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Abstract

Let A be a non-trivial abelian group. A connected simple graph G = (V,E) is
A-antimagic if there exists an edge labeling f : E(G) → A\{0} such that the induced
vertex labeling f+ : V (G) → A, defined by f+(v) = Σ {f(u, v) : (u, v) ∈ E(G)}, is a
one-to-one map. The integer-antimagic spectrum of a graph G is the set IAM(G) =
{k : G is Zk-antimagic and k ≥ 2}. In this paper, we analyze the integer-antimagic
spectra for various classes of multi-cyclic graphs.

1 Introduction

A labeling of a graph is defined to be an assignment of values to the vertices and/or edges
of the graph. Graph labeling is a very diverse and active field of study. A dynamic survey
[6] maintained by Gallian contains over 1400 references to research papers and books on the
topic.

Let G be a connected simple graph. For any non-trivial abelian group A (written addi-
tively), let A∗ = A\{0}, where 0 is the additive identity of A (sometimes denoted by 0A).
Let a function f : E(G) → A∗ be an edge labeling of G. Any such labeling induces a map
f+ : V (G) → A, defined by f+(v) =

∑
uv∈E(G) f(uv). If there exists such an edge labeling

f whose induced map f+ on V (G) is one-to-one, we say that f is an A-antimagic labeling
and that G is an A-antimagic graph. The integer-antimagic spectrum of a graph G is the
set IAM(G) = {k : G is Zk-antimagic and k ≥ 2}.

The concept of the A-antimagicness property for a graph G (introduced in [1]) naturally
arises as a variation of the A-magic labeling problem (where the induced vertex labeling is
a constant map). Z-magic (or Z1-magic) graphs were considered by Stanley [32, 33], where
he pointed out that the theory of magic labelings could be studied in the general context of
linear homogeneous diophantine equations. Doob [2, 3, 4] and others [11, 13, 19, 20, 27, 31]
have studied A-magic graphs and Zk-magic graphs were investigated in [8, 10, 12, 14, 15,
16, 17, 18, 21, 24, 25, 26, 28, 30]. For other types of magic graph labelings, the interested
reader is directed to Marr and Wallis’ monograph [22].

A trivial lower bound for the least element of IAM(G) is the order of G; however, this is
not always achieved, as seen in the following result from [1].

Lemma 1.1 (Chan et al.). A graph of order 4m+2, for all m ∈ N, is not Z4m+2-antimagic.

Motivation for our current work is found in the following conjecture.

Conjecture 1.1. Let G be a connected simple graph. If t is the least positive integer such
that G is Zt-antimagic, then IAM(G) = {k : k ≥ t}.

A result of Jones and Zhang [7] finds the minimum element of IAM(G) for all connected
graphs on 3 or more vertices. In their paper, a Zn-antimagic labeling of a graph on n vertices
is referred to as a nowhere-zero modular edge-graceful labeling. This is a variation of a graceful
labeling (originally called a β-valuation) which was introduced by Rosa [23] in 1967. The
result is as follows, where the terminology has been adapted to better suit this paper.

Theorem 1.2 (Jones and Zhang). If G is a connected simple graph of order n ≥ 3, then
min{t : t ∈ IAM(G)} ∈ {n, n+ 1, n+ 2}. Furthermore,
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1. min{t : t ∈ IAM(G)} = n if and only if n ̸≡ 2 (mod 4), G ̸= K3, and G is not a star
of even order,

2. min{t : t ∈ IAM(G)} = n+ 1 if and only if G = K3 or n ≡ 2 (mod 4) and G is not a
star of even order, and

3. min{t : t ∈ IAM(G)} = n+ 2 if and only if G is a star of even order.

In [1], Conjecture 1.1 was shown to be true for various classes of graphs. The purpose
of this paper is to provide additional evidence for Conjecture 1.1 by verifying it for various
classes of multi-cyclic graphs. We use constructive methods to determine integer-antimagic
spectra of the graph classes in question.

