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Abstract

We define and study a special type of hypergraph. A σ-hypergraph H = H(n, r, q | σ), where
σ is a partition of r, is an r-uniform hypergraph having nq vertices partitioned into n classes
of q vertices each. If the classes are denoted by V1, V2,...,Vn, then a subset K of V (H) of size
r is an edge if the partition of r formed by the non-zero cardinalities | K ∩ Vi |, 1 ≤ i ≤ n,
is σ. The non-empty intersections K ∩ Vi are called the parts of K, and s(σ) denotes the
number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and
sharp cycles in which only consecutive edges have a nonempty intersection. We show that most
σ-hypergraphs contain a Hamiltonian Berge cycle and that, for n ≥ s + 1 and q ≥ r(r − 1),
a σ-hypergraph H always contains a sharp Hamiltonian cycle. We also extend this result to
k-intersecting cycles.

1 Introduction

Let V = {v1, v2, ..., vn} be a finite set, and let E = {E1, E2, ..., Em} be a family of subsets of V . The
pair H = (X,E) is called a hypergraph with vertex-set V (H) = V , and with edge-set E(H) = E.
When all the subsets are of the same size r, we say that H is an r-uniform hypergraph. A σ-
hypergraph H = H(n, r, q | σ), where σ is a partition of r, is an r-uniform hypergraph having nq
vertices partitioned into n classes of q vertices each. If the classes are denoted by V1, V2,...,Vn, then
a subset K of V (H) of size r is an edge if the partition of r formed by the non-zero cardinalities | K
∩ Vi |, 1 ≤ i ≤ n, is σ. The non-empty intersections K ∩ Vi are called the parts of K, and s = s(σ)
denotes the number of parts. We denote the largest part of σ by ∆ = ∆(σ) and the smallest part
by δ = δ(σ). In order to avoid trivial situations where there are no edges, we shall always assume
that q ≥ ∆ and n ≥ s. These hypergraphs were first introduced in [2] and studied further in [3, 4].

We consider Hamiltonian cycles in σ-hypergraphs. In a graph G, a Hamiltonian path is a path
which includes every vertex v ∈ V (G). A Hamiltonian cycle is a closed Hamiltonian path. It
is well-known that the problem of determining whether a Hamiltonian cycle exists in a graph is
NP -complete. An excellent survey on results related to Hamiltonicity is given in [5].

In hypergraphs, in particular r-uniform hypergraphs, there are several different types of paths
and cycles to consider — amongst the first to be defined was the Berge cycle [1]. A sequence
C = (v1, e1, v2, e2, . . . , vp, ep, v1) is a Berge cycle if

• v1, v2, . . . , vp are all distinct vertices

• e1, e2, . . . , ep are all distinct edges

• vk, vk+1 ∈ ek for k = 1, . . . , p where vp+1 = v1

A Berge cycle is Hamiltonian if p is equal to the number of vertices.
Several other types of cycles and Hamiltonian cycles have been described and studied as in

[7, 8, 10]. The presentation [6] gives an excellent survey of cycles and paths in hypergraphs. We
give the following definitions of cycles and Hamiltonian cycles which are particularly suited to the
structure of σ-hypergraphs.

Consider an r-uniform hypergraph H. Let C = (e1, . . . , ep) be a sequence of edges of H. Then
C is a sharp cycle if |ei ∩ ei+1| > 0 for 1 ≤ i ≤ p, where addition is modulo p, and |ei ∩ ej | = 0
otherwise.

A sharp cycle C is a sharp Hamiltonian cycle if V (C) = V (H).
A sharp Hamiltonian cycle C = (e1, e2, . . . , ep) is said to be (t, z)-sharp if p = 0 (mod 2) and,

for some t, z > 0, |ei ∩ ei+1| = t when i = 1 (mod 2) and |ei ∩ ei+1| = z when i = 0 (mod 2), for
1 ≤ i ≤ p and addition is modulo p, and |ei∩ ej | = 0 otherwise. If t = z, the cycle is t-sharp. These
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cycles are analogous to t-overlapping cycles as described in [9]. A 1-sharp cycle is often referred in
the literature to as a loose cycle.

