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Calculation of hydrogenic Bethe logarithms for Rydberg states

Ulrich D. Jentschura1,2 and Peter J. Mohr2

1Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
2National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8401, USA

�Received 1 April 2005; published 19 July 2005�

We describe the calculation of hydrogenic �one-loop� Bethe logarithms for all states with principal quantum
numbers n�200. While, in principle, the calculation of the Bethe logarithm is a rather easy computational
problem involving only the nonrelativistic �Schrödinger� theory of the hydrogen atom, certain calculational
difficulties affect highly excited states, and in particular states for which the principal quantum number is much
larger than the orbital angular momentum quantum number. Two evaluation methods are contrasted. One of
these is based on the calculation of the principal value of a specific integral over a virtual photon energy. The
other method relies directly on the spectral representation of the Schrödinger–Coulomb propagator. Selected
numerical results are presented. The full set of values is available at arXiv.org/quant-ph/0504002.

DOI: 10.1103/PhysRevA.72.012110 PACS number�s�: 12.20.Ds, 31.30.Jv, 06.20.Jr, 31.15.�p

I. INTRODUCTION

The evaluation of the Bethe logarithm, in 1947 �1�, was
carried out using one of the first automatized devices for the
implementation of numerical calculations in physics. Today,
the evaluation of the �one-loop� Bethe logarithm for the
ground state of hydrogen to about ten figures of accuracy can
be carried in less than a second on a modern workstation.
Consequently, one might be tempted ask why there should be
yet another paper on Bethe logarithms in the first place? The
answer is threefold: �i� In the context of recent efforts toward
an improved understanding of the hydrogen and deuterium
spectra �2� �see also physics.nist.gov/hdel�, we have strived
to increase the number of states for which this basic quantum
electrodynamic correction is known. �ii� The Bethe logarithm
has been found to follow a characteristic asymptotic struc-
ture, expressible in terms of a series in inverse powers of the
principal quantum numbers. This asymptotic structure has
been found to be applicable to wide classes of quantum elec-
trodynamic effects in atoms �3–5�. Consequently, it appeared
to be of interest to verify these asymptotic properties by ex-
plicit calculations of the Bethe logarithm for very highly
excited states. �iii� The most comprehensive collection of
Bethe logarithms recorded so far in the literature �6� extends
up to the principal quantum number n=20. Here, we con-
sider levels up to n=200. This should be contrasted with
recent experimental investigations �7� that were carried out
with states of principal quantum numbers as high as n=30.

Frequency combs can lead to tremendous simplifications
for high-precision spectroscopic experiments �e.g. Ref.
�8–15��. In the future, it should become feasible to carry out
high-precision experiments on transitions much more effec-
tively than in the past. Rydberg states with long natural life-
times are rather promising candidates for precision metrol-
ogy, and one might imagine either direct transitions among
Rydberg states or optical transitions from, e.g., the meta-
stable 2S state to a highly excited D state. Such measure-
ments might contribute to future advances in our knowledge
of the hydrogen and deuterium spectra. On the theoretical
side, the method of least squares �2� allows for a self-
consistent adjustment of fundamental constants, such as the

Rydberg constant and the proton charge radius, using experi-
mental input data from more than one transition. The inves-
tigation reported here is an element of a project �see also Ref.
�2�� to enlarge the 2002 adjustment of constants �16� so as to
provide optimal predictions for energy levels not contained
in this adjustment, consistent with the values of the constants
used in that adjustment.

Thus, we here discuss the evaluation of Bethe logarithms
using two different methods:

�i� An integral representation which is based on analytic
calculations using the Sturmian representation of the
Schrödinger–Coulomb Green function, and

�ii� A spectral representation which relies on known re-
sults for the transition matrix elements of discrete-discrete
and discrete-continuum transitions of hydrogen.