2 Some Known Results

In this section, we include some known results [1] for reference. In particular, theorems (with
an included proof) are used in the construction of new Zk-antimagic labelings in this paper.

Theorem 2.1. P4m+r and C4m+r, for all m ∈ N, are Zk-antimagic, for all k ≥ 4m+ r if
r = 0, 1, 3. P4m+2 and C4m+2, for all m ∈ N, are Zk-antimagic, for all k ≥ 4m+ 3.

Proof. Let e1, e2, . . . , en−1 be edges of Pn, from left to right. A Zk-antimagic labeling of Pn

can be obtained as follows.

Case 1. n = 4m:

f(ei) =


i+1
2

if i is odd;
i
2

if i is even and 2 ≤ i ≤ 2m− 2;
i+2
2

if i is even and 2m ≤ i ≤ 4m− 2.

Case 2. n = 4m+ 1:

f(ei) =


i
2

if i is even;
i+3
2

if i is odd and 1 ≤ i ≤ 2m− 3;
i+5
2

if i is odd and 2m− 1 ≤ i ≤ 4m− 1.

Case 3. n = 4m+ 2:

f(ei) =


i+1
2

if i is odd;
i+2
2

if i is even and 2 ≤ i ≤ 2m− 2;
i+4
2

if i is even and 2m ≤ i ≤ 4m.

Case 4. n = 4m+ 3:

f(ei) =


i
2

if i is even;
i+1
2

if i is odd and 1 ≤ i ≤ 2m− 1;
i+3
2

if i is odd and 2m+ 1 ≤ i ≤ 4m+ 1.

Let e1, e2, . . . , en be edges of Cn arranged in counter-clockwise direction. A Zk-antimagic
labeling of Cn can be obtained as follows.

Case 1. n = 4m:

f(ei) =

{
i if 1 ≤ i ≤ 2m;
3 + 2(2m− ⌈ i

2
⌉) if 2m+ 1 ≤ i ≤ 4m.
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Case 2. n = 4m+ 1:

f(ei) =

{
i if 1 ≤ i ≤ 2m;
3 + 2(2m− ⌈ i

2
⌉) if 2m+ 1 ≤ i ≤ 4m+ 1.

Case 3. n = 4m+ 2:

f(ei) =

{
i if 1 ≤ i ≤ 2m+ 3;
3 + 2(2m− ⌈ i−2

2
⌉) if 2m+ 4 ≤ i ≤ 4m+ 2.

Case 4. n = 4m+ 3:

f(ei) =

{
i if 1 ≤ i ≤ 2m+ 3;
3 + 2(2m− ⌈ i−3

2
⌉) if 2m+ 4 ≤ i ≤ 4m+ 3.

Theorem 2.2. Let n ≥ 4 and Sn denote the star graph having n−1 leaves. If n is odd, then
Sn is Zk-antimagic, for all k ≥ n. Otherwise, Sn is Zk-antimagic, for all k ≥ n+ 2; but not
Zn-antimagic nor Zn+1-antimagic.

3 Zk-antimagic Labelings of Wheels and Wheel-like

Graphs

Let Wn denote the wheel on n spokes, which is the graph containing a cycle of length n with
another special vertex not on the cycle, called the central vertex, that is adjacent to every
vertex on the cycle. Name the vertices of Wn as follows: the central vertex is named v0 and
the other vertices are named counter-clockwise as v1, . . . , vn. We will refer to edges of the
form v0vi for 1 ≤ i ≤ n as spokes and edges of the form vivi+1 for 1 ≤ i ≤ n − 1 or vnv1
as outer-cycle edges. The subgraph of Wn formed by the outer-cycle edges will be referred
to as the outer-cycle. Following the naming for the edges of a cycle found in the proof of
Theorem 2.1, an outer-cycle edge vivi+1 receives the name ei+1, and the edge vnv1 is named
e1. Furthermore, for every i ̸= 0 the spoke with end-vertex vi receives the name e′i.

