
Theory and Applications of Graphs

Volume 2 | Issue 2 Article 4

2015

Path-tables of trees: a survey and some new results
Kevin Asciak
University of Malta, kevin.j.asciak@um.edu.mt

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact
digitalcommons@georgiasouthern.edu.

Recommended Citation
Asciak, Kevin (2015) "Path-tables of trees: a survey and some new results," Theory and Applications of Graphs: Vol. 2 : Iss. 2 , Article 4.
DOI: 10.20429/tag.2015.020204
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229150379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Path-tables of trees: a survey and some new results

Cover Page Footnote
Acknowledgement I am grateful to Virgilio Pannone for pointing out to me the problem of path-tables for
trees and for his many helpful suggestions and to Josef Lauri for his valuable contribution in writing this paper.

This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4

https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4?utm_source=digitalcommons.georgiasouthern.edu%2Ftag%2Fvol2%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Abstract

The (vertex) path-table of a tree T contains quantitative information about the
paths in T . The entry (i, j) of this table gives the number of paths of length j
passing through vertex vi. The path-table is a slight variation of the notion of path
layer matrix. In this survey we review some work done on the vertex path-table of
a tree and also introduce the edge path-table. We show that in general, any type
of path-table of a tree T does not determine T uniquely. We shall show that in
trees, the number of paths passing through edge xy can only be expressed in terms
of paths passing through vertices x and y up to a length of 4. In contrast to the
vertex path-table, we show that the row of the edge path-table corresponding to
the central edge of a tree T of odd diameter, is unique in the table. Finally we show
that special classes of trees such as caterpillars and restricted thin trees (RTT) are
reconstructible from their path-tables.

1 Historical background on tables involving number

of paths

M.Randić has been a major contributor to the development of mathematical chemistry.
In particular he wanted to give the concept of atomic paths a formal mathematical de-
velopment based on the use of Graph Theory. In [19], he discussed in some detail the
uses of the enumeration of paths and neighbours in molecular graphs and tried to char-
acterise molecular graphs through the use of the atomic path code of a molecule. Randić
conjectured that the list of path numbers determines the graph G uniquely and verified
this assertion for graphs up to 11 vertices.

Later Bloom et al. [2] defined di,j as the number of vertices in a graph G of diameter
d(G) that are at a distance j from vertex vi. The sequence (di,0, di,1 . . . di,j . . . di,d(G)) is
then called the distance degree sequence of vi in G. The ∣G∣-tuple of distance degree
sequences of the vertices of G with entries arranged in lexicographic order is called the
Distance Degree Sequence of G (DDS(G)).

Similarly they also defined the path degree sequence of vi in G as the sequence
(pi,0, pi,1 . . . pi,j . . . pi,d(G)) where pi,j is the number of paths in G starting at vertex vi
and having length j. The ordered set of all such sequences arranged in lexicographic
order is called the Path Degree Sequence of G (PDS(G)).

In his study, Randić remarked that since there is a unique path between pairs of atoms
in acyclic structures, the number of paths of a given length corresponds to the number of
neighbours at a given distance. Quintas and Slater [18] used Randić’s remark in order to
prove that for a connected graph G, DDS(G) = PDS(G) if and only if G is a tree. They
also pointed out that when G is thought of as a molecular graph, PDS(G) is precisely the
lexicographically ordered list of atomic codes for the atoms (vertices) of G. Slater [24]
first showed that Randić’s conjecture is not valid by constructing pairs of non-isomorphic
trees having the same path degree sequence and then together with Quintas [18] they
constructed also non-tree graphs having a variety of properties and which also invalidate
the conjecture.

Since a tree is not, in general, characterised by its Path(Distance) Degree Sequence,
researchers turned their focus on finding the least possible order for the existence of pairs
of non-isomorphic graphs having the same PDS. They found out that the least order for
which there exists a pair of non-isomorphic trees with the same PDS is greater than 15
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for trees with no vertices of degree greater than 4 and less than 19 for trees without any
vertex degree restrictions [18].

V. A. Skorobogatov and A.A.Dobrynin [23] introduced the path layer matrix, a matrix
characterising the paths that can be found in a graph. The path layer matrix of a graph
G of order p is the p × (p − 1) matrix ¿(G) = ∣∣¿i,j∣∣, where ¿i,j is the number of simple
paths in G starting at vertex vi and having length j. By ordering the rows of ¿(G) in
decreasing lengths ( “length” here being the number of nonzero elements) and then by
lexicographically arranging the rows with the same length, one can obtain a canonical
form of ¿(G). This path layer matrix is also known as the path degree sequence of a graph
or the atomic path code of a molecule. This invariant and its modifications have found
some important applications in chemistry especially in the characterisation of branching
in molecules, establishing similarity of molecular graphs and for drug design [20, 21, 22]

As pointed out earlier, the path layer matrix of graph G having a sufficiently large
order, does not characterise every graph G uniquely. The problem of bounding this
order has been studied for over twenty years. Dobrynin and Mel’nikov [9] noticed that
mathematical investigations of this matrix deal with finding a pair of non-isomorphic
graphs having some specific properties and such that both graphs have the same path
layer matrix. Among these properties we can have the girth, cyclomatic number and
planarity of graphs [6, 9, 14, 15, 16]. Thus an interesting problem is to determine the
least possible order of a pair of non-isomorphic graphs in such a class with the same path
layer matrix. In fact in [18], Quintas and Slater proposed the following problem :

Does there exist a pair of connected non-isomorphic r-regular graphs (graphs
in which every vertex has degree r) having the same path degree sequences?
If the answer is yes, then for each r ≥ 3, what is the least order p(r) possible
for graphs in such a pair?

Defining f1 to be the minimal order such that there exist non-isomorphic graphs of
order f1 having the same path layer matrix, Dobrynin [4] and Randić [19] showed that
12 ≤ f1 ≤ 14 for general graphs. Dobrynin restricted the problem to certain sub-classes
of graphs by first considering r-regular graphs and then r-regular graphs without cut-
vertices (a cut-vertex is one whose removal disconnects the graph).

Balaban et al. were the first researchers who found a pair of cubic graphs of order
142 that have the same path layer matrix [1]. Then Dobrynin [5] showed that for every
r ≥ 3, r-regular graphs with the same path layer matrix can be constructed and the least
order for these pairs of graphs is a linear function of r when r ≥ 5 while for cubic graphs
f1 ≤ 116 and for 4-regular graphs f1 ≤ 114. In [7] the upperbound for the order of cubic
graphs has been improved to 62.

More recently it has been discovered that if p(r) is the least order of pairs of non-
isomorphic r-regular graphs having the same path layer matrix then

20 ≤ p(3) ≤ 36; [8]

16 ≤ p(4) ≤ 18; [25]

12 ≤ p(5) ≤ 48; [26]

12 ≤ p(6) ≤ 51; [26]

Now since the key feature of all graphs with same path layer matrix was that they
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contained cut-vertices then this prompted the investigation of finding a pair of non-
isomorphic r-regular graphs without cut-vertices and having the same path layer matrix.

Defining f2 to be the the least order for pairs of non-isomorphic graphs without
cutvertices and having the same path layer matrix, Dobrynin [8] proved that for cubic
graphs f2 ≤ 31 and Yuansheng et al. [25] discovered a construction for a pair of non-
isomorphic 4-regular graphs having the same path layer matrix and proved that f2 ≤ 18.

Recently H.Chung [3] constructed a pair of non-isomorphic 5-regular graphs without
cut-vertices of order 20 having the same path layer matrix in which f2 is reduced from
48 to 20.

After proving a converse of Kelly’s Lemma in graph reconstruction, Dulio and Pannone
[10] defined a slightly different kind of table which they call path-table. They stated that
there must be a class of graphs Ϝ in between the empty class and the class of all graphs
of order less than n with the following property. Let X and Y be trees of order n in which
there is a bijection f : V (X) −→ V (Y ) such that, if for every graph Q in Ϝ, the number
of subgraphs of X containing a vertex x of V (X) and isomorphic to Q is the same as the
number of subgraphs of Y containing f(x) and isomorphic to Q, then X ≃ Y .

