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Abstract

The use of mobile guards to protect a graph has received much attention in the
literature of late in the form of eternal dominating sets, eternal vertex covers and other
models of graph protection. In this paper, eternal independent sets are introduced.
These are independent sets such that the following can be iterated forever: a vertex in
the independent set can be replaced with a neighboring vertex and the resulting set is
independent.

1 Graph Protection

Let G = (V,E) denote a finite, undirected graph with vertex set V and edge set E. The
problem of protecting a graph with mobile guards has been studied in a number of recent
papers. We shall begin with a review of some of these models before introducing the eternal
independent set problem, which can be viewed in the same light.

A dominating set of a graph G = (V,E) is a set D ⊆ V such that each vertex in V −D
is adjacent to a vertex in D. The minimum cardinality amongst all dominating sets of G is
the domination number γ(G).

Let {Di}, Di ⊆ V , i ≥ 1, be a collection of sets of vertices of the same cardinality,
with one guard located on each vertex of Di. Each protection problem can be modeled as
a two-player game between a defender and an attacker : the defender chooses D1 as well as
each Di, i > 1, while the attacker chooses the locations of the attacks r1, r2, . . . (which are
sometimes called requests). Each attack is dealt with by the defender by choosing the next
Di in response to the attack ri, subject to some constraints that depend on the particular
game. The defender wins the game if they can successfully defend any sequence of attacks,
subject to the constraints of the game described below; the attacker wins otherwise. We
note that the sequence of attacks may be infinite in length.

We say that a vertex (edge) is protected if there is a guard on the vertex or on an adjacent
(incident) vertex. A vertex v is occupied if there is a guard on v, otherwise v is unoccupied.
An attack is defended if a guard moves to the attacked vertex (across one edge, i.e., in one
“step”).

1.1 Eternal Protection Problems

For the eternal domination problem, each Di, i ≥ 1, is required to be a dominating
set, ri ∈ V (assume without loss of generality ri /∈ Di), and Di+1 is obtained from Di by
moving one guard to ri from an adjacent vertex v ∈ Di. If the defender can win the game
with the sets {Di}, then each Di is an eternal dominating set. The size of a smallest eternal
dominating set of G is the eternal domination number γ∞(G). This problem was first studied
by Burger et al. in [1] and will be referred to as the one-guard moves model.

For the m-eternal dominating set problem, each Di, i ≥ 1, is required to be a
dominating set, ri ∈ V (assume without loss of generality ri /∈ Di), and Di+1 is obtained
from Di by allowing each guard to move to a neighboring vertex (if it so chooses). That is,
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each guard in Di may move to an adjacent vertex, as long as one guard moves to ri. Thus it is
required that ri ∈ Di+1. The size of a smallest m-eternal dominating set (defined similar to
an eternal dominating set) of G is the m-eternal domination number γ∞m (G). This “all guards
move” version of the problem was introduced by Goddard, Hedetniemi and Hedetniemi [3].
The m in m-eternal denotes that multiple guards may move in response to an attack.

In the eviction model, each configuration Di, i ≥ 1, of guards is required to be a
dominating set. An attack occurs at a vertex ri ∈ Di such that there exists at least one
v ∈ N(ri) with v /∈ Di. The next guard configuration Di+1 is obtained from Di by moving
the guard from ri to a vertex v ∈ N(ri), v /∈ Di (i.e., this is the “one-guard moves” model).
The size of a smallest eternal dominating set in the eviction model for G is denoted e∞(G).
That is, attacks occur at vertices with guards and we must move that guard to an unoccupied
neighboring vertex. This problem was introduced in [6].

A vertex cover of G is a set C ⊆ V such that each edge of G is incident with a vertex
in C. The minimum cardinality of a vertex cover of G is the vertex cover number τ(G) of
G. An independent set of G is a set I ⊆ V such that no two vertices in I are adjacent. The
maximum cardinality amongst all independent sets is the independence number α(G). It is
well known that α(G) + τ(G) = n for all graphs G of order n (see e.g. [2, p. 241]).

The clique covering number θ(G) is the minimum number k of sets in a partition V =
V1∪ · · · ∪Vk of V such that each G[Vi] is complete. Hence, as is well-known, θ(G) equals the
chromatic number χ(G) of the complement G of G. Thus for every graph G, α(G) ≤ θ(G).
It is known that γ∞(G) ≤ θ(G) for all G [3].