The two methods are found to be suitable for different
ranges of principal and angular momentum quantum num-
bers. While a complete account of all previous work on the
Bethe logarithm would result in an excessively long list of
references, it might be instructive and appropriate to recall a
few previous investigations on this subject �17–27�. Re-
cently, the Bethe logarithm was re-evaluated, for selected
hydrogenic states, in the context of lower-order terms acting
as preparatory calculations for higher-order relativistic cor-
rections to the self-energy �28–30�. The basic equation de-
fining the spectral decomposition has been given in Eq. �2a�
of Ref �25� and the basic equation for the integral represen-
tation has been indicated in Eq. �2b� of Ref. �25�. The evalu-
ation for low-lying states of hydrogen, using the two meth-
ods, has previously been discussed in Secs. IIB �integral
representation� and IIC �spectral representation� of the com-
prehensive Ref. �25�. A similar, though less comprehensive,
comparison of the two approaches had been made previously
in Ref. �22�. In the context of the spectral representation, we
recall that in Table II of Ref. �17� and Table I of Ref. �18�,
one may even find results for the particular contributions of
the discrete spectrum and of the continuum to the Bethe
logarithm of selected low-lying states. In general, we found
that unexpected numerical difficulties affect the calculation
of Bethe logarithms for Rydberg states, especially in cases
where the difference n− l of the principal quantum number n
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and the orbital quantum number l is large. Here, we attempt
to enhance both the range of applicability of the integral
representation as well as the spectral representation, by the
use of convergence acceleration methods �31,32� for the
evaluation of hypergeometric functions that characterize
propagator matrix elements �integral representation� and the
calculation of infinite sums over discrete virtual intermediate
states �spectral representation�.

�At least� two further methods are available for the evalu-
ation of Bethe logarithms: One of these is based on the de-
termination of approximate eigenfunctions obtained using fi-
nite basis sets �24�, which may be combined with a Neville–
Richardson extrapolation to yield accurate values, thereby
decreasing the required number of functions in the basis set.
Basis-set methods are also used in calculations of Bethe
logarithms in helium �see e.g., Ref. �33,34��. A fourth
method relies on a discrete-space �lattice� evaluation of the
radial component of the Schrödinger–Coulomb propagator
�35,36�. This method is briefly discussed in Appendix A.

A somewhat special role is played by circular Rydberg
states with n−1= l= �m� �5�, whose probability density
around the atomic nucleus approximately has the shape of a
rotationally symmetric, “circular” tire �see Fig. 1 of Ref. �5��,
but this shape is restricted to the highest possible magnetic
angular momentum projection. Because the Bethe logarithm
does not depend on m, we will refer to all states with n− l
=1 as circular states in this article. Circular states have the
highest possible l for given n. In the context of the current
numerical investigation, it thus appears useful to define a
“noncircularity” or “angular-momentum defect” �=n− l�1.
The radial hydrogenic wave functions have the structure of
an exponential exp�−r / �na0��, where a0 is the Bohr radius,
multiplied by a polynomial in r with � terms. The coeffi-
cients of this polynomial have an alternating sign pattern.
Finite sums, whose terms display an alternating sign pattern,
are notoriously problematic in numerical evaluations, be-
cause their convergence cannot be accelerated with the meth-
ods used for infinite series, and the straightforward summa-
tion of the terms, using multiprecision arithmetic, is often the
only practical route to a reliable numerical evaluation.

This paper is organized as follows. In Sec. II, we discuss
the integral representation of the Bethe logarithm and its
application to the calculation of levels with small n− l. In
Sec. III, we discuss the spectral representation. Some brief
conclusions are drawn in Sec. IV.

II. INTEGRAL REPRESENTATION

As is customary for quantum electrodynamic bound-state
calculations, we use a system of units in which �=c=�0=1.
The Bethe logarithm is a low-energy second-order perturba-
tion which is due to virtual states with one photon mode
excited, and the atom in a virtual state. This can be seen most
clearly by going to the Schrödinger-picture representation of
the field operators �37�. A detailed discussion of the transi-
tion to the Schrödinger picture for the field operators, to-
gether with a basic application to bound-state problems, is
given in Ref. �38�. The calculation naturally leads to an in-
tegral over the virtual photon energy which involves a hy-

drogenic Green function with an argument z=En−�, where
� is the energy of the virtual photon. In the literature, it is
customary to set z=−�Z��2m / �2n2t2� �see, e.g., Ref. �28��.
So t is a variable which parameterizes the argument of the
Green function in terms of a generalized quantum number “
n→nt.” Of course, the variable t has nothing to do with
temporal evolution. Solving for t, we obtain

t =
1

�1 +
2n2�

�Z��2m

. �1�

Here, m is the electron mass, Z is the nuclear charge, and �
is the fine-structure constant. The photon energy can be ex-
pressed in terms of t as