There can be many such classes Ϝ but the first and most natural class to study for
trees is the class Ϝ of all paths. Thus the statement to be tested becomes:

If X and Y are trees of order n and there is a bijection f : V (X) −→ V (Y )
such that, for every path in Ϝ, the number of paths of X containing a vertex
x of V (X) of length l is the same as the number of paths of Y containing f(x)
of length l, then X ≃ Y .

The assumption in the above statement is tantamount to saying that X and Y have
the same path-table (up to re-ordering of the rows).

Thus rather than considering paths starting at a vertex, they considered paths passing
through a vertex (that is, containing a given vertex, possibly as its endvertex). Like Slater
they also showed that trees having the same path-tables need not be isomorphic. In [11],
they proved that there exist infinitely many pairs of non-isomorphic trees having the
same path- and path layer-tables. The smallest tree that can be obtained with their
construction has twenty vertices.

In this paper we shall take a closer look at these two path-tables for trees, and we
shall also introduce an analogous table involving the number of paths passing through
edges. We shall study possible relationships between these tables and we shall also try to
identify classes of trees which are uniquely determined by some type of path-table. We
shall review some known results and present some new ones.

2 Definitions

We shall start by giving uniform definitions for the three path-tables which we shall be
studying. Let T be a tree and let its vertices be v1, v2, . . . , vn and edges e1, e2, . . . , em. Let
d = diam(T) be the length of the longest path in T . For any vi, let sT (vi) be the d-tuple
whose jtℎ entry equals the number of paths of length j starting at vi and let pT (vi) be
the d-tuple where jtℎ entry equals the number of paths of length j passing through vi. In
both cases we shall drop the suffix T when the tree in question is clear from the context.
We shall then denote the jtℎ entry of s(v) or p(v) by sj(v) and pj(v), respectively.

3

Asciak: Path-tables of trees

Published by Digital Commons@Georgia Southern, 2015



Note that, in both cases, the first entry equals the degree of vi. The Randić table,
which we shall here denote by S(T), is the n × d matrix whose itℎ row is sT (vi). Dulio
and Pannone’s table, which we shall here call the Vertex path-table of T and denoted by
V P (T ) will be the n× d matrix where itℎ row is pT (vi).

Now, given an edge ei of T , let pT (ei) be the d-tuple whose jtℎ entry equals the
number of paths of length j passing through ei. The Edge path-table EP (T ) of T is the
(n− 1)× d matrix whose itℎ row is pT (ei).

Again, we shall also drop the suffix T and denote the jtℎ entry of p(ei) by pj(ei). If
ei is the edge xy we shall denote this by pj(x, y). We shall also write p(x, y) for p(ei).

Clearly, for any given T , S(T ), V P (T ) and EP (T ) are unique up to re-ordering of its
rows, and if two Randić tables or vertex path-tables or edge path-tables are such that
one can be obtained from the other by a re-ordering of its rows, we shall consider the two
tables to be the same.

3 A Path-table does not determine its tree, in gen-

eral

It is not a priori evident that the “passing” vector pT (v) of a vertex v contains more
information than the “starting” vector sT (v). By definition, the first component is deg(v)
for both and the itℎ component of the former contains the itℎ component of the latter as
a summand.

But one can verify that the example pairs of non-isomorphic trees T1, T2 with S(T1) =
S(T2) provided by Slater [24] have V P (T1) ∕= V P (T2).

However, in [11], Dulio and Pannone provided other families of pairs of non-isomorphic
trees U1 and U2 with the same vertex path-table.

These considerations give rise to the interesting open problems of classifying non-
isomorphic trees that share a given vertex path-table and of identifying classes of trees
which are uniquely determined by their path-tables. The main aim of this paper is to
survey the known results in the area and to present some new ones of our own.

Figure 1 shows a pair of Slater’s counterexamples on 18 vertices showing non-isomorphic
trees with the same Randić-table. Table 1 shows their Randić-table but Table 2 shows
their V P tables which are different.
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Figure 1: Slater’s minimal pair of non-isomorphic trees with the same Randić-table.
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S(T1) = S(T2)

v ∖ l 1 2 3 4 5
1 = 1′ 1 1 4 7 4
2 = 2′ 2 4 7 4 0
3 = 3′ 5 8 4 0 0
4 = 4′ 2 4 7 4 0
5 = 5′ 1 1 4 7 4
6 = 6′ 1 1 4 7 4
7 = 7′ 2 4 7 4 0
8 = 8′ 2 4 7 4 0
9 = 9′ 1 1 4 7 4

10 = 10′ 5 8 4 0 0
11 = 11′ 1 4 8 4 0
12 = 12′ 1 4 8 4 0
13 = 13′ 3 4 6 4 0
14 = 14′ 1 4 8 4 0
15 = 15′ 1 2 4 6 4
16 = 16′ 1 2 4 6 4
17 = 17′ 1 2 4 6 4
18 = 18′ 1 2 4 6 4

Table 1: The Randić-table S(T1) = S(T2) of the smallest Slater pair in Figure 1
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V P (T1) ∕= V P (T2)

v ∖ l 1 2 3 4 5 v ∖ l 1 2 3 4 5
1 1 1 4 7 4 1′ 1 1 4 7 4
2 2 5 11 11 4 2′ 2 5 11 11 4

3 5 18 36 38 16 3′ 5 18 36 37 16
4 2 5 11 11 4 4′ 2 5 11 11 4
5 1 1 4 7 4 5′ 1 1 4 7 4
6 1 1 4 7 4 6′ 1 1 4 7 4
7 2 5 11 11 4 7′ 2 5 11 11 4
8 2 5 11 11 4 8′ 2 5 11 11 4
9 1 1 4 7 4 9′ 1 1 4 7 4

10 5 18 36 36 16 10′ 5 18 36 37 16
11 1 4 8 4 0 11′ 1 4 8 4 0
12 1 1 4 7 4 12′ 1 1 4 7 4
13 3 7 14 16 8 13′ 3 7 14 16 8
14 1 1 4 7 4 14′ 1 1 4 7 4
15 1 2 4 6 4 15′ 1 2 4 6 4
16 1 2 4 6 4 16′ 1 2 4 6 4
17 1 2 4 6 4 17′ 1 2 4 6 4
18 1 2 4 6 4 18′ 1 2 4 6 4

Table 2 : The vertex path-tables V P (T1),V P (T2) of the smallest Slater pair in Figure 1.

Figure 2 shows the smallest examples on 20 vertices (found by Dulio and Pannone)
of non-isomorphic trees with the same V P table. They also have the same Randić-table.
Table 3 gives the Randić-table and the vertex path-table of U1 and U2. In U1 there are 3
pairs of vertices (8,18), (3,8) and (3,17) of degree 3 whose distance is 3 while in U2 there
exist only 2 such pairs (3′, 17′) and (8′, 17′). Therefore they are not isomorphic.