First, we note thatW2
∼= C3 is clearly not Z3-antimagic. Figure 1 illustrates Zk-antimagic

labelings (k ≥ 4), for W2 and W3.

21

3

21

3

3

1 1

Figure 1: Zk-antimagic labelings (k ≥ 4) of W2 and W3, respectively.

Theorem 3.1. Let m ∈ N. Then, W4m+r is Zk-antimagic for all k ≥ 4m+r+1 if r = 0, 2, 3
and W4m+1 is Zk-antimagic for all k ≥ 4m+ 3.
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Proof. Case 1. Labeling W4m+r for r = 0, 2:
Let k ≥ 4m + r + 1 be fixed. The outer-cycle is of even length, and hence admits
a one-factorization into two one-factors, say M1 and M2. We will first define our
labeling, f , on the outer-cycle edges as follows:

f(e) =

{
1 if e ∈ M1;
k − 1 if e ∈ M2.

The subgraph formed by the spokes is a star with 4m+r+1 vertices, and hence has
a Zk-antimagic labeling, g, by Theorem 2.2. Define the labeling on the spokes as
f(e) = g(e) for all spokes e. This induces a labeling, f+ : V (W4m+r) → Zk, on the
vertices where f+(v0) ≡ 0 (mod k) and f+(vi) = g(e′i) for each 1 ≤ i ≤ 4m+ r. For
1 ≤ i ̸= j ≤ 4m+ r we have g(e′i) ̸= g(e′j) ̸= 0. Thus, f is the desired Zk-antimagic
labeling.

Case 2. Labeling W4m+3:
Let k ≥ 4m+ 4 be fixed. We will first define a labeling, g, on the outer-cycle edges
to be the labeling defined for a cycle of length 4m+ 3 in Theorem 2.1. Notice that
the labels induced by g on the vertices in the outer-cycle, denoted by g+, form the
set {3, 4, . . . , 4m+ 4, 4m+ 5}. Now, define f : E(W4m+3) → Z∗

k such that for every
outer-cycle edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =

{
3 if g+(vi) = 4m+ 4;
1 if g+(vi) ̸= 4m+ 4.

Thus,

f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 4m+ 4;
(4m+ 4) + 3 if g+(vi) = 4m+ 4;
1(4m+ 2) + 3 if i = 0.

The labels on the vertices induced by f form the set {4, 5, . . . , 4m+6, 4m+7}; thus,
f is the desired Zk-antimagic labeling.

Case 3. Labeling W4m+1:
Let k ≥ 4m+ 3 be fixed. We will first define a labeling, g, on the outer-cycle edges
to be the labeling defined for a cycle of length 4m+ 1 in Theorem 2.1. Notice that
the labels induced by g on the vertices in the outer-cycle, denoted by g+, form the
set {2, 3, . . . , 4m+ 1, 4m+ 2}. Now, define f : E(W4m+1) → Z∗

k such that for every
outer-cycle edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =

{
3 if g+(vi) = 4m+ 2;
1 if g+(vi) ̸= 4m+ 2.

Thus,

f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 4m+ 2;
(4m+ 2) + 3 if g+(vi) = 4m+ 2;
1(4m) + 3 if i = 0.
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The labels on the vertices induced by f form the set {3, 4, . . . , 4m+2, 4m+3, 4m+5};
thus, f is the desired Zk-antimagic labeling.

5

1

4

3

3

32

1
1

1

1
1

3

1

5

1

4

3

3

2

1

1

1

1

1

3

1

5

1 3

1

1

Figure 2: Zk-antimagic labelings of W7 for k ≥ 8, and W9 for k ≥ 11, respectively.