� =
1 − t2

t2

�Z��2m

2n2 . �2�

We denote the reference state by �nlm�. The relevant matrix
element, which involves the Schrödinger–Coulomb propaga-
tor, is given by

Pnl�t� =
1

3m
�nlm	pi 1

H − E + ��t�
pi	nlm
 , �3�

where the summation convention is used for the sum over
Cartesian coordinates �i=1,2 ,3�. The integral representation
for the Bethe logarithm ln k0�n , l�, in terms of P�t�, is differ-
ent for S states �l=0� in comparison to non-S states �l�0�,

FIG. 1. �Color online.� The number of terms in the radial wave
function grows with the principal quantum number n and with the
angular momentum defect �=n− l. In order to illustrate this well-
known fact, we here plot the radial probability density of the state
with quantum numbers n=40, l=14, and m=6, in the plane of con-
stant azimuth 	=0. Here, a0 denotes the Bohr radius a0

=� / ��mc�=0.529 177 2108�18�
10−10 m �16�. The Bethe loga-
rithm for the state under discussion reads ln k0�n=40, l=14�
=−0.418,087,713
10−4.
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ln k0�n,l� = −
3

4
�P . V . ��

0

1

dt
1

t3� t2 − 1

nt2 Pnl�t� +
2

3n
−

8

3
t2�l,0

− 2 ln�n��l,0. �4�

The specification of the principal value is necessary in Eq.
�4� because of bound-state poles whose residue gives the
one-photon spontaneous decay width of an excited atomic
state.

As an example, we consider here the 4P state for which
the matrix element has the form

Pn=4,l=1�t� = −
1024 t7

45�t − 1�8�t + 1�8��4,t��75 − 1700 t2

+ 9954 t4 − 21 124 t6 + 14 907 t8�

+
2t2

45�t − 1�8�t + 1�8 �15 − 30 t − 60 t2 + 150 t3

+ 1547 t4 + 15 956 t5 − 154 368 t6 − 142 420 t7

+ 1 166 645 t8 + 357 354 t9 − 2 744 516 t10

− 276 066 t11 + 2 046 129 t12� . �5�

The “standard hypergeometric” function which occurs in this
expression, is encountered in various previous calcula-
tions�28,29�

��n,t� = 2F1�1,− nt,1 − nt,�1 − t

1 + t
�2� = − nt�

k=0

 �1 − t

1 + t
�2k

k − nt
.

�6�

The convergence of this series representation near t=0 is
problematic, but it can be accelerated effectively using the
combined nonlinear-condensation transformation �CNCT�
described in Refs. �31,32�. Using this method, we easily ob-
tain the 40-figure result

ln k0�n = 4,l = 1� = − 0.041 954 894 598 085 548 671 037 594 335 271 341 857 0, �7�

which is consistent with the 24-figure result given in Eq. �64�
of Ref. �32� and with the 27-figure result given in Table III of
Ref. �39� for this state.

The number of terms occurring in Eq. �5� is not excessive,
but it grows rapidly with the angular momentum defect �
=n− l. In addition, considerable numerical cancellation can
occur from the typically alternating sign pattern of the poly-
nomial that multiplies ��n , t�. For circular Rydberg states
with n= l+1, the analytic expressions obtained for P�t� are
most compact, and these states can be well treated using the
integral representation, up to very high principal quantum
numbers.

We found that, using the integral representation, numeri-
cally satisfactory results can be obtained for states with �
=n− l�5, in the entire range n�200. However, for �=n− l
�5, the accuracy obtained using this method was not satis-
factory, unless an excessively accurate multiprecision arith-
metic is used in intermediate steps of the calculation. It is
still possible to use the integral representation for n− l�20.
In this case, one does not have more than 19 sbound-state
poles to subtract in forming the principal value in Eq. �4�. As
an alternative, one may deform the t-integration contour into
the complex plane. However, for �=n− l�20, we found the
numerical difficulties to be so severe that a different method
of calculation appeared to be called for. The more complex
structure of the wave function with increasing n− l is illus-
trated in Fig. 1.