7

Asciak: Path-tables of trees

Published by Digital Commons@Georgia Southern, 2015



1

2

3

4

5

6

7

8

9 1011

12

13

14

15

16

18

19 20

17

e4

e5

e6

e7
e8

e9

e10

e11

e12

e13

e14

e15

e16

e17

e18

e19

e1

e2

e3

U1

1'

2'

3'

4'

5'

6'

7'

8'

9' 10' 11'

12'

13'

14'

15'

16'

17'

18'

19' 20'

U2

e'1

e'2

e'3

e'4

e'5

e'6

e'7

e'8

e'9

e'10

e'11

e'12 e'13

e'14

e'15

e'16

e'17

e'18

e'19

Figure 2: Minimal pair of non-isomorphic trees with the same Randić-table and path-
table.
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v ∖ l 1 2 3 4 5 6 7 v ∖ l 1 2 3 4 5 6 7
1 = 1′ 1 1 2 4 5 4 2 1 = 1′ 1 1 2 4 5 4 2
2 = 2′ 2 2 4 5 4 2 0 2 = 2′ 2 3 6 9 9 6 2
3 = 3′ 3 5 5 4 2 0 0 3 = 3′ 3 8 15 21 20 12 4
4 = 4′ 2 2 4 5 4 2 0 4 = 4′ 2 3 6 9 9 6 2
5 = 5′ 1 1 2 4 5 4 2 5 = 5′ 1 1 2 4 5 4 2
6 = 6′ 1 3 7 6 2 0 0 6 = 6′ 1 3 7 6 2 0 0
7 = 7′ 4 7 6 2 0 0 0 7 = 7′ 4 13 27 36 32 16 4
8 = 8′ 3 3 5 6 2 0 0 8 = 8′ 3 6 11 16 14 4 0
9 = 9′ 1 2 3 5 6 2 0 9 = 9′ 1 2 3 5 6 2 0

10 = 10′ 1 2 3 5 6 2 0 10 = 10′ 1 2 3 5 6 2 0
11 = 11′ 1 1 3 5 6 2 0 11 = 11′ 1 1 3 5 6 2 0
12 = 12′ 2 3 6 6 2 0 0 12 = 12′ 2 4 9 12 8 2 0
13 = 13′ 4 7 6 2 0 0 0 13 = 13′ 4 13 27 37 32 16 4
14 = 14′ 2 3 6 6 2 0 0 14 = 14′ 2 4 9 12 8 2 0
15 = 15′ 1 1 3 6 6 2 0 15 = 15′ 1 1 3 6 6 2 0
16 = 16′ 1 2 5 5 4 2 0 16 = 16′ 1 2 5 5 4 2 0
17 = 17′ 3 5 5 4 2 0 0 17 = 17′ 3 8 15 20 20 12 4
18 = 18′ 3 2 3 5 4 2 0 18 = 18′ 3 5 7 11 14 10 4
19 = 19′ 1 2 2 3 5 4 2 19 = 19′ 1 1 2 3 5 4 2
20 = 20′ 1 2 2 3 5 4 2 20 = 20′ 1 1 2 3 5 4 2

S(U1) = S(U2) V P (U1) = V P (U2)

TABLE 3 : The Randić-table and the vertex path-table of the smallest pair of
non-isomorphic trees in Figure 2

Tables 4 and 5 give two examples of edge path-tables for the trees T1, T2 and U1, U2

we showed in Figures 1 and 2. Therefore, just as for the Randić-table and the vertex
path-table, the edge path-table does not distinguish between T1 and T2 or between U1

and U2.
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e ∖ l 1 2 3 4 5
1 = 1′ 1 1 4 7 4
2 = 2′ 1 5 11 11 4
3 = 3′ 1 1 4 7 4
4 = 4′ 1 5 11 11 4
5 = 15′ 1 1 4 7 4
6 = 14′ 1 5 11 11 4
7 = 17′ 1 1 4 7 4
8 = 16′ 1 5 11 11 4
9 = 9′ 1 8 24 32 16
10 = 8′ 1 4 8 4 0
11 = 6′ 1 6 14 16 8
12 = 5′ 1 2 4 6 4
13 = 7′ 1 2 4 6 4
14 = 11′ 1 6 14 16 8
15 = 12′ 1 2 4 6 4
16 = 13′ 1 2 4 6 4
17 = 10′ 1 4 8 4 0

Table 4 : The edge path-table for trees T1 and T2.

e ∖ l 1 2 3 4 5 6 7
1 = 1′ 1 1 2 4 5 4 2
2 = 2′ 1 3 6 9 9 6 2
3 = 3′ 1 3 6 9 9 6 2
4 = 4′ 1 1 2 4 5 4 2
5 = 5′ 1 5 13 20 20 12 4
6 = 12′ 1 1 3 6 6 2 0
7 = 11′ 1 4 9 12 8 2 0
8 = 14′ 1 4 9 12 8 2 0
9 = 13′ 1 1 3 6 6 2 0
10 = 10′ 1 6 17 28 28 16 4
11 = 6′ 1 3 7 6 2 0 0
12 = 8′ 1 2 3 5 6 2 0
13 = 7′ 1 5 11 16 14 4 0
14 = 9′ 1 2 3 5 6 2 0
15 = 15′ 1 5 13 20 20 12 4
16 = 16′ 1 4 7 11 14 10 4
17 = 17′ 1 2 2 3 5 4 2
18 = 18′ 1 2 2 3 5 4 2
19 = 19′ 1 2 5 5 4 2 0

TABLE 5 : The edge path-table for trees U1 and U2.
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4 Relation between Randić , Vertex and Edge path-

tables

The introduction of the edge path-table adds further topics which this paper discusses.
Apart from investigating which trees can be reconstructed from a knowledge of one of
its tables, we shall also consider the relationships between tables of the same tree, in
particular, between V P (T ) and EP (T ), particularly the question of determining p(x, y)
from a knowledge of p(x), p(y) and possibly p(v) for some neighbours v of x andy.

Tables 2 and 4 show that the edge path-table does not determine the vertex path-table.
However, we do not know whether the vertex path-table determines the edge path-table.
Also, in Slater’s pairs of trees T1, T2, we can see from Table 4 that edges e9 and e′9 repre-
senting (v3, v10) and (v′3, v

′
10) respectively, give an equal path vector of (1, 8, 24, 32, 16) but

from Table 2 one can see that p(v3) ∕= p(v′3) and p(v10) ∕= p(v′10). Therefore, p(a, b) does
not determine p(a), p(b) in general. We therefore pose the following natural problems.

Problem 4.1 If pT1
(a) = pT2

(a′) and pT1
(b) = pT2

(b′) (where possibly T1 = T2) when
does it follow that pT1

(a, b) = pT2
(a′, b′)? In general, given two non-isomorphic trees T1

and T2 with V P (T1) = V P (T2), when does it follow that EP (T1) = EP (T2)?

Problem 4.2 If sT1(a) = sT2(b) when does it follow that pT1
(a) = pT2

(b) ? In general,
given two non-isomorphic trees T1 and T2 with the same Randić table, when does it follow
that V P (T1) = V P (T2)?

We shall first start by considering this problem.

4.1 p(x,y) is determined by s(x) and s(y)

In this section we shall prove the following theorem

Theorem 4.1 Let T , T ′ be two trees (possibly T = T ′). Let x, y be two adjacent vertices
in T and x′, y′ be two adjacent vertices in T ′. Assume that s(x) = s(x′) and s(y) = s(y′).
Then for edge xy in T1 and edge x′y′ in T2 p(x, y) = p(x′, y′).

But first we need to develop some notation and a few results.

4.1.1 Definitions and notation

Given a tree T and one of its edges xy, we may consider T to be the union of a positive
subtree T+ and a negative subtree T−. Thus for any edge xy of a tree T we define
the positive-subtree T+ of T with respect to edge xy to be the maximal subtree of T
containing vertex y but not vertex x.

Analogously we define the negative-subtree T− of T . The decision of which subtree to
call positive or negative is, of course, arbitrary.

Recall that sl(x) is defined to be the number of paths of length l that start from vertex
x so that we denote s−l (x) to be the number of paths of length l that start from vertex
x and lie within the subtree T−. Analogously we define s+l (y). In various formulae it is
useful to allow the length l to be equal to zero so that conventionally s−0 (x) = s+0 (y) = 1.
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x y

T
�

T+

Figure 3: The positive-subtree T+ and negative-subtree T− of a tree T .

We shall define pl(x, y) to be the number of paths of length l passing through x but not
through y and analogously define pl(x, y) to be the number of paths of length l passing
through y but not through x so that

pl(x) = pl(x, y) + pl(x, y)

and
pl(y) = pl(x, y) + pl(x, y)

4.1.2 A useful formula for the number of paths passing through an edge in
terms of starting vectors

Given a tree T and an edge xy in T we want to find the number of paths of length l
passing through edge xy in terms of p(x) and p(y). Suppose that the number of paths of
length i (1 ≤ i ≤ l) starting from x and belonging to T− is equal to s−i (x). Then for each
s−i (x) we determine the number of paths of length j starting from y and lying within T+

where j = l − i − 1, and which is equal to s+j (y). Then the number of paths of length
l passing through edge xy can be determined by summing s−i (x)s

+
l−i−1(y) for 1 ≤ i ≤ l.

