,

n−1⋃
l=1

(Vn+1−l ∪Hn−l) = [1, (2m− 1)(n− 1)],
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and

V1 ∪ [1, (2m− 1)(n− 1)] = [1,m(n− 1) + n(m− 1)] = [1, ξ].

Since any pair of “adjacent” copies of S are labeled using f and f, the final labeling of S×T
is an α-labeling with boundary value m(n− 1)− 1.

In Figure 1 we show an example of the α-labeling of S×T where S and T are caterpillars
of order m = 7 and m = 8, respectively; the original α-labelings of the graphs are exhibited
on the left and on the top of S × T . In addition we show the labelings f1 and f2 of the first
two copies of S.

3 88 29 49 42

95 9 69 48 56

2 89 28 50 41

97 7 71 46 58

0 91 26 52 39

16

82

15

84

13

75

22

76

20

78

62

35

63

33

65

1 90 27 51 40

96 8 70 47 57

14 77
64

83 21
34

88

9

89

7

91

8

90

3

95

2

97

0

96

1

3

4

2

6

0

5

1

0 7 2 4 3

1 6 5

Figure 1: α-labeling of S × T

A graph G of size n is harmonious if there exists an injection f : V (G)→ Zn such that
when each edge uv is assigned the weight f(u) + f(v) (mod n), the resulting weights are
distinct. When each edge uv is assigned the weight f(u) + f(v), we say that f is sequential
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if the weights are consecutive integers. Thus, it is possible to transform a sequential labeling
into a harmonious labeling by reducing the weights f(u) + f(v) modulo n. Grace [7] has
shown how to transform an α-labeling f of a graph G of size n with boundary value λ, into
a labeling g such that the weights g(u) + g(v) are λ + 1, λ + 2, ..., λ + n. The labeling g is
defined for all the vertices in V (G) by:

g(v) =

{
f(v) if f(v) > λ,
λ− f(v) if f(v) ≤ λ.

Jungreis and Read [8] used Grace’s result to prove that the Cartesian product of two
paths is sequential when one of the paths has even order. In the case P2m × P2n+1, they
started with an α-labeling f of P2m × P2n+1, which is transformed into the labeling h which
is defined as:

h(v) =

{
f(v)− 2m if f(v) > λ,
λ− f(v) if f(v) ≤ λ.

The case P2m×P2n is a little more complicated. Start with an α-labeling f of P2m×P2n

and subtract 1 from every vertex label of the 2nth copy of P2m. The new labeling of P2m×P2n,
denoted by f ∗, is also an α-labeling with boundary value λ∗. They followed the same steps,
used in the previous case, replacing f by f ∗.

Suppose that S is a regular tree of even order; following the same steps of Jungreis
and Read, we can convert the α-labeling of S × T into a sequential labeling, which can be
transformed into a harmonious labeling. Thus, as a consequence of Theorem 1, and the
results in [7] and [8], we have the following two corollaries.

Corollary 2.2. If S and T are regular α-trees and S has even order, then S × T admits a
sequential labeling.

Corollary 2.3. If S and T are regular α-trees and S has even order, then S × T admits a
harmonious labeling.

3 α-Labelings of a Special Tetrapod

A tetrapod is a rooted tree whose root r has degree four and all the internal vertices have
degree two, in other terms, the one-point union of two paths, where the amalgamated vertices
are internal vertices. Within this class of trees, we distinguish the tetrapod obtained by
amalgamating the central vertices of two copies of the path P7. Let S denote this special
tetrapod; suppose that A and B are its stable sets, where |A| = 5 and |B| = 8. A picture of
S is shown in Figure 2. We claim that any tree obtained from S, by attaching any number
of pendant vertices to the elements of A, is an α-tree. (Note that the number of vertices
attached may vary from vertex to vertex in A.) This property is interesting to us, because
it resembles the fact that caterpillars of diameter d can be obtained in the same form, by
attaching pendant vertices to the internal vertices of Pd+1. We are not aware of any other
tree with the same property. This raises the question about the existence of other trees with
the same property.
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Theorem 3.1. Any tree T of size n > 12, obtained from S by attaching any number of
pendant vertices to the elements of A, is an α-tree.