Finally, a k-intersecting cycle C = (e1, e2, . . . , ep) is such that

|ei ∩ ei+1 ∩ . . . ∩ ei+k−1| > 0

for 1 ≤ i ≤ p, where addition is modulo p, while any other collection of k or more edges has an
empty intersection. If V (C) = V (H) then C is a k-intersecting Hamiltonian cycle. Thus a sharp
Hamiltonian cycle is a 2-intersecting Hamiltonian cycle.

In this paper we consider all the above types of Hamiltonian cycles in σ-hypergraphs. We first
consider Berge cycles, and then move on to sharp Hamiltonian cycles, and finally to k-intersecting
cycles. We give some conditions for the existence and non-existence of the different types of
Hamiltonian cycles in σ-hypergraphs, which then lead us to consider conditions on the parameters
of H = H(n, r, q | σ) for which the different types of Hamiltonian cycles always exist.

When constructing sharp Hamiltonian cycles, we will use matchings — the link between match-
ings and Hamiltonian cycles in r-uniform hypergraphs has been extensively studied [1]. Given an
r-uniform hypergraph H, a matching is a set of pairwise vertex-disjoint edges M ⊂ E(H). A
perfect matching is a matching which covers all vertices of H and we denote the size of the largest
matching in an r-uniform hypergraph H by ν(H).

Matchings in σ-hypergraphs were studied in [4] and, as in that paper we here give more structure
to the vertices of the hypergraph H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), and ∆ = a1 ≥ a2 ≥
. . . ≥ as = δ. The classes making up the vertex set are ordered as V1, V2, . . . , Vn and, within each
Vi, the vertices are ordered as v1,i, v2,i, . . . , vq,i. We visualise the vertex set V (H) as a q × n grid
whose first row is v1,1, v1,2, . . . , v1,n. We sometimes refer to the vertices v1,i, v2,i, . . . , vk,i as the top
k vertices of the class Vi, and to vq−k+1,i, vq−k+2,i, . . . , vq,i as the bottom k vertices of Vi. The
vertices vk,i and vk+1,i are said to be consecutive in Vi. The class V1 is called the first class of
vertices, and Vn is the last class; Vi and Vi+1 are said to be consecutive classes. A set of vertices
contained in h consecutive rows and k consecutive classes of V (H) is said to be an h × k subgrid
of V (H). Also, for σ = (a1, a2, . . . , as), if a1 = a2 = . . . = as = ∆, σ is said to be a rectangular
partition. Furthermore, if σ is rectangular and ∆ = s(σ), then σ is a square partition.

It is well known that in a graph, the Hamiltonian cycle yields a perfect or near perfect (leaving
one vertex unmatched if n is odd) matching. In [4], it was shown that there exist arbitrarily large
σ-hypergraphs which do not have a perfect matching, and for which the number of unmatched
vertices is quite large. We state a result from this paper:

Lemma 1.1. Let H = H(n, r, q | σ), where σ = (a1, . . . , as), n ≥ s and q ≥ r. Suppose gcd(σ) =
d ≥ 2, and q = t (mod d) where 1 ≤ t ≤ d − 1. Then in a maximum matching of H, there are at

least tn vertices left unmatched. Hence ν(H) ≤ n(q−t)
r .

In the sequel, we will show that these σ-hypergraphs, however, still have both a Berge and a
sharp Hamiltonian cycle when q and n are large enough.

2 Berge Cycles

Let us first consider this type of cycle, and give necessary and sufficient conditions for the existence
of Hamiltonian Berge cycles in σ-hypergraphs.