Thus

pTl (x, y) =
∑
i,j≥0

s−i (x)s
+
j (y)

where i+ j = l − 1 and l ≥ 1.

If the edge considered is an end-edge then the formula for determining the number of
paths passing through this edge becomes simpler :

pTl (x, y) = si(x)

where i = l − 1 and l ≥ 1.

Lemma 4.1 Let sl(x) be the number of paths of length l starting from vertex x and s−l (x)
be the number of paths of length l starting from vertex x and belonging to T− as previously
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described. Let x and y be two adjacent vertices in the tree T . Then

s−2n(x) =
n∑

i=0

s2i(x)−
n−1∑
i=0

s2i+1(y) (1)

and

s−2n+1(x) =
n∑

i=0

s2i+1(x)−
n∑

i=0

s2i(y) (2)

Proof. To prove statement (1), we use induction on the number of paths of length
l. Consider s−2 (x) which represents the number of paths of length 2 starting from x
but not containing y. Now s2(x) gives the number of paths of length 2 starting from
x so that it includes those paths that pass through y. To eliminate such paths we
consider paths of length 1 starting from y and belonging to T+. These are represented by
s+1 (y) = deg(y)− 1 = s1(y)− s0(x). Thus s

−
2 (x) = s2(x)− s+1 (y) = s2(x)− s1(y) + s0(x).

By the induction hypothesis s−2k(x) =
∑k

i=0 s2i(x)−
∑k−1

i=0 s2i+1(y).
Consider s−2k+2(x) that represents the number of paths of length 2k+2 that start from

x but do not contain vertex y. Now s2k+2(x) gives the number of paths of length 2k + 2
that start from x. Some of these paths belong to T− which contribute to the total sum
of s−2k+2(x) while the remaining paths that pass through y must not be considered . As
a result we consider paths of length 2k + 1 starting from y and belonging to T+. Thus
s−2k+2(x) = s2k+2(x)− s+2k+1(y).

Similar arguments on s+2k+1(y) give s+2k+1(y) = s2k+1(y) − s−2k(x) so that s−2k+2(x) =
s2k+2(x)− s2k+1(y) + s−2k(x).
By the induction hypothesis

s−2k+2(x) = s2k+2(x)− s2k+1(y) +
k∑

i=0

s2i(x)−
k−1∑
i=0

s2i+1(y)

so that

s−2k+2(x) =
k+1∑
i=0

s2i(x)−
k∑

i=0

s2i+1(y)

A similar proof holds for statement (2).

Now using the above results and notations we can prove Theorem 4.1.

Proof of Theorem 4.1 We use the formula for the number of paths of length l passing
through edge xy

pTl (x, y) =
∑
i,j≥0

s−i (x)s
+
j (y)

where i+j = l−1 and l ≥ 1. Assume s−0 (x) = 1 and use the fact that s−1 (x) = deg(x)−1
together with the results obtained in lemma 4.1, namely,

s−2n(x) =
n∑

i=0

s2i(x)−
n−1∑
i=0

s2i+1(y)
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and

s−2n+1(x) =
n∑

i=0

s2i+1(x)−
n∑

i=0

s2i(y)

for n ≥ 1. Analogous formulae hold for s+j (y). For every path length l, pl(x, y) can be
expressed in terms of s(x) = (s0(x), s1(x), ..., sl(x)) and s(y) = (s0(y), s1(y), ..., sl(y)).
Similarly pl(x

′, y′) can be expressed in terms of s(x′) = (s0(x
′), s1(x′), ..., sl(x′)) and

s(y′) = (s0(y
′), s1(y′), ..., sl(y′)). Thus from the assumption s(x) = s(x′) and s(y) = s(y′)

the result follows.

Remark. Slater’s pair of non-isomorphic trees on 18 vertices, shown in Figure 1, gives an
example of non-isomorphic trees T1, T2 such that S(T1) = S(T2) but V P (T1) ∕= V P (T2)
as can be seen by studying Tables 1 and 2.

We can also notice from Table 2 that although p(v10) ∕= p(v3′) and p(v11) = p(v11′)
yet, from Table 4 and Figure 1 we can see that p(e10) = p(e8′) where edge e10 = v10v11
and edge e8′ = v3′v11′ . This follows from the fact that s(v10) = s(v3′) and s(v11) = s(v11′),
confirming Theorem 4.1.

4.2 pl(x, y) is not, in general, determined by p(x) and p(y)

We have shown in Theorem 4.1 that knowing the number of paths starting from vertex
x and from vertex y gives the number of paths passing through edge xy. The situation
is quite different when we turn to Problem 4.1, that is, if we start from the number of
paths passing through vertices x and y. We shall show that in general trees, pl(x, y) can
only be expressed in terms of pi(x) and pi(y) for up to l = 4 where 1 ≤ i ≤ 4.

Let xy be an edge in a graph T . Then it is obvious that

p1(x, y) = 1 (1)

It is also easy to see that

p2(x, y) = (deg(x)− 1) + (deg(y)− 1) = p1(x) + p2(y)− 2 (2)

To express p3(x, y) in terms of si(x) and si(y) for i = 1, 2 we need to consider all
paths of length 2 starting from x and belonging to T−, paths of length 2 starting from y
and belonging to T+, paths of length 1 starting from x and belonging to T− and paths
of length 1 starting from y and belonging to T+. Thus

p3(x, y) = (s2(x)− s1(y) + 1) + (s2(y)− s1(x) + 1) + (s1(x)− 1)(s1(y)− 1) (∗)
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But as
p1(x) = s1(x)

and

p2(x) = s2(x) +

(
s1(x)
2

)

then

p2(x) = s2(x) +

(
p1(x)
2

)

and analogously
p1(y) = s1(y)

and

p2(y) = s2(y) +

(
p1(y)
2

)

Substituting the formulae derived of s1(x), s1(y), s2(x) and s2(y) in (*) we obtain

p3(x, y) = (p2(x)−
(

p1(x)
2

)
− p1(y) + 1)

+ (p2(y)−
(

p1(y)
2

)
− p1(x) + 1)

+ (p1(x)− 1)(p1(y)− 1) (3)

Similarly to what we have done with p3(x, y),

p4(x, y) = (s3(x)− s2(y) + s1(x)− 1)

+ (s3(y)− s2(x) + s1(y)− 1)

+ (s2(x)− s1(y) + 1)(s1(y)− 1)

+ (s2(y)− s1(x) + 1)(s1(x)− 1) (∗∗)

in which

p3(x) = s3(x)− s2(x) + s2(x)s1(x)

= s3(x) + s2(x)[s1(x)− 1]

so that

s3(x) = p3(x)− [p2(x)−
(

p1(x)
2

)
][p1(x)− 1]

Recalling formulae for s1(x), s2(x) and s3(x) and analogous formulae for s1(y), s2(y) and
s3(y) and substituting in (**) we get an expression for p4(x, y) in terms of pi(x) and pi(y)
for i = 1, 2, 3 as shown.
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p4(x, y) = p3(x)− [p2(x)−
(

p1(x)
2

)
][p1(x)− 1]

− p2(y) +

(
p1(y)
2

)
+ p1(x)− 1

+ p3(y)− [p2(y)−
(

p1(y)
2

)
][p1(y)− 1]

− p2(x) +

(
p1(x)
2

)
+ p1(y)− 1

+ [p2(x)−
(

p1(x)
2

)
− p1(x) + 1][p1(y)− 1]

+ [p2(y)−
(

p1(y)
2

)
− p1(x) + 1][p1(x)− 1] (4)

We are therefore able to determine up to p4(x, y) in terms pi(x) and pi(y) for smaller values
of i. However the following example shows that it is not possible to express pl(x, y) in
terms of pi(x) and pi(y), i ≤ l, for paths of length l greater than 4. In fact, the following
example shows that pl(x, y) cannot be expressed even in terms of p(x) and p(y).

Example 4.1 let T ′′ and T ′′′ be two identical trees as shown in Figure 4.