Proof. Recall that the star with m ≥ 1 leaves is the graph Sm
∼= K1,m. For practical reasons,

we allow here m ≥ 0, that is, an isolated vertex is considered a star with 0 leaves.

The tree T can be constructed by connecting a leaf, from each of four stars, to the central
vertex of a new star. For each 0 ≤ i ≤ 4, let Si be the star of size ni, where ni ≥ 2 except
for i = 2, where n2 ≥ 0. Let fi be the α-labeling of Si that places the label 0 at the center
of the star. The labeling fi is transformed into a k -graceful labeling shifted i units, where
k = 1 when i = 4 and k = 5− i+

∑4
j=i+1 nj, otherwise.

Suppose that n = 4 +
∑4

j=0 nj, so n is the size of T. Consequently, the labels assigned

to the vertices of
⋃4

i=0 S
i form the set {0, 1, ..., n}, and the induced weights form the set

{1, 2, ..., n}− {n4 + 1, n4 +n3 + 2, n4 +n3 +n2 + 3, n4 +n3 +n2 +n1 + 4}. Since the centers
of the stars Si are labeled 0, 1, 2, 3, and 4, respectively, and S4 has a leaf labeled n4 + 3,
S3 has a leaf labeled n4 + n3 + 4, S1 has a leaf labeled n4 + n3 + n2 + 5, and S0 has a leaf
labeled n4 +n3 +n2 +n1 + 6, we can connect these leaves to the central vertex of S2, labeled
2, to obtain four edges whose weights correspond to the missing weights mentioned before.
Summarizing, the new edges connect four leaves to a central vertex, therefore the resulting
labeling is a bipartite labeling of T . Moreover, the labels assigned to the vertices of T are
0, 1, . . . , n, the induced weights are 1, 2, . . . , n, and 4 is the largest label assigned to a central
vertex of the starts Si. Hence, we have obtained an α-labeling of T with boundary value
λ = 4.

In Figure 2 we show a possible tree T with the α-labeling described in the proof of
Theorem 4. In this example, n0 = 5, n1 = 7, n2 = 4, n3 = 4, and n4 = 8.

S :

32 31 30 28

0

27 26 25 24 23 22

1

15 14 13

3

12 10 9 8 7 6 5

4

29 21 16 11

2

20 19 18 17

T :

Figure 2: α-labeling of a tree T
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4 α-Labelings of Linked Paths

4.1 α-Labelings of Some Fences

Suppose that for every 1 ≤ i ≤ t, Pni
is a path of order ni ≥ 3. For each 1 ≤ i ≤ t − 1, a

fence F is a tree obtained by connecting, with a path of length li, an internal vertex of Pni

with an internal vertex of Pni+1
. The length of the fence is given by l =

t−1∑
i=1

li.

In [10], Rosa proved that for any n and any vertex v of Pn+1, there exists an α-labeling f
of Pn+1 such that f(v) = 0, if and only if, v is not the central vertex of P5. If λ is the boundary
value of f, then fr(v) = λ. In [1], Barrientos proved that given two α-labeled graphs, G1

and G2, the vertex amalgamation of the vertices labeled 0 in G1 and G2, produces a new
α-graph. Thus, this argument can be used to prove that all trees with up to four leaves are
graceful; some special cases need ad hoc arguments. Extending the result in [1], it is possible
to prove that any fence, constructed connecting, sequentially, the vertices labeled 0 of the
Pni

, is an α-tree. This fact motivates our study of graceful and α-labelings of other types of
fences, that is, where the vertices labeled 0 are not the ones connected by a path of length
li.

In this subsection, we study a type of fence where all the Pni
are isomorphic to the path

P2n+1. We also show an α-labeling for a fence constructed using the path P2n. Let P 1, P 2,
..., P t be copies of the path P2n+1 and V (P i) = {vi0, vi1, ..., vi2n}. We denote by Rn,t the
family of all fences of length 2(t − 1) obtained by connecting, with a path of length 2, the
vertex viqi of P i to the vertex vi+1

qi
of P i+1, where 1 ≤ i ≤ t − 1 and qi ∈ {2, 4, ..., 2n − 2}.