Let Fn denote the fan on n+ 1 vertices, which is defined to be the graph obtained from
Wn by deleting the edge e1. We have the same vertex and edge names for Fn as we did for
Wn (omitting the edge name e1, of course). Concerning Fn, the subgraph formed by the
edges of the form ei will be referred to as the outer-path, and its edges will be referred to as
outer-path edges. Edges of the form e′i will still be referred to as spokes.

11 2

2 3

Figure 3: A Zk-antimagic labeling of F3, for k ≥ 4.

Theorem 3.2. Let m ∈ N. Then, F4m+r is Zk-antimagic for all k ≥ 4m+ r+1 if r = 0, 2, 3
and F4m+1 is Zk-antimagic for all k ≥ 4m+ 3.

Proof. Case 1. Labeling F4m+1:
Let k ≥ 4m+3 be fixed. Let g be the labeling on the outer-path edges obtained from
the labeling of a cycle of length 4m + 1 in Theorem 2.1 with the edge e1 omitted.
Notice that the labels induced by g on the vertices in the outer-path, denoted by
g+, form the set {1, 2, 4, 5, . . . , 4m + 2}. Now, define f : E(F4m+1) → Z∗

k such that
for every outer-path edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =

{
2 if g+(vi) = 2, 4m+ 2;
1 if g+(vi) ̸= 2, 4m+ 2.

Thus,

5
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f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 2, 4m+ 2;
g+(vi) + 2 if g+(vi) = 2, 4m+ 2;
1(4m− 1) + 2(2) if i = 0.

The labels on the vertices induced by f form the set {2, 4, 5, . . . , 4m+4}; thus, f is
the desired Zk-antimagic labeling.

Case 2. Labeling F4m+3:
Let k ≥ 4m+4 be fixed. Let g be the labeling on the outer-path edges obtained from
the labeling of a cycle of length 4m + 3 in Theorem 2.1 with the edge e1 omitted.
Notice that the labels induced by g on the vertices in the outer-path, denoted by
g+, form the set {2, 3, 5, 6, . . . , 4m + 5}. Now, define f : E(F4m+3) → Z∗

k such that
for every outer-path edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =


3 if g+(vi) = 2;
2 if g+(vi) = 4m+ 5;
1 if g+(vi) ̸= 2, 4m+ 5.

Thus,

f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 2, 4m+ 5;
g+(vi) + 3 if g+(vi) = 2;
g+(vi) + 2 if g+(vi) = 4m+ 5;
1(4m+ 1) + 3 + 2 if i = 0.

The labels on the vertices induced by f form the set {4, 5, . . . , 4m + 7}; thus, f is
the desired Zk-antimagic labeling.

Case 3. Labeling F4m:
Let k ≥ 4m + 1 be fixed. Let g be the labeling on the outer-path edges obtained
from the labeling of a cycle of length 4m in Theorem 2.1 with the edge e1 omitted.
Notice that the labels induced by g on the vertices in the outer-path, denoted by
g+, form the set {2, 3, 5, 6, . . . , 4m+2}. Now, define f : E(F4m) → Z∗

k such that for
every outer-path edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =

{
2 if g+(vi) = 2, 3, 4m+ 2;
1 if g+(vi) ̸= 2, 3, 4m+ 2.

Thus,

f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 2, 3, 4m+ 2;
g+(vi) + 2 if g+(vi) = 2, 3, 4m+ 2;
1(4m− 3) + 2(3) if i = 0.

The labels on the vertices induced by f form the set {4, 5, . . . , 4m + 4}; thus, f is
the desired Zk-antimagic labeling.

Case 4. Labeling F4m+2:
Let k ≥ 4m + 3 be fixed. First, re-label the edges of the outer-path with the

6
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assignment ei → ei−1. Let g be the labeling on the outer-path edges obtained
from the labeling of a path on 4m + 2 vertices in Theorem 2.1. Notice that the
labels induced by g on the vertices in the outer-path, denoted by g+, form the set
{1, 3, 4, . . . , 4m+3}. Now, define f : E(F4m+2) → Z∗

k such that for every outer-path
edge, ei, we have f(ei) = g(ei), and for the spokes:

f(e′i) =

{
2 if g+(vi) = 1, 4m+ 3;
1 if g+(vi) ̸= 1, 4m+ 3.