T''

x y

T'''

x' y'

Figure 4: Two identical trees T ′′ and T ′′′; p(x) = p(x′) and p(y) = p(y′) but p5(x, y) ∕=
p5(x

′, y′)
.

Path length 1 2 3 4 5 6 7 8 9 10 11 12 13
p(x) = p(x′) 3 7 12 16 19 20 19 16 12 8 5 2 1
p(y) = p(y′) 3 7 12 16 19 20 19 16 12 8 5 2 1

Table 6 : Path vectors for vertices x and y in tree T ′′ and for vertices x′ and y′ in tree
T ′′′ in Figure 4.
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Path length 1 2 3 4 5 6 7 8 9 10 11 12 13
p(x,y) 1 4 8 12 15 17 17 15 12 8 5 2 1
p(x′, y′) 1 4 8 12 16 18 17 16 12 8 5 2 1

Table 7 : Path vectors for edges xy and x′y′ in trees T ′′ and T ′′′ respectively in Figure 4.

One can see that p(x) = p(x′) and p(y) = p(y′) but p5(x, y) = 15 while p5(x
′, y′) = 16.

Thus in this example pl(x, y) = pl(x
′, y′) only for 1 ≤ l ≤ 4 and 9 ≤ l ≤ 13.

4.3 Determination of pl(x, y) in terms of p(x) and p(y) in some
special cases of trees

We have shown that, at least for general trees, it is impossible to express pl(x, y) in terms
of p(x) and p(y). However, it may be possible that for some special cases of trees, such
as caterpillars and thin trees (defined below), we are able to express pl(x, y) in terms of
p(x) and p(y) and the path-vectors of other nearby vertices of x and y.

Case(i) The Caterpillar case
Recall that a caterpillar is a tree such that the deletion of its endvertices results in a path
called the spine of the caterpillar. A caterpillar whose spine is the path v1, v2, . . . , vs and
such that the vertex vi is adjacent to ai endvertices will be denoted by C(a1, a2, ..., as).
Here we shall show that in a caterpillar it is possible to express pl(x, y) in terms of just
p(x) and p(y).

Proposition 4.1 Let C be a caterpillar, x and y are two adjacent vertices in which
deg(x) = h and deg(y) = k. Then for any t ≥ 1, the number pt(x, y) depends only on
pi(x) and pi(y) for i = 1, 2, 3, ..., t− 1.

Proof. For every path of length l, we have shown in section 4.1 that

pl(x) = pl(x, y) + pl(x, y)

= s−l (x) + [ℎ− 2]s−l−1(x) +
∑

i+j=l−1
i,j≥0

s−i (x)s
+
j (y)

and

pl(y) = pl(x, y) + pl(x, y)

= s+l (y) + [k − 2]s+l−1(y) +
∑

i+j=l−1
i,j≥0

s−i (x)s
+
j (y)

Now pl(x) and pl(y) are known for l = 1, 2, ..., t − 1. Thus we can express s−l (x) and
s+l (y) in terms of analogous unknowns s−r (x) and s+r (y) where r < l. Since we know
that s−1 (x) = ℎ − 1 and s+1 (y) = k − 1 we can inductively calculate s−i (x) and s+i (y) for
i = 1, 2, ..., t− 1. Then pt(x, y) can be obtained from

∑
i+j=l−1
i,j≥0

s−i (x)s
+
j (y).

Case(ii) The Thin Tree case
A tree T is a thin tree if, removing every endvertex of T leaves a caterpillar. The trunk
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of a tree is the intersection of all the longest paths of the tree; a vertex on the trunk is
called a trunk vertex. A restricted thin tree(RTT) is a thin tree all of whose trunk vertices
have degree at most 3. Figure 5 shows a thin tree and a restricted thin tree.

G1 G2

Figure 5: A thin tree G1 and a restricted thin tree G2.

Figure 4 gave an example of a non-thin tree for which p5(x, y) cannot be expressed in
terms of pi(x) and pi(y) for i < 5. The simplest tree which we can now consider which
is not a caterpillar, is either a thin or a restricted thin tree. But in both situations the
problem of whether p5(x, y) can be expressed in terms of pi(x) and pi(y) for i < 5, is still
open.

5 Uniqueness of the path-vector of the central vertex

and central edge

In this section we shall first present Dulio and Pannone’s result which states that a cen-
tral and a non-central vertex in a tree T may have the same path-vector so that given its
vertex path-table, it is not always possible to recognise the path-vector representing the
centre of the tree T . In contrast we shall prove that the path-vector of the central edge of
a tree of odd diameter is unique in its edge path-table. Thus this leads us to investigate
whether edges having different eccentricities can have different path-vectors.

First we need to recall some definitions which will be used throughout this section.
Suppose G is a finite graph of order n and v is a vertex in G. Then the eccentricity
of the vertex v denoted by ecc(v) is defined as the maximum distance from v to any
vertex in G, that is , ecc(v) = max{d(v, x) : x ∈ V (G)} where d is the natural metric.
Thus the diameter diamG and radius radG can be respectively defined as the maximum
and minimum eccentricity of the vertices of G. If T is a tree, then we recall that the
trunk of T , denoted by Tr(T ) is the set of those vertices of T contained in all paths
of length equal to diamT . The centre of T , denoted by Z(T ) is the set of all vertices
with minimum eccentricity and can have either one or two adjacent vertices depending
on whether diamT is even or odd, respectively.

Given any v ∈ V (Tr(T )) we define the branch from v, denoted by Br(v), to be the
maximal connected subgraph H of T containing v such that H ∪ Tr(T ) = {v}. The
ramification ram v of v ∈ V (Tr(T )) is defined to be the eccentricity within Br(v).

In [12], Dulio and Pannone showed that if T is a tree with diam T ≤ 7, then the
path-vector of Z(T ) is unique. In general we cannot determine which vector in a given
vertex path-table of a tree represents the centre since there can be two identical vectors,
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one which represents the centre and the other representing a non-central vertex. The
following Example 5.1 confirms the previous statement.

Example 5.1 The tree H with diameter 10 in which three consecutive vertices x, c, y
have the same path-vector, where c is the cental vertex.

ycx

H

Figure 6: The tree H in which the path-vector of the centre c and two of its adjacent
vertices x and y are (3, 7, 12, 16, 18, 16, 12, 8, 4, 1).

Also Examples 4.1 and 5.1 show also that two vertices in a tree with different eccentricities
can have equal path-vectors.

Dulio and Pannone [12] discovered that the vectors of the centre Z(T ) = {cL, cR}
(possibly cL = cR) are(is) unique if at least one of the following holds:

(i) ∣Tr(T )∣ = 1 (which implies ∣Z(T )∣ = 1)

(ii) min{ram cL, ram cR} ≥ ram x for all x ∈ Tr(T )

(iii) ram cL = ram cR = ⌊D
2
⌋ − 1 where D is the diameter of T

(iv) deg c = 2 where c is the unique central vertex

We shall now show that the path-vector of the central edge (when T is bicentral) is
unique.

Proposition 5.1 Let xy be the central edge of the bicentral tree T and vw be another
edge in a tree T . If pl(x, y) = pl(v, w), then both vertices v and w belong to the trunk of
T .

Proof. Since xy is the central edge, then all paths of maximum length pass through it.
Hence by assumption all paths of maximum length also pass through vw. Therefore v
and w belong to the trunk of T .

Proposition 5.2 For any length l, the following statements are equivalent:

(i) pl(x, y) = pl(v, w)

(ii) the number of paths of length l passing through xy but not through vw equals the
number of paths of length l passing through vw but not through xy.
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Proof. Define N1 to be the number of paths of length l passing through xy but not
through vw and N2 to be the number of paths of length l passing through vw but not
through xy. Since pl(x, y) = N1 +M and pl(v, w) = N2 +M where M is the number of
paths of length l passing through both xy and vw then result follows.

Theorem 5.1 The path-vector of the central edge of a tree of odd diameter is unique in
its path-table.