Note that the family Rn,t is quite robust; for instance, when n = 4 and t = 5, there are 25
nonisomorphic fences in R4,5. There is a bijection between R4,t and the set of equivalence
classes of (t − 1)-tuples of elements of Zt−1

3 , where two (t − 1)-tuples are equivalent if one
can be obtained from the other by a sequence of operations R and C, where R denotes
reversal and C denotes the 2’s complements (i.e., C(x) = 2 − x). More information about
the number of (t− 1)-tuples with elements in Z3 can be found in the Online Encyclopedia of
Integer Sequences, sequence A001998 [14]. It is mentioned there that a(19) = 290, 585, 050;
that is, the number of elements in R4,20 is 290, 585, 050.

Theorem 4.1. If F ∈ Rn,t, then F is an α-tree for all positive values of n and t.

Proof. Let C1 = P 1 and for every 2 ≤ i ≤ t, Ci be the caterpillar obtained from P i, by
attaching a pendant vertex to the vertex viqi , where qi is any number in {2, 4, ..., 2n− 2}. We
denote the new vertex by uiqi .

Suppose that f is an α-labeling of Ci such that f(vi0) = 0 and fr is its reverse α-labeling,
so fr(v

i
0) = n. For each 1 ≤ i ≤ t, we assume that the initial labeling fi of Ci is the labeling

f when i is odd, and the labeling fr when i is even. Thus, fi is transformed into a ki-graceful
labeling gi shifted di units, where ki = 2(n+ 1)(t− i) + 1 and di = (n+ 1)(i− 1).

In this form, we have assigned on the vertices of
t⋃

i=1

Ci the labels 0, 1, ..., 2nt+ 2(t− 1);

the induced weights form the set {1, 2, ..., 2nt+ 2(t− 1)} − {2i(n+ 1) : 1 ≤ i ≤ t− 1}.
Suppose that i is odd. Note that fi(v

i
qi

) = qi
2

and gi(v
i
qi

) = qi
2

+ (n + 1)(i − 1). So,
fi+1(v

i+1
qi

) = n − qi
2
, and gi+1(v

i+1
qi

) = n − qi
2

+ (n + 1)i. Thus, fi+1(u
i+1
qi

) = n + 1 + qi
2

and
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gi+1(u
i+1
qi

) = (n+ 1)(2t− i− 1) + qi
2
. Hence, the edge viqiu

i+1
qi

has weight 2(n+ 1)(t− i).
Suppose now that i is even. In this case, fi(v

i
qi

) = n− qi
2

and gi(v
i
qi

) = n− qi
2

+(n+1)(i−1).
So, fi+1(v

i+1
qi

) = qi
2
, and gi+1(v

i+1
qi

) = qi
2

+ (n + 1)i. Thus, fi+1(u
i+1
qi

) = 2n + 1 − qi
2

and
gi+1(u

i+1
qi

) = 2n+1+(n+1)(2t−i−2)− qi
2
. Hence, the edge viqiu

i+1
qi

has weight 2(n+1)(t−i).
Therefore, we have obtained all the weights of the form 2i(n + 1) with 1 ≤ i ≤ t − 1.

The use of f and fr in alternated copies of Ci implies that the vertices connected belong to
different stable sets of F ; therefore, the final labeling of F is a bipartite labeling that uses
the labels 0, 1, . . . , 2(nt + t − 1) to induce the weights 1, 2, . . . , 2(nt + t − 1); the boundary
value of this labeling is λ = t(n+ 1)− 1.

In Figure 3 we show the α-labeling of a fence in R5,4, constructed using Theorem 4.1,
with q1 = 4, q2 = 6, and q3 = 2.

0

46

1

45

2
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3

43
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42
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36
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39
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33

15

31

16

30

17

23

24

22

26

21

27

20

28

19

29

18

38

32

25

Figure 3: α-labeling of a fence F ∈ R5,4

Suppose now that P 1, P 2, . . . , P t are copies of the path P2n. Let Sn,t be the family of all
fences of length 2(t− 1) obtained by connecting the vertex vin−1 of P i to the vertex vi+1

n−1 of
P i+1, for all 1 ≤ i ≤ t− 1. We claim that if F ∈ Sn,t, then F is an α-tree.