Thus,

f+(vi) =


g+(vi) + 1 if g+(vi) ̸= 1, 4m+ 3;
g+(vi) + 2 if g+(vi) = 1, 4m+ 3;
1(4m) + 2(2) if i = 0.

The labels on the vertices induced by f form the set {3, 4, . . . , 4m + 5}; thus, f is
the desired Zk-antimagic labeling.

1

4

3

3

2

1

1

1

2

1

2

5

1

4

3

3

2

1

2

1

1

5

2

3

2

1

Figure 4: Zk-antimagic labelings of F6 for k ≥ 7, and F8 for k ≥ 9, respectively.

A friendship graph is a simple graph in which any two distinct vertices have exactly one
common neighbor. A result of Erdős et al. [5] shows that all friendship graphs are isomorphic
to some Wn with a 1-factor deleted from the outer-cycle (thus, n must be even). Let FGn

denote the friendship graph on n + 1 vertices. We name the vertices of FGn in the same
way that we named the vertices of Wn. We will refer to edges of the form v0vi for 1 ≤ i ≤ n,
named e′i, as spokes and edges of the form vivi+1 for i = 1, 3, 5, . . . , n − 1, named e(i+1)/2,
as outer 1-factor edges. The subgraph of FGn formed by the outer 1-factor edges will be
referred to as the outer 1-factor.

Theorem 3.3. Let n ∈ {4, 6, 8, 10, . . . }. Then, FGn is Zk-antimagic for all k ≥ n+ 1.

Proof. First note that FG2
∼= C3, which is Zk-antimagic if and only if k ≥ 4. For the

remainder of the proof, we assume that n ≥ 4 and n is even.
Let k ≥ n + 2 be fixed. The subgraph formed by the spokes is a star with n edges, and

therefore admits a Zk-antimagic labeling g (with central vertex having induced label 0 (mod
k)), by Theorem 2.2. There must be some element x ∈ Z∗

k that g doesn’t assign to any spoke.
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Now, define f : E(FGn) → Z∗
k such that for every spoke, e′i, we have f(e′i) = g(e′i), and for

every outer 1-factor edge, ei, we have f(ei) = k − x. Let f+ denote the labels induced by
f on the vertices of FGn. Notice that {f+(vi) : 1 ≤ i ≤ n} = {g(e′i) + k − x : 1 ≤ i ≤ n}.
Since all of the g(e′i)’s are distinct, so are the labels induced by f on the vertices of the
outer 1-factor. Furthermore, we have that for all 1 ≤ i ≤ n, f+(vi) ̸≡ 0 (mod k), otherwise
there would be some i for which g(e′i) = x. Since f+(v0) ≡ 0 (mod k), f is the desired
Zk-antimagic labeling.

Now, let k = n+ 1. Define the labeling f : E(FGn) → Z∗
k such that for every spoke, e′i,

we have f(e′i) = i, and for the outer 1-factor edges:

f(ei) =

{
2 for i = 1, 2, 3, . . . , n−2

2
;

3 for i = n
2
.

The labels induced on the vertices of the outer 1-factor by f form the set {3, 4, 5, . . . , n} ∪
{n+2, n+3}, and f+(v0) ≡ 0 (mod n+1). Thus, f is the desired Zk-antimagic labeling.

2

3

2

6

2

4

5

3

1

6

4

4

1

4

5

7

3

2

Figure 5: Zk-antimagic labelings of FG6 for k = 7 and 8, respectively.