Proof. Let xy be the central edge and vw be another edge in a tree T . Assume for
contradiction that, for any length l, pl(x, y) = pl(v, w). Then, by Proposition 5.1, edge
vw belongs to the trunk of T . Suppose that P is one of the longest paths passing through
vw but not through xy. Let S be a subtree attached to the trunk vertex s that contains
an end-segment of P , which we call Ps as shown in Figure 7. Then path P is made up of
path H ′ consisting of vertices in the trunk and Ps such that path H ′ is smaller than half
the diameter of the tree.

Figure 7: A tree of odd diameter with central edge xy.

Let us construct path Q by splicing three paths : a path H connecting vertex y to a
peripheral vertex such that it passes through xy but not through vw, path [y, ..., s] (of
length ≥ 0 ) consisting of vertices in the trunk and path Ps. Path Q is strictly longer
than path P since H is longer than half the diameter of the tree. Suppose lQ is the length
of Q. Then there exist no paths of length lQ passing through vw but not through xy so
that by Proposition 5.2 , p(x, y) ∕= p(v, w).

5.1 Vertex and edge eccentricities

In [13], Dulio and Pannone gave the following three results.

Result 1 : Two vertices v and w in two distinct caterpillars of equal diameter, may
have the same path-vector even though they have different eccentricities in their respec-
tive caterpillars.

Result 2 : Consider a vertex v in a caterpillar C1 and a vertex w in another caterpillar
C2 in which ecc(v) < ecc(w) but pC1

(v) = pC2
(w). Then a tree T can be constructed

by joining v and w by a new edge wherein v and w still have different eccentricities but
equal path-vectors.

Example 5.2 In Figure 8 there exists a vertex v in caterpillar C1 and a vertex w in
caterpillar C2 in which ecc(w) > ecc(v) and pC1

(v) = pC2
(w) = (2, 3, 4, 4, 3, 1).
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C1

v

e

C2

w

e*

Figure 8: The two caterpillars C1 and C2.

Since v and w become adjacent in T , then for each length l, the additional new paths
of length l occurring in T must pass through both v and w so that pT (v) = pT (w) =
(3, 7, 12, 16, 18, 16, 12, 8, 4, 1).

v

e

w

e*

T

Figure 9: Joining the two caterpillars C1 and C2 by adding a new edge vw to form a thin
tree T .

Before stating Dulio and Pannone’s third result, we shall define the concept of fusing
two vertices in order to construct a new tree from two given trees.

Definition 5.1 Consider two trees T1 and T2 in which vertex u1 is in T1 while vertex u2 is
in T2. The tree T obtained by fusing u1 from T1 and u2 from T2 is obtained by identifying
vertices u1 and u2 which results in a vertex u. This will be denoted as T = T u1

1 ∪ T u2
2 .

Clearly the number of vertices in the tree T is equal to the sum of the vertices in T1

and T2 minus one while the number of edges in T is equal to the sum of edges in T1 and T2.

Result 3 : Suppose that a new tree G′ is constructed by fusing a pendant vertex x′

from caterpillar C ′ with another pendant vertex y′ from a caterpillar C ′′, both of which
caterpillars have the same diameter. Then, if vertices x and y in C ′ and C ′′ respectively,
are adjacent to these pendant vertices and have the same path-vectors, then, after fusion,
they would still have equal path-vectors.

Example 5.3 Figure 10 shows two caterpillars C ′ and C ′′ in which ecc(x) < ecc(y) and
pC′(x) = pC′(y) = (3, 5, 7, 7, 3, 2)

C' C''

x

x'

y

y'

Figure 10: The two caterpillars C ′ and C ′′.
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x yz

G'

Figure 11: Fusing two pendant vertices x′ and y′ to obtain a tree G′ in which the
vertices x′ and y′ become a single vertex z in G′ and where pG′(x) = pG′(y) =
(3, 6, 11, 15, 17, 19, 15, 15, 5, 3).

Question 5.1 Can the results obtained for vertices be repeated for edges? That is, given
two prescribed eccentricities, can we find two caterpillars of the same diameter and two
edges ( one in each caterpillar ) with the given eccentricities, having the same path-vector?
And, if there exist such caterpillars, then by using the notion of either joining or fusing,
can we get a single tree in which the two edges still have the same path-vectors ( even
though possibly modified) ?

We shall now investigate these questions. But first we need to define the eccentricity
of an edge in a graph G.

Definition 5.2 Let G be a finite graph of order n. Then the eccentricity of the edge e
denoted by ecc(e) is the minimum eccentricity of the two adjacent vertices forming the
edge e.

Consider Example 5.2 in which we select edge e in C1 and edge e∗ in C2 where
they have equal eccentricities and pC1

(e) = pC2
(e∗) = (1, 3, 4, 4, 3, 1). When the resul-

tant tree is obtained by joining vertices x and y, their eccentricities become different
and pT (e) = (1, 3, 5, 7, 7, 5, 3, 1, 0, 0) while pT (e

∗) = (1, 4, 8, 12, 15, 15, 12, 8, 4, 1) so that
pT (e) ∕= pT (e

∗). So we can conclude that Dulio and Pannone’s second result does not
hold for the edge case.

Example 5.4 Figure 12 shows two caterpillars G1 and G2 in which ecc(e) = ecc(e′) and
pG1

(e) = pG2
(e′) = (1, 3, 4, 4, 3, 1)

x1 x2

v y

e e'

G1 G2

Figure 12: The two caterpillars G1 and G2.

22

Theory and Applications of Graphs, Vol. 2 [2015], Iss. 2, Art. 4

https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/4
DOI: 10.20429/tag.2015.020204



T
*

e'

e

Figure 13: The tree T ∗.

Path length 1 2 3 4 5 6 7 8 9
p(e) 1 3 4 5 6 8 6 3 1
p(e′) 1 3 6 7 9 7 2 0 0

Table 8 : Path-vectors for edges e and e′ in tree T ∗.

As in the case of joining two vertices, when fusing two pendant vertices to obtain a
tree T ∗ as shown in Figure 13, the path-vectors of edges e and e′ in T ∗ are not equal, even
though they were initially equal to each other before the fusion. This also contrasts with
the third result of Dulio and Pannone obtained when considering vertex path-vectors.

The following theorem gives a necessary condition in order to obtain two equal edge
path-vectors after fusing two vertices of two given trees.

Theorem 5.2 Consider two trees T1 and T2 and two edges u1v1 in T1 and u2v2 in T2.
Let T = T u1

1 ∪ T u2
2 . Assume that for every l, s−l (v1) in T1 is equal to s−l (v2) in T2 . Then

for the two adjacent edges uv1 and uv2 in the tree T , p(u, v1) = p(u, v2).

Proof. As pl(x, y), the number of paths of length l passing through edge xy is given by

n∑
i=0

s−i (x)s
+
n−j(y)

for l ≥ 1 and n = l − 1,
then the number of edges passing through edge uv1 in T

pl(u, v1) =
n∑

i=0

s−i (v1)s
+
n−j(u)

while the number of edges passing through edge uv2 in T

pl(u, v2) =
n∑

i=0

s−i (v2)s
+
n−j(u)

But from assumption, s−l (v1) = s−l (v2) for any path length l in T , so that p(u, v1) =
p(u, v2)
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So far, we have proved that for a tree with odd diameter, the central edge and a
non-central edge do not have the same path-vector. But Figures 14 and 15 show that,
even in the case of caterpillars, two edges with different eccentricities can have equal edge
path-vectors. This result is similar to the vertex case as can be seen from Examples 4.1
and 5.1. We believe that this can happen only in cases similar to those shown in Figures
14 and 15, that is, if two edges of different eccentricities in a caterpillar have the same
path-vectors, then they must lie on opposite sides of the central vertex (or edge), their
eccentricities must differ by 1, and the edge with the smaller eccentricity is incident to
the (or to a) central vertex.

v w a b

Figure 14: The caterpillar C(1, 0, 1, 0, 1, 0, 1, 0, 2) of even diameter; p(vw) = p(ab) =
(1, 3, 5, 8, 8, 10, 7, 7, 3, 2) and ecc(vw) ∕= ecc(ab).

v w a b

Figure 15: The caterpillar C(1, 1, 0, 0, 1, 0, 0, 1) of odd diameter; p(vw) = p(ab) =
(1, 3, 4, 5, 6, 5, 4, 3, 1) and ecc(vw) ∕= ecc(ab).