Proposition 4.1. If F ∈ Sn,t, then F is an α-tree.

Proof. Let C1 = P 1 and for every 2 ≤ i ≤ t, Ci be the caterpillar obtained by attaching a
pendant vertex, denoted by uin−1, to the vertex vin−1 of P i.

Suppose that fi is the α-labeling of Ci that assigns the label 0 to vi0. Thus, fi is trans-
formed into a ki-graceful labeling shifted ci units, where ki = (2n + 1)(t − i) + 1 and
ci = n(i− 1). In this way, the labels used on C1 form the set {0, 1, . . . , n− 1}∪ {t(2n+ 1)−
(n + 1), t(2n + 1)− (n + 1) + 1, . . . , t(2n + 1)− 2}; the weights induced on the edges of C1

are 2n(t − i) + n − i + 1, 2n(t − i) + n − i + 2, . . . , 2n(t − i) + t − 2. When 2 ≤ i ≤ t, the
labels used on the vertices of Ci form the set {n(i − 1), n(i − 1) + 1, . . . , ni − 1} ∪ {t(2n +
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1)− (n+ 1)i, t(2n+ 1)− (n+ 1)i+ 1, . . . , t(2n+ 1)− (n+ 1)(i− 1)− 1}; the weights induced
on the edges of Ci are 2n(t− i) + n− i+ 1, 2n(t− i) + n− i+ 2, . . . , (2n+ 1)(t− i) + 2n.

Up to this point, we have that the vertices of F are labeled with the integers 0, 1, . . . , t(2n+
1) + 2(t− 1), and the weights induced on the edges of

⋃t
i=1C

i form the set {1, 2, . . . , 2t(n+
1) + t− 2} − {(2n+ 1)(t− j) : 1 ≤ j ≤ t− 1}.

Note that for each 1 ≤ i ≤ t− 1, the vertex vin−1 has label n−1
2

+ n(i− 1) and the vertex
ui+1
n−1 has label t(2n+ 1)− (n+ 1)i− n+1

2
. So, the edge vin−1u

i+1
n−1 has weight (2n+ 1)(t− i).

Since the labelings of the Ci are α-labelings shifted conveniently and the edges vin−1u
i+1
n−1

connect vertices in different stable sets, we have that the final labeling of F is an α-labeling
with boundary value λ = nt− 1.

4.2 α-Labelings of 2-Link Fences

Another type of α-graph that can be constructed using α-labeled paths are the 2-link fences.
Let P 1, P 2, . . . , P r be disjoint copies of Pn. For each 1 ≤ i ≤ r, let V (P i) = {vi1, vi2, . . . , vin}.
A 2-link fence is a graph F of order rn and size r(n+1)−2 obtained by connecting the vertices
viji and viki of P i to the vertices vi+1

ji
and vi+1

ki
of P i+1, respectively, for all 1 ≤ i ≤ r − 1,

where ji, ki ∈ {1, 2, . . . , n} and |ji− ki| is odd. Let Fr,n be the family of all the 2-link fences
constructed using r copies of Pn. Note that Fr,n is a robust family, for instance, when r = 3
and n = 7, we have counted 42 non-isomorphic elements in F3,7.

The main result of this subsection is associated to a property of an α-labeling of the
path Pn. Suppose that v1, v2, . . . , vn are the consecutive vertices of Pn. Let f : V (Pn) →
{0, 1, . . . , n− 1} be the α-labeling of Pn, given by Rosa [10]; thus,

f(vi) =

{
i−1
2

if i is odd,
n− i

2
if i is even.

Then, the reverse of the complementary labeling is defined as:

f r(vi) =

{
n−2+i

2
if i is odd,

n−1−i
2

if i is even,

when n is odd, and

f r(vi) =

{
n−1+i

2
if i is odd,

n−i
2

if i is even,

when n is even.
We claim that all the elements of Fr,n are α-graphs. Before proving this result, we prove

that all the members of F2,n are α-graphs.