A helm on 2n+1 vertices, denoted Hn, is the graph obtained from the wheel graph, Wn,
by adjoining a pendant vertex to each vertex on the outer-cycle. In Hn, the names of all
vertices and edges in the subgraph isomorphic to Wn have the same names as in Wn, except
that the edges e′i are referred to as inner-spokes. For each vertex vi, we name the leaf that is
adjacent to it wi and refer to these vertices as pendant vertices. Each edge of the form viwi

is named e′′i , and these edges are referred to as outer-spokes.
If we delete the outer-cycle edges of Hn, then we are left with a tree rooted at v0 with

n vertex-disjoint paths of length two attached to it. Denote this graph by H ′
n. It will be

helpful to first define a Zk-antimagic labeling of H ′
n. We adopt the same names for vertices

and edges in this graph as we have already defined for the underlying helm.

Lemma 3.4. Let n ∈ N be even. Then, H ′
n is Zk-antimagic for all k ≥ 2n+ 1.

Proof. Let n be an even positive integer, and let k ≥ 2n + 1 be fixed. Define the function
f : E(H ′

n) → Z∗
k on the inner-spokes as follows.

f(e′i) =

{
1 if i is odd;
k − 1 if i is even.

8
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Define f on the outer-spokes as follows.

f(e′′i ) =

{
i if i is odd;
k − i+ 1 if i is even.

Now, we check that the induced vertex labels are all distinct. For vertices with odd
subscripts, we get the sets of induced vertex labels {f+(vi) : i odd} = {1 + i : i =
1, 3, 5, . . . , n − 1} = {2, 4, 6, . . . , n} and {f+(wi) : i odd} = {i : i = 1, 3, 5, . . . , n − 1} =
{1, 3, 5, . . . , n−1}. For vertices with even positive subscripts, we get the sets of induced ver-
tex labels {f+(vi) : i even} = {2k− i : i = 2, 4, 6, . . . , n} = {2k−2, 2k−4, 2k−6, . . . , 2k−n}
and {f+(wi) : i even} = {k− i+1 : i = 2, 4, 6, . . . , n} = {k− 1, k− 3, k− 5, . . . , k− (n− 1)}.
To evaluate the induced vertex label on v0, let i range from 1 to n inclusive, and we have that
f+(v0) =

∑
i odd 1 +

∑
i even(k − 1) =

∑n/2
i=1 k. Considering all induced vertex labels modulo

k, we find that {f+(x) : x ∈ V (H ′
n)} = {0,±1,±2, . . . ,±(n− 1),±n}. Since k ≥ 2n+ 1, all

of the vertex labels are distinct. Thus, f is the desired Zk-antimagic labeling.

1

-3

3

1
-1-1 -1

1

Figure 6: Zk-antimagic labeling of H ′
4, for all k ≥ 9.

Theorem 3.5. Let n ∈ N with n ≥ 2. Then, Hn is Zk-antimagic for all k ≥ 2n+ 1.

Proof. For the cases where n = 2, 3, see Figure 7.

Case 1. n even:
Let k ≥ 2n + 1 be fixed. Define the function f : E(Hn) → Z∗

k as follows. For the
edges of the subgraph H ′

n, we define f the same as the Zk-antimagic labeling given
in the proof of Lemma 3.4. The edges in the set E(Hn) \ E(H ′

n) form a cycle of
length n. Since n is even, we can label the outer-cycle edges by alternating 1 and
k− 1. Thus, the labels on the outer-cycle edges contribute k to each induced vertex
label f+(vi). It follows that f is the desired Zk-antimagic labeling.