Theorem 2.1. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), s ≥ 2 and ∆ = a1 ≥ a2 ≥ . . . ≥
as = δ ≥ 1. If σ is not rectangular and q ≥ ∆ and n ≥ s, then H has Hamiltonian Berge cycle. If
σ is rectangular, then there is a Berge Hamiltonian cycle when q ≥ ∆ + 1 and n ≥ s+ 1.
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Proof. Let us take a partition σ which is not rectangular — we construct a Berge cycle as follows:
for e1, we take the bottom a1 vertices in V1, the bottom a2 vertices in V2 and so on up to the
bottom as vertices in Vs. For e2, we “shift” the edge one column to the right so that the parts are
taken from V2 to Vs+1. We carry on in this fashion, and when we take part as−1 from Vn then we
take part as from V1, but “shift” one row up. We carry on in this way, shifting one column to the
right each time, and shifting one row up each time — when we reach the top row then we start
using the bottom vertices again. In all, we form nq distinct edges in this way. We can now order
the vertices by labelling the bottom vertex in V1 as v1, the bottom vertex in V2 as v2, and so on
up to the bottom vertex in Vn as vn — we then move up one row and label the vertices in this row
vn+1 up to v2n, from left to right, and we carry on in this fashion until we have labelled all vertices
in this way.

Then the cycle v1, e1, v2, e2, . . . , vnq, enq, v1 is a Hamiltonian Berge cycle.

If σ is rectangular and q = ∆ and n = s, then there is only one edge and hence no Berge
Hamiltonian cycle, otherwise the Berge Hamiltonian cycle can be constructed as above.

Note: The conditions are easily seen to be necessary, that is if H has a Berge Hamiltonian cycle
then necessarily q ≥ ∆ and n ≥ s otherwise H has no edges, while when σ is rectangular, q must
be at least ∆ + 1 and n ≥ s+ 1, otherwise there are not enough edges.

Figure 1 gives an example of a Hamiltonian Berge cycle for H = H(n, r, q | σ) with σ = (2, 1),
s = 2 and q = n = 3. The cycle has 9 edges. The shaded vertices form the edge in each case, and
the vertices are numbered in cyclic order.

Figure 1: Berge Hamiltonian Cycle - shaded vertices represent the linking edges
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3 Sharp Hamiltonian Cycles

We have given necessary and sufficient conditions for a σ-hypergraph to contain a Berge Hamiltonian
cycle. Hence we now turn our attention to sharp Hamiltonian cycles which prove to be more
challenging. Although we shall be studying, in a later section, k-intersecting Hamiltonian cycles,
we want to treat separately sharp cycles first, which are k-intersecting for k = 2, because they
illustrate very clearly the main techniques used in this paper and also because stronger results are
possible with sharp cycles, when, in some cases, we prove that the Hamiltonian cycles obtained are
either t-sharp or (t, z)-sharp.

We first present some basic observations about sharp Hamiltonian cycles in r-uniform hyper-
graphs.

Lemma 3.1. Let H be a r-uniform hypergraph and let C be a sharp Hamiltonian cycle in H. Then

1. 2|V (H)|
r ≥ |E(C)| ≥ |V (H)|

r−1

2. ν(H) ≥ ν(C) =
⌊
|E(C)|

2

⌋
.

3. If 2ν(H) + 1 < nq
r−1 , there is no sharp Hamiltonian cycle in H.

Proof.

1. Consider C = (e1, e2, . . . , ep). Clearly, each edge of C intersects the next edge, so each edge
contributes at most r − 1 vertices to V (C) = V (H), and hence |V (H)| ≤ p(r − 1) which imples

p = |E(C)| ≥ |V (H)|
r−1 .

Now consider the degrees of the vertices in C. No vertex can have degree greater than 2, so
using the well known fact that

r|E(C)| =
∑

degC(v) ≤ 2|V (H)|

we get the result |E(C)| ≤ 2|V (H)|
r .

2. By the definition of a sharp cycle, the subset of E(C) {e2j+1 : 0 ≤ j ≤
⌊
|E(C)|

2

⌋
} is a maximal

matching in C, as the edges are distinct, and clearly any other edge in C will intersect one of these
edges. Hence

ν(H) ≥ ν(C) =

⌊
|E(C)|

2

⌋
.

3. If we apply the result in part 1 to σ-hypergraphs, where V (H) = nq, we get

2nq

r
≥ |E(C)| ≥ nq

r − 1
.