However, before we resort to this different method, in
Sec. III below, we briefly dwell on the application of the
integral representation to circular states with n= l+1. It is
possible to give a general integral representation for the Be-
the logarithm of a circular state with l=n−1,n�1. This rep-

resentation is a specialization of Eq. �4� and reads

ln k0�n,n − 1� = −
3

4
�

0

1

dt f�t� . �8�

Here,

f�t� = −
1 − t2

nt5 �−
2t2

3�1 − t2�
+ �

k=0



T�k,n,t�� . �9�

The term T�k ,n , t� is given by

T�k,n,t� = −
24nt2n�1 + t�−4n

�2n − 1���2n�
1

k!
�1 − t

1 + t
�2k


� �n − 1�t�P�k,n,t��2��k + 2n − 2�
3n�1 − t�4�1 − k − n + nt�

+
4t3��k + 2n + 2�

3�1 + t�4�− 1 − k − n + nt�� . �10�

The polynomial P�k ,n , t� reads

P�k,n,t� = �k + n − 1��2n − 1��1 − t�2 − 2tk�k − 1� . �11�

The first term on the right-hand side of Eq. �10� has a singu-
larity at t= �n−1� /n, which corresponds to the decay into the
lower-lying state with principal quantum number n−1 and
orbital angular momentum quantum number l=n−2. Se-
lected numerical values for very highly excited hydrogenic
states, obtained using the integral representation, are given in
Table I.
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III. SPECTRAL REPRESENTATION

The integral representation discussed in Sec. II very
closely reflects the physics involved in the original problem,
by expressing the Bethe logarithm as an integral over the
energy of a virtual photon. For computational purposes, a
different method can be more effective, which relies on
available analytic results for transition matrix elements of
discrete-discrete transitions �40�, as cited in Eq. �63.2� of
Ref. �41�, and for discrete-continuum transitions see Eq. �6�
of Ref. �42� or alternatively Ref. �43�. Note that in Eq. �6� of
Ref. �42�, the argument of the arccot function in the expo-
nential should be replaced according to n�n /n→n� /n, and
that, as pointed out in Ref. �44�, the continuum wave func-
tions used in Ref. �42� are normalized to the energy scale,
not to the momentum scale. The latter fact implies that Eq.
�3b� of Ref. �42� receives a correction according to Eq. �3b�
of Ref. �44�. For the transition matrix elements of selected
low-lying states into the continuum, one may alternatively
use the formulas given in Ref. �45�, but one should be aware
of multiplicative correction factors as pointed out below Eq.
�11� of Ref. �17�.

The spectral representation is based on the following for-
mula for the Bethe logarithm,

ln k0�n,l� =
n3

2�Z��4m
�		 pi

m
�HS − En�


ln�2�HS − En�
�Z��2m

� pi

m
		
 , �12�

where �	�= �nlm�. Here, HS is the Schrödinger Hamiltonian

HS =
p2

2m
−

Z�

r
. �13�

This spectrum of this operator, as is well known, has a dis-
crete part �bound states, En�0�, and a continuous part �con-
tinuum states, E�0�. Note that the modulus �HS−En� is in-
volved in Eq. �12�. Otherwise, the argument of the logarithm
could become negative. The specification of the modulus

corresponds to the principal value prescription in Eq. �4�.
Using the commutator relation pi=i m�HS ,ri�, one may eas-
ily transform Eq. �12� into

ln k0�n,l� =
n3

2�Z��4m
�		ri�HS − En�3ln�2�HS − En�

�Z��2m
�ri		
 .

�14�

We assume the wave functions of the continuous spectrum to
be normalized according to

�Elm�E�l�m�� = ��E − E���ll��mm�. �15�

The discrete spectrum is normalized according to
�nlm �n�l�m��=�nn��ll��mm�. One may then write down a
spectral decomposition of Eq. �12�,

ln k0�n,l� =
n3

2�Z��4m
�
i=1

3 �nlm	ri�HS − En�3


ln�2�HS − En�
�Z��2m

�ri	nlm

=

n3

2�Z��4m
�

n�=0



�
l�=l±1

�
m�=−l�

l�

�
i=1

3

�En� − En�3


ln�2�En� − En�

�Z��2m
���nlm�ri�n�l�m���2

+
n3

2�Z��4m
�

0



dE� �
l�=l±1

�
m�=−l�

l�

�
i=1

3

�E� − En�3


ln�2�E� − En�
�Z��2m

���nlm�ri�E�l�m���2 = B + C .