A matching in G is a set of edges, no two of which have a common endvertex. The
matching number m(G) is the maximum cardinality of a matching of G. It is also well
known that τ(G) ≥ m(G) for all graphs, and that equality holds for bipartite graphs (see
e.g. [2, Theorem 9.13]). An induced matching inG is a set of edgesM , such that the subgraph
induced by the endvertices of M contains no edges other than M . The size of a maximum
induced matching in G is denoted as mi(G). A matching M = {ei = (vi, ui) : i = 1, . . . , k} is
called a free matching (sometimes called a bipartite matching) if {v1, . . . , vk} and {u1, . . . , uk}
are both independent sets. The cardinality of largest free matching in G denoted mf (G).

For the m-eternal vertex covering problem, each Di, i ≥ 1, is required to be a vertex
cover, ri ∈ E, and Di+1 is obtained from Di by moving one or more guards to neighboring
vertices; i.e., each guard in Di may move to an adjacent vertex provided that one guard
moves across edge ri (we assume without loss of generality that one end-vertex of ri is not
in Di, otherwise the two guards on the endvertices of ri simply interchange positions). If
the defender can win the game with the sets {Di}, then each Di is an eternal vertex cover.
The size of a smallest eternal vertex cover of G is the eternal covering number τ∞m (G). This
problem was introduced in [7].

A survey on eternal protection problems can be found in [8].
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1.2 Eternal Independent Sets

For the eternal independent set problem each Di, i ≥ 1, is required to be an independent
set, ri ∈ Di, and Di+1 is obtained from Di by moving the guard on ri to an adjacent vertex.
(We say the vertex ri is attacked.) If the defender can win the game with the sets {Di},
then each Di is an eternal independent set. The size of a largest eternal independent set
of G is the eternal independence number α∞(G). This will sometimes be referred to as the
one-guard moves model.

For the m-eternal independent set problem each Di, i ≥ 1, is required to be an
independent set, ri ∈ Di, and Di+1 is obtained from Di by moving the guard on ri to an
adjacent vertex while the remaining guards in Di may also move to neighboring vertices (so
long as ri /∈ Di+1). If the defender can win the game with the sets {Di}, then each Di is
an m-eternal independent set. The size of a largest m-eternal independent set of G is the
m-eternal independence number α∞m (G). This will sometimes be referred to as the all-guards
move model.

We shall sometimes say that if a guard at u moves to v, that vertices u and v are
switched. A total-switch of an independent set D into an independent set Z is a simultaneous
replacement of all vertices in D where each vertex vi ∈ D is replaced by a neighbor zi such
that |D| = |Z|. Note that D ∩Z = ∅, since D is an independent set. For the total-eternal
independent set problem each Di, i ≥ 1, is required to be an independent set, ri ∈ Di,
and Di+1 is obtained from Di by a total-switch. If the defender can win the game with
the sets {Di}, then each Di is an total-eternal independent set. The largest cardinality of a
total-eternal independent set is the total-eternal independence number of G denoted α∞t (G).
Clearly α∞t (G) ≤ α∞m (G). Observe that for the total-eternal independent set problem, the
actual sequence of attacks does not matter, since all the guards must move upon each attack.

These eternal independent set problems are analogous to the eviction model of eternal
domination. Related concepts for independent sets have been considered in [4, 5, 9], but the
exact parameters defined here have not been studied prior to this, as far as we know.

1.3 Examples

We give a few small examples to illustrate the various definition. Observe that α∞(C4) = 1,
α∞(C5) = 2, α∞m (C4) = 2, and α∞m (C5) = 2. We alert the reader to the fact that C5 is an
example that will be used several more times throughout the paper and illustrated in Figure
1. In Figure 1, a guard on a shaded vertex can move to an unshaded neighbor (the left
guard must move clockwise, the right guard must move counterclockwise from this initial
configuration) and the resulting guard configuration induces an independent set (and is
isomorphic to the initial configuration). Also α∞(Kn,n) = 1 and α∞m (Kn,n) = n = α∞t (Kn,n).

The corona of a graph G, denoted cor(G), is the graph obtained from G by adding a pen-
dant vertex to every vertex of G. cor(K3)is an example with α∞m (cor(K3)) = θ(cor(K3)) =
3 > mi(cor(K3)) = 1 as well as α∞m (cor(K3)) > mf (corK3)) = 2. Furthermore, α∞t (cor(K3)) =
2 < α∞m (cor(K3)) and α∞(cor(K3)) = α(K3) = mi(K3) = 1. More generally, it is easy to see
that α∞(cor(G)) = α(G) and the simple proof is omitted.