Lemma 4.2. Let n ≥ 4, if G ∈ F2,n, then G is an α-graph.

Proof. Suppose that G ∈ F2,n, then there exist j, k ∈ {1, 2, . . . , n} such that |j − k| is odd
and j1 = j, k1 = k. The vertices of P 1 are labeled using the α-labeling f , described above,
the vertices of P 2 are labeled using f r. Once these labelings are in place, f is transformed
into a (n + 2)-graceful labeling and f r is shifted dn

2
e units. In this way, when i is odd,

f(v1i ) = i−1
2

and f r(v
2
i ) = n + i−1

2
. Hence, the edge v1i v

2
i has weight n. When i is even,
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f(v1i ) = 2n + 1− i
2

and f r(v
2
i ) = n− i

2
, and the edge v1i v

2
i has weight n + 1. Since j and k

have different parity, the edges v1j v
2
j and v1kv

2
k have weights n and n+ 1.

Recall that the induced weights on P 1 are n+2, n+3, . . . , 2n, and on P 2 are 1, 2, . . . , n−1.
So, the weights of the edges of G are 1, 2, . . . , 2n. The use of f and f r guarantees that the
final labeling of G is an α-labeling with boundary value λ = n− 1.

Theorem 4.3. Let n ≥ 4; if G ∈ Fr,n, then G is an α-graph.

Proof. Let G ∈ Fr,n and P 1, P 2, . . . , P r be the disjoint copies of Pn used to construct G.
We label the vertices of P i using the labeling f when i is odd, and f r when i is even. The
labeling of P i is transformed into a ((n+1)(r−i)+1)-graceful labeling shifted (n+1)(i−2)/2
units except when both, n and i are even, where the labeling is shifted n/2+ (n+1)(i−2)/2
units.

These shiftings of labels and weights guarantees that every label has been used exactly
once and that the induced weights form the set {1, 2, . . . , r(n+ 1)−2}−{(n+ 1)(r− i), (n+
1)(r − i)− 1 : 1 ≤ i ≤ r − 1}.

Using the lemma, it is straight forward to prove that the edges connecting P i and P i+1,
1 ≤ i ≤ r− 1, have weights (n+ 1)(r− i) and (n+ 1)(r− i)− 1. Since consecutive copies of
Pn use the labelings f and f r, the resulting labeling of G is an α-labeling.
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Figure 4: α-labeling of a 2-link fence in F7,9

Consider the 2-link fence F formed by using t copies of P2n, where the vertices vi1 and
vi2n of P i are connected to the vertices vi+1

1 and vi+1
2n , respectively when 1 ≤ i ≤ t− 1. Since
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vi1 and vi2n are in different stable sets of V (P i), F is an α-graph. This 2-link fence can also
be seen as a cycle C2(t+2n−2) with t− 2 parallel P2n-chords.

In fact, let u1, u2, . . . , u2(t+2n−2) be the consecutive vertices of the cycle C2(t+2n−2), where
ui = vi1 for every 1 ≤ i ≤ t, ut+i = vti+1 for every 1 ≤ i ≤ 2n− 2, ut+2n−2+i = vt+1−i

2n for every
1 ≤ i ≤ t, and u2t+2n−2+i = v12n−i for every 1 ≤ i ≤ 2n − 2. The t − 2 chords connect the
vertices ui and u2t+2n−1−i, for every 2 ≤ i ≤ t− 1.

We define the cycle with t − 2 parallel P2n-chords as the graph obtained from the cycle
C2(t+2n−2), t ≥ 2 and n ≥ 1, with consecutive vertices u1, u2, . . . , u2(t+2n−2) by adding disjoint
paths P2n, between the vertices ui and u2t+2n−1−i, for all 2 ≤ i ≤ t−1. Then, as a consequence
of Theorem 4.3, we have the following corollary.

Corollary 4.4. For all t ≥ 2 and n ≥ 1, the cycle with t − 2 parallel P2n-chords is an
α-graph.

Remark 1. Note that the path Pn, used in Theorem 4.3, can be replaced by any α-tree of
size n and the result still holds.
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