�16�

Here, B is the bound-spectrum contribution, and C stems
from the continuum. Using the dipole selection rules, one
immediately sees that the angular sums over l� collapse to
only two nonvanishing terms. We assume the wave functions

TABLE I. Values of Rydberg state Bethe logarithms near n�100, for small angular momentum defect �=n− l. The results displayed here
can be obtained using both the integral representation as well as the spectral representation of the Bethe logarithm, and both methods were
used in order to check the consistency of the results.

ln k0�n ,n−�� �=1 �=2 �=3 �=4

n=100 −0.583 308 014
10−7 −0.613 877 681
10−7 −0.645 944 796
10−7 −0.679 594 629
10−7

n=101 −0.566 008 997
10−7 −0.595 371 896
10−7 −0.626 158 390
10−7 −0.658 448 703
10−7

n=102 −0.549 387 309
10−7 −0.577 602 405
10−7 −0.607 171 570
10−7 −0.638 170 329
10−7

n=103 −0.533 410 121
10−7 −0.560 532 956
10−7 −0.588 944 368
10−7 −0.618 715 502
10−7

n=104 −0.518 046 496
10−7 −0.544 129 416
10−7 −0.571 439 188
10−7 −0.600 042 866
10−7

n=105 −0.503 267 262
10−7 −0.528 359 632
10−7 −0.554 620 643
10−7 −0.582 113 531
10−7

n=106 −0.489 044 896
10−7 −0.513 193 296
10−7 −0.538 455 408
10−7 −0.564 890 904
10−7

n=107 −0.475 353 416
10−7 −0.498 601 821
10−7 −0.522 912 079
10−7 −0.548 340 528
10−7

n=108 −0.462 168 279
10−7 −0.484 558 230
10−7 −0.507 961 045
10−7 −0.532 429 945
10−7

n=109 −0.449 466 295
10−7 −0.471 037 051
10−7 −0.493 574 371
10−7 −0.517 128 556
10−7

n=110 −0.437 225 533
10−7 −0.458 014 220
10−7 −0.479 725 687
10−7 −0.502 407 501
10−7
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to have the structure �r �nlm�=Rnl�r�Ylm�� ,	� and �r �Elm�
=REl�r�Ylm�� ,	�, where � and 	 are the polar angles. In
terms of radial integrals, the quantities B and C read

B =
n3

2�Z��4m� l

2l + 1 �
n�=0



�En� − En�3ln�2�En� − En�

�Z��2m
�


	�
0



dr r3Rnl�r�Rn��l−1��r�	2

+
l + 1

2l + 1 �
n�=0



�En� − En�3


ln�2�En� − En�

�Z��2m
�	�

0



dr r3Rnl�r�Rn��l+1��r�	2
�17a�

and

C =
n3

2�Z��4m� l

2l + 1
�

0



dE��E� − En�3ln�2�E� − En�
�Z��2m

�

	�

0



dr r3Rnl�r�RE��l−1��r�	2

+
l + 1

2l + 1
�

0



dE��E� − En�3


ln�2�E� − En�
�Z��2m

�	�
0



dr r3Rnl�r�RE��l+1��r�	2 .

�17b�

The representations �17a� and �17b� involve only radial inte-
grals; therefore Eq. �63.2� of Ref. �41� and Eq. �6� of Ref.
�42� can be directly applied �with the above mentioned cor-
rection in the argument of the arccot function�. In the calcu-
lation of B, the CNCT �31,32� was used in order to accelerate
the convergence of the sum over n�. For the evaluation of C,
a simple Gaussian integration was found to be appropriate

after a suitable variable change that maps the interval E�
� �0,� onto the compact interval �0, 1�.

Selected numerical in values for very highly excited Ry-
dberg states with principal quantum numbers n�200, ob-
tained using the spectral representation, can be found in
Tables II–IV. The values listed in Table II are consistent with
the asymptotic expansions in Appendix B, as given in Eqs.
�B2� and �B3�, and in Table V �see also Refs. �45,46��. For
circular states, the values given in Table IV confirm the
asymptotic expansion in Eq. �B1�. Final numerical calcula-
tions were done using the high-performance computing fa-
cilities of the Max Planck Institute for Nuclear Physics in
Heidelberg, and using a cluster of IBM Thinkpad mobile
workstations �47�. Advantage has been taken of multipreci-
sion libraries �48–51�.