3

Caro and Klostermeyer: Eternal Independent Sets in Graphs

Published by Digital Commons@Georgia Southern, 2016



Figure 1: C5, eternal independent set shaded

2 Chain of Inequalities

Theorem 2.1 Let G be a graph without isolated vertices. Then m(G) ≥ α∞m (G) ≥ mf (G) =
α∞t (G) ≥ α∞(G) ≥ mi(G).

Proof. 1. That m(G) ≥ α∞m (G) follows from the second part of the proof of Theorem 4.2,
below.

2. Clearly m(G) ≥ mf (G).

3. That α∞m (G) ≥ mf (G) is true follows since we can perform a total-switch along the edges
of a free-matching.

4. Suppose M = {ei = (vi, ui) : i = 1, . . . , k} is a maximum cardinality free matching. Take
D = {v1, . . . , vk} and Z = {u1, . . . , uk} with D ∩ Z = ∅. Observe that |D| = |Z| and both
are independent sets as M is a free matching.

In a total-switch request forD, we replaceD by Z where vi moves to ui . If another request
is done (now on Z) we switch back toD. HenceD is total-eternal and α∞t (G) ≥ |D| = mf (G).

Conversely, let D be a maximum total eternal independent set. A total-switch sends D
to Z such that Z is independent, |D| = |Z| and every vertex vi in D moved to a neighbor
zi in Z. Since |Z| = |D|, it follows that every vi moved to a distinct neighbor zi in Z hence
M = {ei = (vi, zi) : i = 1, . . . , |D|} is a free matching. Hence mf (G) ≥ |M | = |D| = α∞t (G).

5. Let D be a maximum eternal independent set, D = {v1, . . . , vk} .Suppose the sequence of
requests is v1, v2, . . . , vk. Then v1 moves to a neighbor z1, v2 to a neighbor z2, and so on so
Z = {z1, . . . , zk} is an independent set. Now a total-switch of D sends it to Z via the same
edges ei = (vi, zi) and a total switch on Z send it back to D, hence D is also total eternal
independent set, and α∞t (G) ≥ |D| = α∞(G).

6. Suppose M = {ei = (vi, ui) : i = 1, . . . , k} is an induced matching of maximum cardinality
. Take D = {v1, . . . , vk} and Z = {u1, . . . , uk} and observe |D| = |Z| and both are indepen-
dent sets as M is an induced matching. Observe also that any vertex vi is independent of
Z \ {ui} and any vertex ui is independent of D \ {vi} as M is an induced matching.
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In any infinite sequence of switchings imposed on D, we always keep moving vi to ui and
ui to vi . So all these requests keep us with independent set T with none/some/all vertices
in D and none/some/all vertices in Z such that |D| = |T | = |Z|; hence D is an eternal
independent set. Hence α∞(G) ≥ |D| = mi(G). �

There exist graphs for which equality in the chain give in Theorem 2.1 does not necessarily
hold. Consider C5, where 2 = α∞(C5) > mi(C5) = 1. There are also graphs for which
α∞m (G) < m(G) such as K3 with a pendant vertex attached to one of the vertices or a K5

with a pendant vertex attached to one of the vertices.

It seems that a graph with large matching and with low chromatic number should force
a large free matching and hence a large total-eternal independence number. We detail this
relationship in the next proposition.

Proposition 2.2 Let G be a graph with χ(G) = k and m(G) = m. Then α∞m (G) ≥ α∞t (G) =
mf (G) ≥ 2m/k(k − 1).

Proof. Let M be a maximum matching of cardinality m. The subgraph of G induced by
M , denoted G∗, has χ(G∗) = t ≤ k. Let A1, . . . , At be the color classes of G∗.

Now the m edges of M are divided into t(t − 1)/2 pairs (Ai, Aj). Hence, by averaging,
for some pair (i, j), the pair (Ai, Aj) contains at least m/(t(t − 1)/2 ≥ m/(k(k − 1)/2 =
2m/k(k − 1) edges from M and these edges form a free matching. �

3 Clique Coverings

Observe that α∞(G) ≤ θ(G), for all graphs G, since α(G) ≤ θ(G), for all G (since no clique
in a clique cover can contain more than one vertex from any independent set).