Case 2. n odd:
Let k ≥ 2n+1 be fixed. Notice that the outer-cycle can be viewed as a path on n+1
vertices in which the first and last vertices are identified. In order to label the edges
of the outer-cycle, we first consider a path on n+ 1 vertices. Label the edges of the
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1

4

2

3

2

1

1
1

2

1

2

2

1 1

Figure 7: A Zk-antimagic labeling of H2 for k ≥ 5, and a Zk-antimagic labeling of H3 for
k ≥ 7.

path by alternating the edge labels 1 and k − 1, and making sure to begin with 1.
Now, define the function f : E(Hn) → Z∗

k on the outer-cycle edges by considering
the outer-cycle as a path in which the first and last vertices are identified with vn+3

2
,

and using the path labeling just described. Define f on the edges contained in the
subgraph H ′

n as follows.

f(e′i) =


1 if 1 ≤ i ≤ n+1

2
;

k − 1 if n+3
2

≤ i ≤ n− 1;
k − 2 if i = n.

f(e′′i ) =


2i if 1 ≤ i ≤ n+3

2
;

k − 2i+ n+ 3 if n+5
2

≤ i ≤ n− 1 ;
1 if i = n.

Now, we check that the induced vertex labels are all distinct. Notice that {f+(vi) :
1 ≤ i ≤ n+3

2
} ∪ {f+(wi) : 1 ≤ i ≤ n+3

2
} = {2i + 1 : 1 ≤ i ≤ n+3

2
} ∪ {2i :

1 ≤ i ≤ n+3
2
} = {2, 3, . . . , n + 3, n + 4}. We also have that {f+(vi) : n+5

2
≤

i ≤ n − 1} ∪ {f+(wi) : n+5
2

≤ i ≤ n − 1} = {2k − 2i + n + 2 : n+5
2

≤ i ≤
n− 1} ∪ {k− 2i+ n+3 : n+5

2
≤ i ≤ n− 1} = {2k− 3, 2k− 5, . . . , 2k− (n− 6), 2k−

(n − 4)} ∪ {k − 2, k − 4, . . . , k − (n − 7), k − (n − 5)}, and reducing all elements
modulo k yields the set {−2,−3, . . . ,−(n− 5),−(n− 4)}. For the case where i = n
we have that f+(vn) = k − 1 and f+(wn) = 1. It is easy to see that f+(v0) ≡ 0
(mod k). Putting all of these sets of induced vertex labels together we have {f+(x) :
x ∈ V (Hn)} = {0,±1,±2, . . . ,±(n− 5),±(n− 4)}∪ {n− 3, n− 2, . . . , n+4}. Since
k ≥ 2n + 1, all of the induced vertex labels are distinct. Thus, f is the desired
Zk-antimagic labeling.

4 Zk-antimagic Labelings of the Square of Paths

The kth power of a graph G, denoted Gk, is a graph with the same vertex set as G and two
vertices are adjacent in Gk if and only if their distance in G is at most k.

10

Theory and Applications of Graphs, Vol. 3 [2016], Iss. 1, Art. 6

https://digitalcommons.georgiasouthern.edu/tag/vol3/iss1/6
DOI: 10.20429/tag.2016.030106



6

4

8

2

1

1

-1

1

1

-1
1

1

1
-1

-2

Figure 8: A Zk-antimagic labeling of H5, for k ≥ 11.

Theorem 4.1. Let n ≥ 4. If n ≡ 2 (mod 4), then P 2
n is Zk-antimagic for all k ≥ n + 1.

Otherwise, P 2
n is Zk-antimagic for all k ≥ n.

Proof. Let G = P 2
n . Suppose the vertices of Pn (from left to right) are v1, v2, . . . , vn and the

edges of Pn (from left to right) are e1, e2, . . . , en−1.

Case 1. n = 4m+ 1:
Let CG(n) be the n-cycle v1v3v5 · · · vnvn−1vn−3 · · · v2v1 in G. Using the Zk-antimagic
labeling (k ≥ n) found in Theorem 2.1, we label Pn. We label all of the edges of
CG(n) with 1, which gives it a magic labeling with magic-value 2. Now, overlay
the labelings of Pn and CG(n), by identifying the vertices and edges (and adding
their values). All of the vertex labels of G are distinct (mod k). We need to check
if edges e1 and en−1 are still non-zero (mod k). Edge ei was initially labeled with
one of the following: i+3

2
, if i is odd and 1 ≤ i ≤ 2m − 3; otherwise i+5

2
, if i is odd

and 2m− 1 ≤ i ≤ 4m− 1. Adding 1 to either i+3
2

or i+5
2

yield non-zero values (mod
k), for all k ≥ n = 4m+ 1. Thus, P 2

n is Zk-antimagic for all k ≥ n.