IV. CONCLUSIONS

We have presented the evaluation of Bethe logarithms for
all the 20,100 hydrogenic states with a principal quantum
number n�200. Two methods have been used: The first
method involves an integral representation which reflects the
physics of the underlying phenomenon in a very direct man-
ner, by expressing the Bethe logarithm in terms of an integral
over the virtual photon energy �see Sec. II�. The second
method relies on a spectral decomposition of the Bethe loga-
rithm �see Sec. III�. In that latter representation, the two dis-
tinct contributions from virtual discrete states and virtual
bound states can be clearly distinguished. A third method,
which has been used in exploratory work, is briefly described
in Appendix A. Selected numerical data are presented in Eq.
�7� and in the Tables I–IV. The full set of numerical values is
available in �52�.

Incidentally, we observe that for all states which simulta-
neously fulfill 150�n�200 and l�150, the virtual bound
states give by far the dominant contribution to the Bethe
logarithm; indeed, we have �B /C��1010 for these states �for
the definition of B and C see Eqs. �17a� and �17b��. This

TABLE II. Sample values of Rydberg state Bethe logarithms near n�200,0� l�3. All decimal figures shown are significant. The values
are consistent with a constant limit for ln k0�n , l� as n→ for constant l. In contrast to Table I, the values displayed here have been obtained
exclusively using the spectral representation. Note that the entries are labeled as ln k0�n , l� in contrast to the notation ln k0�n ,n−�� used in
Table I.

ln k0�n , l� l=0 l=1 l=2 l=3

n=190 0.272 266 958
101 −0.490 489 444
10−1 −0.993 712 588
10−2 −0.355 864 236
10−2

n=191 0.272 266 942
101 −0.490 490 025
10−1 −0.993 716 023
10−2 −0.355 866 654
10−2

n=192 0.272 266 927
101 −0.490 490 596
10−1 −0.993 719 406
10−2 −0.355 869 035
10−2

n=193 0.272 266 911
101 −0.490 491 159
10−1 −0.993 722 737
10−2 −0.355 871 380
10−2

n=194 0.272 266 896
101 −0.490 491 713
10−1 −0.993 726 017
10−2 −0.355 873 690
10−2

n=195 0.272 266 881
101 −0.490 492 258
10−1 −0.993 729 247
10−2 −0.355 875 964
10−2

n=196 0.272 266 867
101 −0.490 492 796
10−1 −0.993 732 428
10−2 −0.355 878 205
10−2

n=197 0.272 266 852
101 −0.490 493 325
10−1 −0.993 735 562
10−2 −0.355 880 412
10−2

n=198 0.272 266 838
101 −0.490 493 846
10−1 −0.993 738 649
10−2 −0.355 882 586
10−2

n=199 0.272 266 824
101 −0.490 494 360
10−1 −0.993 741 690
10−2 −0.355 884 728
10−2

n=200 0.272 266 810
101 −0.490 494 865
10−1 −0.993 744 687
10−2 −0.355 886 838
10−2
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observation is in sharp contrast to lower-lying states, where
�B /C� is typically smaller than one. e.g., the ground state
fulfills �B /C��0.00483. We conclude that the contribution of
virtual bound states as compared to virtual continuum states
is much more pronounced for Rydberg states as compared to
lower-lying states, an observation which might appear coun-
terintuitive at first glance.
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Appendix A: Lattice Schrödinger–Coulomb Propagator

The computational implementation of the Schrödinger
propagator on a discrete lattice has been discussed in Ref.
�36�. It can lead to a computationally cheap evaluation pro-
cedure, provided that the required numerical accuracy is not
excessive. Numerical difficulties grow for higher excited
states, in both one- and two-loop quantum electrodynamic

problems, for of a number of reasons �more terms and in
general a more complex structure of the wave function, more
bound-state poles along the integration contours, more nodes
of the wave function, which translate into numerical cancel-
lations, etc.�. While of course any computational method is
expandable, we have found it difficult to control the accuracy
of the Bethe logarithm, calculated using a discrete-lattice
representation, for both for high n as well as for high �=n
− l. For high n, the wave function extends over many Bohr
radii, which necessitates an accurate representation of the
Schrödinger–Coulomb propagator over an extended grid,
which is difficult to achieve with a limited grid size. For high
�, the difficulties are enhanced due to the oscillations of the
wave function which necessitate an even more accurate rep-
resentation on the grid.