In [17], Pannone proposed the following conjecture for general trees.

Conjecture 5.1 If three vertices (respectively edges) of a tree T have mutually distinct
eccentricities, then they cannot have the same path-vectors.

6 Reconstruction of trees from path-tables

We finally consider the reconstruction of a tree given its path-table. As we have seen
from various counterexamples, in general the information obtained from a path-table is
not sufficient to reconstruct its tree. We may therefore ask the following question: What
do two trees with the same path-table have in common? In other words by looking at a
path-table (vertex or edge) of a tree, ‘how much’ of the tree can we draw?

Although in general, we will not be able to draw the complete tree, by studying
carefully the rows of the given path-table which represent the path-vectors of vertices (or
edges), and making suitable calculations, we can recognise the type of vertices (or edges)
to which some of the rows in the path-table refer.

Now if v is a vertex of a tree T we often refer to the row corresponding to it in the
path-table as the row v; the itℎ entry of row v is denoted by v[i].

Analogous notations hold for an edge e of a tree T .
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(1)The vertices (edges) of the trunk :
By definition trunk vertices or edges form part of all the longest paths in a tree so

that in the path-table they correspond to those rows with the largest entries in the last
column. Obviously the row of the central vertices/edges do have maximal entries in the
last column but these need not be the only ones. In fact, it is known that in general, we
cannot tell which row (or rows) represent the centre since there can be two identical rows
representing both a central and a non-central vertex as can be confirmed by Example 5.1.

On the other hand, Theorem 5.1 shows that the path-row of the central edge of a tree
of odd diameter in an edge path-table is unique.

(2) Peripheral vertices (edges):
A vertex is peripheral if it has degree one and there is a path of length diam T passing

through it. The edge incident to the peripheral vertex is called a peripheral edge.
Peripheral vertices (edges) are easily recognisable from the path-tables. Their rows

must have a 1 in the first entry and a non-zero last entry (i.e. counting paths of diametrical
length). All peripheral vertices (edges) have the same row-sum of n−1 = m(no. of edges)
and can be split into two subsets: left and right peripherals. The choice of left and right
is arbitrary; what is important is to recognise how peripherals are divided.

Suppose ℎ is the number of right peripheral vertices and k is the number of left
peripheral vertices, then ℎ and k can be found by solving the equations ℎ+ k = p where
p is the total number of peripheral vertices in T and ℎk = l where l is the largest entry
in their last column of the path-table.

If the entries ℎ or k appear more than required then we only choose those ver-
tices(edges) having a row-sum of n − 1 = m(no. of edges).(NOTE: the path-vector
of an end-edge in an edge path-table is equal to the corresponding endvertex in a vertex
path-table).

(3) Endvertices(edges) which are not peripheral :
These are rows which have a 1 in the first entry and a zero last entry. They all have

the same row-sum of n− 1 = m(no. of edges).

Since we cannot reconstruct trees in general, a natural question to consider is whether
we can find a class of trees for which equality of vertex (or edge) path-tables implies
isomorphism. A natural choice can be the class of (i) caterpillars and (ii) restricted thin
trees (RTT).

It is important to point out that Dulio and Pannone’s example described in Section 3
excludes the possibility of studying the reconstructibility of general thin trees. Their ex-
ample, shown in Figure 2, gives a pair of thin trees on 20 vertices that are non-isomorphic
and have the same path-table.

6.1 Path-tables of caterpillars

Recall that a tree T is a caterpillar if, removing every endvertex of T results in a path,
called the spine of the caterpillar.

Theorem 6.1 If a caterpillar C and a tree T have the same vertex (edge) path-table,
then C ≃ T .
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Proof. Let v1, v2, ..., vn be the vertices of the trunk of the tree T in the order in which
they appear on the trunk. By definition, a tree is a caterpillar if and only if every vertex
not belonging to the trunk has degree 1. Since the caterpillar C and the tree T have the
same vertex path-table then T is also a caterpillar which can be completely determined
once we manage to uniquely order the set of vertices of the trunk. This can be done by
looking at the row of any peripheral vertex v of T in which the itℎterm (i ⩾ 2) of its row
is equal to the deg(vi−1)− 1 where vi−1 is a vertex of the trunk.

If the caterpillar C and the tree T have the same edge path-table then T is also a
caterpillar which is completely determined once we manage to uniquely order the set of
edges of the trunk. Then we can proceed as in the vertex case.

6.2 Path-tables of restricted thin trees

As described in section 4.3, a restricted thin tree(RTT) is a thin tree all of whose trunk
vertices have degree at most 3. Since we need to study RTTs we have to define a near
endvertex which is a vertex all of whose neighbours with at most one exception are end-
vertices. Moreover a trunk near endvertex is a near endvertex whose only neighbour
which is not an endvertex is a trunk vertex.

The strategy used to reconstruct an RTT is to first show that they are recognisable
from path-tables and then proceed to reconstruct them.

For the first part of our strategy we need to show that, from the path-table of a tree
T , we can determine when these properties hold:

(i) every trunk vertex has degree at most 3;

(ii) every vertex which is not a trunk vertex is either an endvertex or a trunk near
endvertex.

Observation 6.1 : The vertex v of T lies on a longest path if and only if v[d] > 0.

Throughout, d will denote, as usual, the diameter of T which is determined by the position
of the last column in any path-table of T .

Observation 6.2 : The vertex v of T is a trunk vertex if and only if v[d] is maximal
amongst all entries in the dtℎ column of the path-table.

Observation 6.3 : The degree of v of T is equal to v[1].

It is therefore clear that we can determine from the vertex path-table whether or not
every trunk vertex has degree at most 3. We therefore see that we can recognise from
the vertex path-table whether or not T is a restricted thin tree.

Observation 6.4 : Let T be a tree in which every trunk vertex has degree at most 3. If

v is a trunk near endvertex, then v[2] = 2 +

(
deg(v)

2

)
.

Therefore if T is a restricted thin tree then, for every vertex v which is not an endvertex
nor a trunk vertex, v[2] satisfies the above equality.

Observation 6.5 : Suppose that T is not a thin tree. Then there is some vertex w which

is not an endvertex nor a trunk vertex such that w[2] > 2 +

(
deg(w)

2

)
.
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Proof. Since T is not a thin tree, there is a trunk vertex x adjacent to a vertex w not
on the trunk such that w is not a near endvertex, as in Figure 16.

w

s

t

x

Figure 16: A trunk vertex x adjacent to vertex w which is not a near endvertex.

Note that, ignoring any paths containing vertex t, there are certainly at least 2 +(
deg(w)

2

)
paths of length 2 containing w. But then, the path wst shows that w[2] ≥

1 + 2 +

(
deg(w)

2

)
as required.

From the last two observations it follows that, for a tree whose trunk vertices all have
degree at most 3 we can recognise from its path-table whether or not it is a restricted
thin tree. We have therefore proved the following theorem.

Theorem 6.2 Restricted thin trees are recognisable from their path-tables.

For the second part of our strategy we need to show that given the path table of T
and knowing that T is an RTT, we need to prove that the table determines T uniquely.

Observation 6.6 : A vertex v is a peripheral vertex if and only if v[1] = 1 and v[d] > 0.

Therefore, the number p of peripheral vertices of T can be determined from the path-
table. Let v be the row corresponding to a peripheral vertex, let ℎ = v[d] and k = p− ℎ.
Then ℎ and k are the numbers of peripheral endvertices at the two ends of T , respectively.
We therefore have the following observation.

Observation 6.7 : The total number p of peripheral vertices of T and the numbers ℎ, k
of left and right, respectively, peripheral endvertices of T can all be determined from the
path-table. Also, we can determine from a row of an endvertex v whether v is peripheral
or not.