Proposition 3.1 Let G be a connected triangle–free graph with θ(G) ≥ 2 and no isolated
vertices. Then α∞(G) < θ(G).

Proof. Suppose to the contrary that α∞(G) = θ(G). Let C = C1, C2, . . . , Cθ be a minimum
clique cover. Note that |Ci| ≤ 2 since G is triangle-free. Then an eternal independent set D
must contain exactly one vertex from each Ci. If we request a vertex v ∈ Ci, v ∈ D, that
vertex must switch to another vertex in Ci (since every Cj, j 6= i contains another vertex in
D). Thus each Ci must be a K2. Let u, v be two vertices of minimum distance in D and
such that the cliques from C in which they are contained are connected by an edge. Clearly
2 ≤ dist(u, v) ≤ 3. If dist(u, v) = 2, then a request to one of them (which one depends
on their locations) will switch one of them so that u and v are adjacent. If dist(u, v) = 3,
then consecutive requests to both u and v will cause two switches resulting in u and v being
adjacent. �

Proposition 3.1 is sharp for infinitely many graphs. Let G consist of n paths of length
three having a common vertex w, i.e., a star K1,n where each edge is subdivided once. G is
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K3 free with θ(G) = n+ 1 and α∞(G) = n (because of the induced matching, see Theorem
4.1 below). We leave open the problem of characterizing the triangle-free graphs for which
α∞(G) = θ(G)− 1.

As another example, for a triangle–free graph G on n vertices, cor(G) (which is again
triangle–free) has the following properties: θ(cor(G)) = n > α∞(cor(G)) ≥ c

√
n log n. The

left hand-side come from Proposition 3.1, while the right side come from the Ramsey number
R(K3, Kn) and the fact that α∞(cor(G)) = α(G), since it is well-known that if G is triangle–
free, it has an independent set of cardinality at least c

√
n log n and this is sharp.

We can ask for which connected graphs is α∞(G) = α(G) = θ(G)? It seems difficult
to structurally describe these graphs but some observations are in order. If θ = 1, then
α∞(G) = α(G) = θ(G). Now let θ(G) > 1 and C = {C1, C2, . . . , Ck} be a minimum clique
covering. Supposing α(G) = θ(G), we get that there is an independent set consisting of one
vertex from each Ci. In order for α∞(G) = α(G), clearly each Ci must contain at least two
vertices and no two Ci’s that are both K2’s can be joined by an edge. This leads us to the
following.

Theorem 3.2 Let G be a connected graph. Then α∞(G) = θ(G) if and only if mi(G) =
θ(G).

Proof. First suppose mi(G) = θ(G). Recall from Theorem 2.1 that α∞(G) ≥ mi(G). If
α∞(G) > θ(G), then by the pigeonhole principle there must simultaneously exist two guards
within the same clique from some minimum clique-covering. But two such guards cannot be
on independent vertices. Thus α∞(G) = θ(G).

For the other direction, let us assume α∞(G) = θ(G). From the observation above, we
may assume that θ(G) > 1.

Using the notation from above, each clique Ci from clique cover C can contain at most
one edge from any matching. Further, each Ci is a clique with at least two vertices, because
if any Ci is a K1, then we can easily force a switch that destroys independence. Any eternal
independent set D of cardinality θ(G) contains exactly one vertex from each clique of clique
cover C, since α∞(G) = α(G) = θ(G). Denote the vertices in D as D = {v1, v2, . . . , vk},
k = θ(G) and let vi ∈ Ci. Obviously D is an independent set. If Ci is a Ki, i > 1, let
{u1i , u2i , . . .} be the other vertices in the clique Ci along with vi. For simplicity in what
follows, we shall omit the superscript on a uki vertex when it is clear from the context and
refer to these as ui type vertices.

We construct a modified graph G′ as follows. If any ui type vertex is adjacent to any
vj, j 6= i, delete that ui vertex (since if vi were attacked first in G, the guard could not switch
to that ui vertex without destroying independence). Then if any K2’s in the resulting graph
have a ui type vertex adjacent to any uj type vertices, j 6= i, delete all such uj vertices (since
such vertices cannot be switched to without destroying independence). In the resulting graph
G′, what must remain are K2 components and other cliques with more than two vertices
(any two such cliques with more than two vertices may be connected via a limited number
of edges). If there are any K1 components in G′, then D is not an eternal independent set,
since we could force a switch in G that destroys independence. The K2 components can be
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removed and placed into the induced matching, M , that we are building. So only cliques
with more than two vertices remain in the reduced graph G′. Observe that neither (uivj)
nor (ujvi) are edges for any distinct cliques Ci, Cj, in the clique cover C when restricted to
G′.