In exploring this way of calculating the Bethe logarithm,
we found it instructive, however, to use routines which lead
to an explicit diagonalization of the Schrödinger–Coulomb
propagator on the grid. The accuracy of the lowest virtual-
state energy eigenvalues is actually satisfactory, while for
higher excited virtual states, the eigenvalues depart rapidly
from the exact Schrödinger solution En=−�Z��2m / �2n2�.
This phenomenon has also been observed in the context of
basis-set calculations of relativistic effects in atoms which
rely on B-spline techniques, see e.g. Ref. �35�. On a discrete
lattice, one can in principle only obtain a discrete spectrum,
which for the Schrödinger–Coulomb propagator extends into

TABLE III. Values of Rydberg state Bethe logarithms near n�200,100� l�103. This table complements Table I, by investigating a
range of quantum numbers where both the principal quantum number n as well as the orbital angular momentum quantum number l are large.
The angular momentum defect �=n− l is also large for all states in this table. As for the entries in Table II, the values are consistent with a
constant limit as n→ for given l.

ln k0�n , l� l=100 l=101 l=102 l=103

n=190 −0.108 830 510
10−6 −0.105 112 540
10−6 −0.101 547 415
10−6 −0.981 275 887
10−7

n=191 −0.109 118 840
10−6 −0.105 395 841
10−6 −0.101 825 818
10−6 −0.984 012 208
10−7

n=192 −0.109 403 831
10−6 −0.105 675 864
10−6 −0.102 101 004
10−6 −0.986 716 920
10−7

n=193 −0.109 685 537
10−6 −0.105 952 663
10−6 −0.102 373 023
10−6 −0.989 390 540
10−7

n=194 −0.109 964 013
10−6 −0.106 226 290
10−6 −0.102 641 927
10−6 −0.992 033 569
10−7

n=195 −0.110 239 309
10−6 −0.106 496 796
10−6 −0.102 907 766
10−6 −0.994 646 499
10−7

n=196 −0.110 511 476
10−6 −0.106 764 231
10−6 −0.103 170 590
10−6 −0.997 229 814
10−7

n=197 −0.110 780 565
10−6 −0.107 028 643
10−6 −0.103 430 446
10−6 −0.999 783 983
10−7

n=198 −0.111 046 625
10−6 −0.107 290 080
10−6 −0.103 687 382
10−6 −0.100 230 947
10−6

n=199 −0.111 309 701
10−6 −0.107 548 591
10−6 −0.103 941 443
10−6 −0.100 480 673
10−6

n=200 −0.111 569 843
10−6 −0.107 804 219
10−6 −0.104 192 674
10−6 −0.100 727 619
10−6

TABLE IV. Values of Rydberg state Bethe logarithms near n�200, for the highest principal quantum numbers and angular momenta
under investigation in this article. The angular momentum defect is small for the states listed in this table. Conse- quently, the states listed
here can be calculated using both the integral as well as the spectral representation.

ln k0�n , l� l=196 l=197 l=198 l=199

n=197 −0.753 369 175
10−8

n=198 −0.761 387 888
10−8 −0.741 963 223
10−8

n=199 −0.769 316 490
10−8 −0.749 821 211
10−8 −0.730 786 360
10−8

n=200 −0.777 156 469
10−8 −0.757 591 335
10−8 −0.738 487 630
10−8 −0.719 832 864
10−8
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the positive-energy domain. It is then possible to use the
eigenvalues and eigenvectors directly in order to evaluate the
Bethe logarithm �in the sense of the bound-state contribution
in Eq. �17a��. This statement remains true although the
higher excited virtual states “energies” on the lattice depart
very much from the true eigenvalues En=−�Z��2m / �2n2� ob-
tained for a Hamiltonian acting on L2�R3�.

Using the lattice representation, it is easily possible to
obtain about 9 decimal figures for the 1S Bethe logarithm on
a lattice which extends to 20 Bohr radii and which is com-
prised of only 200 nodes. However, we have found it diffi-
cult to substantially enhance the accuracy, for low-lying
states, beyond 20 figures, even if quadruple precision is used
in the linear algebra libraries. This level of accuracy is of
course dwarfed by other available methods, for the concrete
problem at hand �see Eq. �7��, and, therefore, the lattice rep-
resentation has not been pursued any further in the current
context of Bethe logarithms for Rydberg states. However, we
re-emphasize here that the lattice representation can lead to a
computationally very efficient evaluation of matrix elements
of the hydrogenic propagator, a property which has become
useful in the calculation of other quantum electrodynamic
effects for lower-lying states with n�6 �4,53�.