Let S be the union of all longest paths in T . We call S the skeleton of T . The first
step will be to determine the skeleton of T. Note that the skeleton contains all peripheral
vertices and all non-endvertices which lie on a longest path. Since we can recognise from
the path table all such vertices and since we know the number of peripheral vertices at
each end of T , we practically have S, except that we need to know how the peripheral
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vertices are distributed at each end. For example, Figure 17 shows two situations where
there are five peripheral vertices at one end.

Figure 17: Two different cases with five peripheral vertices at one end of the skeleton.

Let us call the subtree consisting of k peripheral vertices adjacent to a common neigh-
bour a k-peripheral cluster. Therefore, in Figure 17, we see k-peripheral clusters for
k = 3, 2, 4 and 1.

Note that, since T is an RTT, therefore no trunk vertex can have degree greater than
3, these facts are obvious:

(i) If there is only one peripheral cluster at an end , then k ≤ 2.

(ii) There can be at most two peripheral clusters at one end.

Also, suppose we identify a row corresponding to a peripheral vertex v. Then v[2] = k
if and only if v is in a k-peripheral clusters in the skeleton S.

Since we know the number of peripheral vertices at each end, it follows from these
considerations that the distribution of peripheral vertices into structures at each end can
be determined. Since we know the diameter d of T , we have the skeleton S. Also, we
can identify two row vectors a, b from the path table corresponding to two peripheral
vertices coming from different ends of T . If the two ends of T are identical then we can
let a = b; if they are different we can associate correctly the two vectors a, b, with the
appropriate end.

We now need to determine which vertices in S have degree 3 and, for these vertices v
that do, the number of endvertices incident to the third neighbour of v. We call this the
configuration at v, and it can therefore be one of the types shown in Figure 18.

v v v

Figure 18: The types of configuration at v.

We shall first assume that both ends of S have only one k-peripheral cluster. In this
case we label the non-peripheral vertices in S as v2, v3, . . . , vd in the order in which they
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appear in S. Suppose the peripheral vertex corresponding to the row vector a corresponds
to the end of S starting from v2. Then a = (1, a2, a3, . . . , ad−1, ad) and therefore ai equals
the number of paths of length i passing through the peripheral vertex. We shall associate
ai with vi in our proof below. Also, let us reverse the order of the elements of b so that
b = (b2, b3, . . . , bd, 1). Therefore, bi equals the number of paths of length d− i+2 passing
through the peripheral vertex corresponding to b. Again, we shall associate bi with the
vertex vi of S.

Our claim is the following: knowing the skeleton S, the vectors a, b as above, and
the configurations at v2, v3, . . . , vj(j ≥ 3) one can determine the configuration at vj+1.

Note that the configuration at v3 is easily determined. If a3 = 1 then deg(v3) = 2.
Otherwise, deg(v3) = 3 and v3 is incident to an endvertex (otherwise we would have
more than one peripheral cluster at the end corresponding to v2). Also, we know the
configuration at v2 since we know exactly the number of peripheral vertices at this end.
Therefore, proving the above claim would show that the RTT T is reconstructible.

So, suppose we know the configurations up to vj. Figure 19 shows the configurations
at vj−1, vj, vj+1 when their degrees are 3.

vj � 1 vj vj + 1

r s t

Figure 19: Configurations at vj−1, vj and vj+1.

Therefore, referring to this figure, we know r and s(≥ 0) if they exist and we need to
determine whether deg(vj+1) = 2 or 3 and, in the latter case, the value of t(≥ 0). (We
are considering here only the case when deg(vj−1) = deg(vj) = 3; the case when either or
both of these degrees equals 2 is easier to deal with).

Now, aj+1 = s+deg(vj+1)−1, therefore deg(vj+1) can be determined. If deg(vj+1) = 3
then, bj = t+ deg(vj)− 1, therefore t can be determined. Hence one claim is verified.

In the case when we have two peripheral clusters at the end corresponding to v3 we
can proceed similarly. Suppose we have an ℎ1-peripheral cluster and an ℎ2-peripheral
cluster, as illustrated in Figure 20, and the peripheral vertex corresponding to a in the
ℎ1-peripheral cluster.
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h1

h2

v2

v3

v4 v5 v6

Figure 20: Two peripheral clusters at one end.

Firstly, note that a4 = deg(v4)−1+ℎ2, therefore deg(v4) is determined. If deg(v4) = 3
then we have the situation shown in Figure 21, and we need to determine s.

h1

h2

v2

v3 v4

s

Figure 21: The case when deg(v4) = 3.

But b3 = 2+s and therefore s can be determined. We therefore know the configuration
at v4 and we can proceed as before. Thus we have proved the following theorem.

Theorem 6.3 Restricted thin trees are reconstructible from their path-tables.

7 Conclusion

Let us now take stock of the situation on path-tables of trees in light of the results we have
presented. We hereby list in table form statements which are either proved or disproved
in our survey and we also offer some open problems.
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Statement Status Remarks
1. A tree is recon-
structible from its ver-
tex path-table.

False A counter-example can be found
in Section 3. Figure 2 gives an
example of two non-isomorphic
trees U1 and U2 having the same
path-tables as shown in Table 3.

2. A tree is recon-
structible from its
edge path-table.

False The same counter-example as in
Section 3. Here we have to con-
sider Table 5.

3. Trees having equal
vertex and edge path-
tables are isomorphic
so that the two tables
together reconstruct a
tree. T

False Slater’s trees T1 and T2 and
Dulio/Pannone’s trees U1 and U2

are two counter-examples given in
Section 3 .

4. The edge path-
table gives vertex
path-table.

False In Section 3, Slater’s pairs of
trees T1 and T2 together with
their path-tables shown in Tables
2 and 4 gives a counterexample.

5. The vertex path-
table gives edge
path-table for arbi-
trary tree.

Open
Problem

6. Trees having the
same vertex path-
table necessarily have
the same Randić-
table.

Open
Problem

Slater example-pair on 18 ver-
tices described in Section 3
shows that trees having the same
Randić-table need not have the
same vertex path-table.

7. p(x,y) can be
determined from p(x)
and p(y) for arbitrary
trees.

It is valid
only up to
length 4

See Section 4.2.

8. p(x,y) can be deter-
mined from p(x) and
p(y) for caterpillars.

True See Propositon 4.1 in Section
4.3 .

9. p(x,y) can be deter-
mined from p(x) and
p(y) for thin or re-
stricted thin trees.

Open
problem

See Section 4.3.

10. The path-vector
of the central vertex is
unique.

False Dulio and Pannone give four suf-
ficient conditions for uniqueness
described in Section 5.
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Statement Status Remarks
11. The path-vector
of the central edge is
unique.

True See Theorem 5.1 in Section 5.

12. In an arbitrary
tree, two vertices with
different eccentricities
have different path-
vectors.

False A counter-example for a tree with
odd diameter is Example 4.1 in
Section 4.2 while the counter-
example for an even diameter is
Example 5.1 in Section 5.

13. Two edges in a
caterpillar with differ-
ent eccentricities have
different path-vectors.
(Statement 11 would
be a special case).

False Two counter-examples are shown
in Figures 14 and 15 in section
5.1.

14. A caterpillar
is reconstructible
from its vertex(edge)
path-table.

True See Theorem 6.1 in Section 6.1.

15. A restricted thin
tree is reconstructible
from its vertex path-
table.

True See Theorem 6.3 in Section 6.2.
Theorem 6.3 can be adapted to
prove that an RTT is also re-
constructible from its edge path-
table.

16. Three vertices
of mutually different
eccentricities can-
not have the same
path-vector.

Open
Problem

See Conjecture 5.1 in Section
5.1.

17. Five consecutive
vertices on a path can-
not have the same
path-vector.

Open
Problem

Example 4.1 in Section 4 shows
that there exist four consecutive
vertices on a path having the
same vertex path-vectors.

18. Find a way to con-
struct non-isomorphic
trees with the same
vertex and edge path-
table. Such trees exist
(see Item 3 in this ta-
ble).

Open
Problem

Dulio and Pannone suggest that
such pairs can be constructed by
attaching a number of branches
A1, A2, . . . , Am to a “hub” ( a
tree with vertices ℎ1, ℎ2, . . . , ℎm)
in two different ways but an exact
method has not yet been found.
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