Let D′ ⊆ D be the vertices of D that are in G′. Let D′ = {v1, v2, . . . , vt} and let
D∗ = D \ D′. Considering G, start with guards on the vertices of D and attack all the
vertices of D∗ and then attack each of the vertices in D′, with vi ∈ D′ switching to a vertex
uai , for some a. The set of uai vertices are an independent set. Either the edges switched
across form an induced matching or some uai is adjacent to some vb. But there are no
such adjacencies in the graph G′. Hence we can add these edges switched across to the K2

components above to form an induced matching of G. �

It seems interesting to find graphs classes for which α∞m (G) = θ(G); C4 and P4 are two
examples where equality holds, but which have α∞m (G) > mi(G).

4 Bipartite Graphs

Theorem 4.1 Let G = (A,B,E) be a bipartite graph. Then α∞(G) = mi(G).

Proof. If there is a maximum induced matching with t edges, then a vertex can be switched
along each of these edges eternally; therefore there exists an eternal independent set with t
vertices.

Suppose there exists an eternal independent set D with k vertices. We can request a set
vertices be attacked such that all these vertices are in A, say on a1, a2, . . . , ak. Because if
some vertex v ∈ D is not in A (i.e., v /∈ A), then it must be that V ∈ B; so therefore we
can attack v. Thus the guard on v cannot stay in B and must move to A , so we can repeat
requesting until all vertices are in A, say a1, . . . , ak, |D| = k.

Let bi be the vertex in B such that if ai is attacked next, ai is switched to bi. Then bi can-
not be adjacent to any ak, k 6= i, otherwise independence would be destroyed, contradicting
that the set of vertices was an eternal independent set.

So consider the set of edges ei = (ai, bi) which is a matching. There are no edges between
the ai being all in A , there are no edges between the bi being all in B. If there is an edge
between ei and ej (j 6= i) then it is either (ai, bj) or (aj, bi) which is impossible. As all bi are
independent from all aj (j 6= i), this is an induced matching. �

This property does not hold for all non-bipartite graphs: C5 is an example of a graph with
α∞(C5) = 2 and mi(C5) = 1. Furthermore, observe that any tree T with θ(T ) = α(T ) > 2
has θ(T ) > mi(T ). This is because in order for θ(T ) = mi(T ), T would have to all the edges
in the tree in some minimum clique covering. But two edges that are joined by an edge
cannot be in the same induced matching.

A linear-time algorithm for finding a maximum induced matching in a tree is given in
[10, 11]. Thus, using Theorem 4.1, one can find give an algorithm that computes the order
of the maximum-eternal independent set in a tree in linear time. We give here an alternative
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linear time algorithm which is simpler and directly finds a maximum eternal independent
set in a tree.

A stem in a tree is a vertex adjacent to a leaf and the height of a tree with specified root
vertex r is the maximum distance from r to any leaf.

If the height of a tree T with at least two vertices is one, then the maximum eternal
independent set is of size 1. Otherwise, suppose the height of tree T is more than one. In
this case, we find a root vertex r of T that is not a stem, which necessarily exists as T is not
a K1,m for any m ≥ 1. The root may be a leaf.

We shall build a set D that will eventually contain the vertices of a maximum eternal
independent set. Pick a stem v1 of maximum distance from r. Let w be parent of v1 (possibly,
w = r). Let v1, . . . , vk be all the stems that are children of w. Place each vi in D. Remove all
children and grandchildren of w from T , letting the resulting tree be T ′. Proceed recursively
on T ′, terminating when the tree T ′ has height at most one. If T ′ has height at most one,
then no more vertices will be added to D.

We now prove the algorithm finds a maximum eternal independent set.

Proof. When the height of T is one, α∞(T ) = mi(T ) = 1.