The limitation experienced in the attainable numerical ac-
curacy for lattice calculations finds an explanation in view of
two obvious limitations of this method: The size of the box
determines the minimum energy �longest wavelength� solu-
tion that can be represented, and the longest lattice spacing
determines the maximum energy �shortest wavelength� solu-
tion. The highly oscillatory behaviour of the radial wave
function for Rydberg states �see also Fig. 1�, which corre-
sponds to short-wavelength components, cannot be accu-
rately represented on a numerical lattice; this property af-
fords a natural explanation for the difficulties experienced
with the lattice-based method in the context of the current
calculation.

Appendix B: Asymptotics derived previously

Based on an extrapolation of the numerical data of Table
I of Ref. �5� to higher principal quantum numbers, the fol-
lowing asymptotics for the Bethe logarithm of circular Ryd-
berg states had been obtained:

l3 
 ln k0�l + 1,l� � − 0.056 852 81�3� +
0.024 820 8�6�

l

+
0.038 14�2�

l2 −
0.1145�5�

l3 +
0.166�3�

l4

−
0.22�2�

l5 . �B1�

Here, terms of order l−k with k�6 are neglected. For S
states, the following asymptotics had been obtained on the
basis of the numerical data listed in Ref. �6�:

ln k0�n,l = 0� � 2.722 654 34�5� +
0.000 000�5�

n

+
0.553 60�5�

n2 −
0.5993�5�

n3 +
0.613�7�

n4 −
0.60�5�

n5 .

�B2�

The corresponding expression for P states reads

ln k0�n,l = 1� � − 0.0490 545�1� +
0.000 000�5�

n

+
0.205 30�15�

n2 −
0.599�5�

n3 +
1.45�10�

n4 −
3�1�
n5 .

�B3�

In an apparently not very widely known paper �46�, a
method has been indicated for the evaluation of the Bethe
logarithm in the limit of infinite principal quantum number
n=. This method relies on an asymptotic expansion of the
radial integrals that enter into Eqs. �17a� and �17b�, in the

TABLE V. Numerical values of the limits ln k0� , l�
� limn→ln k0�n , l� for l=0,… ,10. The evaluation proceeds ac-
cording to methods outlined in Ref. �46�; the values communicated
here are in agreement with and more accurate than those obtained
for the range l=0, …, 7 in Ref. �46�.

l ln k0� , l�

0 +2.722 654 335

1 −0.049 054 544

2 −0.009 940 457

3 −0.003 560 999

4 −0.001 663 771

5 −0.000 908 042

6 −0.000 548 999

7 −0.000 356 923

8 −0.000 244 981

9 −0.000 175 372

10 −0.000 129 830

FIG. 2. The Bethe logarithms for l=2 �D states� are in excellent
agreement with their asymptotic limit as n→. We plot here the
values ln k0�n ,2� as a function of n−1. For n=190,… ,200, the val-
ues of ln k0�n ,2� are given in Table II �see Ref. �52� for a complete
list of all relevant values in the range n�200�. The limiting value at
n−1=0, which is ln k0� ,2�=−0.994 045 690
10−2 �see also Table
V�, has been evaluated independently according to Ref. �46�.
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limit of an infinite principal quantum number of the refer-
ence state. The resulting integrals are very slowly conver-
gent, but they permit a completely independent evaluation of
ln k0� , l� which does not rely on an extrapolation of data
available for lower principal quantum numbers �cf. Eqs.
�B1�–�B3��. Thus, the limiting values ln k0� , l� provide a
sensitive independent crosscheck of the numerical methods
employed in the current calculation.

In Ref. �46�, the limits ln k0�n= , l� have been evaluated
for l=0,… ,7. Here, we generalize the treatment to the range

l=0,… ,10, thereby confirming the asymptotic limits ob-
tained in Ref. �46� �see Table V�. A comparison to the nu-
merical values obtained in the current investigation indicates
excellent agreement with the asymptotic values as n→ �see
Fig. 2 for the case l=2�. A full investigation of the
asymptotic structure of Bethe logarithms for large n, includ-
ing a derivation of the subleading terms in the expansion in
powers of n−1, would be very interesting in its own right.
Such an investigation would be facilitated by the availability
of accurate numerical data over wide ranges of n and l, as
obtained in the current investigation.
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