Case 2. n = 4m+ 3:
Let k ≥ n. Label CG(n) and Pn in the same way, as found in Case 1. Now, overlay
the labelings of Pn and CG(n), by identifying the vertices and edges (and adding
their values). All of the vertex labels of G are distinct (mod k). We need to check
if edges e1 and en−1 are still non-zero (mod k). Edge ei was initially labeled with
one of the following: i+1

2
, if i is odd and 1 ≤ i ≤ 2m − 1; otherwise i+3

2
, if i is odd

and 2m+1 ≤ i ≤ 4m+1. Adding 1 to either i+1
2

or i+3
2

yield non-zero values (mod
k), for all k ≥ n = 4m+ 3. Thus, P 2

n is Zk-antimagic for all k ≥ n.

Case 3. n = 4m:
Let CG(n) be the n-cycle v1v3v5 · · · vn−1vnvn−2vn−4 · · · v2v1 in G. Using the Zk-
antimagic labeling (k ≥ n) found in Theorem 2.1, we label Pn. Label the edges of
CG(n) in the following way: 2 7→ v1v3, −2 7→ v3v5, 2 7→ v5v7, . . . , 2 7→ vn−3vn−1,
−2 7→ vn−1vn, 2 7→ vnvn−2, −2 7→ vn−2vn−4, . . . , 2 7→ v4v2 and −2 7→ v2v1. This is a
magic labeling of CG(n) with magic-value 0. Now, overlay the labelings of Pn and
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CG(n), by identifying the vertices and edges (and adding their values). All of the
vertex labels of G are distinct (mod k). We need to check if edges e1 and en−1 are
still non-zero (mod k). Edge ei was initially labeled i+1

2
, if i is odd. Adding −2 to

i+1
2

yields a non-zero value (mod k), for all k ≥ n = 4m. Thus, P 2
n is Zk-antimagic

for all k ≥ n.

Case 4. n = 4m+ 2:
Let k ≥ n+ 1. Using the Zk-antimagic labeling found in Theorem 2.1, we label Pn.
We label the edges of CG(n) in the following way: 2 7→ v1v3, −2 7→ v3v5, 2 7→ v5v7,
. . . , −2 7→ vn−3vn−1, 2 7→ vn−1vn, −2 7→ vnvn−2, 2 7→ vn−2vn−4, . . . , 2 7→ v4v2 and
−2 7→ v2v1. This is a magic labeling of CG(n) with magic-value 0. Now, overlay
the labelings of Pn and CG(n), by identifying the vertices and edges (and adding
their values). All of the vertex labels of G are distinct (mod k). We need to check if
edges e1 and en−1 are still non-zero (mod k). Edge ei was initially labeled i+1

2
, if i is

odd. In G, edge e1 is labeled 1+1
2

− 2 and edge en−1 is labeled n−1+1
2

+ 2, which are
both non-zero (mod k), for all k ≥ n+1. Thus, P 2

n is Zk-antimagic for all k ≥ n+1.

-2

53

2

-1

2

2 4

-2

Figure 9: A Zk-antimagic labeling of P 2
6 , for k ≥ 7.

References

[1] W.H. Chan, R.M. Low and W.C. Shiu, Group-antimagic labelings of graphs, Congr.
Numer., 217:21–31, (2013).

[2] M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combi-
natorics, Graph Theory and Computing, 361–374, (1974).

[3] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B,
17:205–217, (1974).

[4] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory,
Series B, 25:94–104, (1978).
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