Now assume the height of T is h > 1. When h = 2, D consists of the children of r.
In this case |D| = mi(G). Let us suppose h > 2. Consider the tree T ′ as described in the
algorithm. Clearly the maximum eternal independent set of T − T ′ consists of k vertices:
v1, . . . , vk (none of which are leaves), since a guard on vi can move to one of its children.
Note that w is a leaf in T ′. Then the eternal independent set D′ found by the algorithm
in T ′ is a largest eternal independent set not containing w. Therefore, D′ ∪ {v1, . . . , vk} is
a maximum eternal independent set of T , since a guard in vi can move to its child when
attacked.

In other words, D consists of vertices labeled vi at any time in the algorithm. These
vertices form an independent set; therefore no vertex ever labeled w can be part of this same
independent set. No vertex labeled w can be subsequently labeled as vi, as w becomes a
leaf in the tree T ′. If we think of the edges that guards move across in this scheme as a
matching, then D consists of one endvertex from each edge in this matching. Each neighbor
of a w vertex is an endvertex of an edge in this matching.

Furthermore, the root, r, cannot be part of this independent set unless it is labeled as
v1 at some point in the algorithm, otherwise a guard on r would have to move to one of its
children when r is attacked, but this child was once a w vertex (and thus is adjacent to some
vi vertex that may have a guard on it). �

Theorem 4.2 Let G = (A,B,E) be a bipartite graph. Then α∞m (G) = m(G).

Proof. Recall that in the m-eternal independent set problem, we may move as many
guards as needed (including the possibility of a total-switch), as long as we move the guard
from the attacked vertex.

Let M = {ei = (vi, ui) : i = 1, . . . , k} be a matching of maximum cardinality, so k =
m(G). Since we can do total-switches from the endvertices of M in A to the endvertices of
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M in B, it follows that α∞m (G) ≥ m(G).

We claim that α∞m (G) ≤ m(G). Suppose by way of contradiction that α∞m (G) > m(G).
Then there exists an m-eternal independent set D = {v1, v2, . . . , vj} with j > k. For each
vi ∈ D, let ui be the vertex that would be switched with vi if vi were requested first. Let U
be the set of all the ui’s and choose U to be of maximum cardinality over all the possible
choices of the ui vertices. There are two cases.

Case 1. Suppose all the ui are distinct. Then the set of edges viui is a matching that is
larger than M , a contradiction.

Case 2. Suppose ui = uh = x for some i, h. Then if vi is attacked first, it is switched to x
and if vh is attacked first, it is switched to x. Then if vi is attacked first, vh must also switch,
else the resulting set of vertices is not independent. Say that vh moves to y 6= x. If y /∈ U ,
then the set U ∪ {y} is a larger set with the property described above, a contradiction. So
suppose y ∈ U .Then y is adjacent to some va 6= vh, va 6= vi. Then by the same logic as
before, there must be some z that va switches to when vi and vh are switched to x and y,
respectively. Again, we can either use z to produce a larger set than U or continue to iterate
the argument. Eventually, we must arrive at a similar contradiction or else reach a point
where there is no legal switch for a vertex, which is also a contradiction. �

Summarizing the results for bipartite graphs, we have the following.

Theorem 4.3 Let G be a bipartite graph. Then m(G) = α∞m (G) ≥ mf (G) = α∞t (G) ≥
α∞(G) = mi(G).

5 Open Problems

We list some future problems for consideration, most of which concern characterizing graphs
for which the extremes are attained.

1. Characterize the graphs G having α∞m (G) = m(G).

2. Characterize the graphs G having α∞m (G) = mf (G).

3. Find further graphs classes for which α∞(G) = mi(G); in particular classes of triangle-free
graphs.

4. Characterize the graphs G having α∞m (G) = mf (G).

5. Find graphs G with α∞m (G) = n − τ∞m (G). K1,n for n > 2 is an example where equality
does not hold. Equality holds for cycles, as τ∞m (Cn) = dn

2
e, see [7].
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6. Describe some graph classes for which α∞m (G) = α(G). Well-covered graphs (i.e., graphs
in which all maximal independent sets have the same cardinality) have this property, since
there exists a perfect matching between the vertices in the symmetric difference of any two
maximal independent sets, c.f. [4]. When a vertex is attacked, there exists a maximal
independent set containing a neighbor of the attacked vertex (since each vertex belongs to
some maximal independent set) and there exists a perfect matching that can be switched
across between the vertices in the symmetric difference of these two maximal independent
sets.

Cayley graphs are another class of graphs that may have this property.
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