Clearly, by the assumption 2ν(H) + 1 < nq
r−1 ,

|E(C)| ≥ nq

r − 1
> 2ν(H) + 1 ≥ 2ν(C) + 1.

But |E(C)| is an integer, hence

|E(C)| ≥ 2ν(H) + 2 ≥ 2ν(C) + 2

= 2

⌊
|E(C)|

2

⌋
+ 2 ≥ 2

(
|E(C)| − 1

2

)
+ 2

= |E(C)|+ 1,

a contradiction.
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3.1 Examples of σ-hypergraphs with no Hamiltonian cycle.

Let us consider examples of σ-hypergraphs in which there is no sharp Hamiltonian cycle.
For the first example we use Lemma 3.1 — consider H = H(n, r, q | σ) with σ = (∆,∆, . . . ,∆)

and s(σ) = ∆ ≥ 2, that is σ is a square partition. Let n = q = 2∆− 1.

In this case, it is easy to see that ν(H) = 1, while nq
r−1 = (2∆−1)2

∆2−1
. Hence, if (2∆−1)2

∆2−1
> 3, that

is for ∆ ≥ 3, there is no sharp Hamiltonian cycle in H.
As a second example, consider H = H(n, r, q | σ) with σ = (∆, 1, . . . , 1) where s(σ) = ∆ =

r+1
2 ≥ 4 and q = n = r+1

2 . Consider an edge E1 with the first part of size ∆ taken from V1, and
the other parts taken from V2 to Vn respectively. It is clear that any other edge intersects this edge
— we need at least four edges for a sharp Hamiltonian cycle, but this is impossible since all these
edges intersect E1 and hence the cycle is not sharp.

In view of the above examples, our goal is to deal with the following problem which now arises
naturally:

Problem 3.1. Let H = H(n, r, q | σ), where s(σ) ≥ 2. Does there exists q(σ) and n(σ) such that
for all q ≥ q(σ) and n ≥ n(σ), H has a sharp Hamiltonian cycle?

We will supply an affirmative solution to this problem. So we begin with some results which
will then allow us to find a solution to this problem.

Lemma 3.2. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), s ≥ 2 and ∆ = a1 ≥ a2 ≥ . . . ≥ as =
δ ≥ 1. Let 1 ≤ p < s, and let

t =

i=p∑
i=1

ai and z =

i=s∑
i=p+1

ai = r − t.

If r|q and n ≥ s+ 1, then H has a (t, z)-sharp Hamiltonian cycle. Moreover if there exists p such
that

t =

i=p∑
i=1

ai =

i=s∑
i=p+1

ai,

then the cycle is t-sharp.

Proof. Let us consider the first r vertices in V1, . . . , Vn as an r×n grid of vertices. We will construct
two perfect matchings M and M∗, whose edges will then be used to form a sharp Hamiltonian cycle
C1 with 2n edges. Observe that we need s = s(σ) ≥ 2, otherwise if s = 1, that is σ = (r), then for
n ≥ 2 H is not connected, while for n = 1, H is the complete r-uniform hypergraph on q vertices,
which is trivially Hamiltonian for q ≥ r + 1.

For the first matching M , let each column of r vertices be partitioned into s consecutive parts
of sizes a1, a2, . . . , as (from top to bottom). The part ai in Vj will be referred to as the ith part in
Vj . The edge E1 is formed by taking the top a1 vertices from V1, the second part of size a2 from
V2 and so on, “in diagonal fashion”. This is repeated for E2 by “shifting one class to the right”,
taking the top a1 vertices from V2, the second part from V3 etc. In general, the edge Ej , 1 ≤ j ≤ n,
takes the first part from Vj , the second part from Vj+1 and in general the kth part from Vj+k−1,
for 1 ≤ k ≤ s, with addition modulo n. This gives a perfect matching M with n edges.

For the second matching M∗, let 1 ≤ p < s, and let

t =

i=p∑
i=1

ai and z =
i=s∑

i=p+1

ai = r − t

5
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Then we take edge E∗1 such that parts a1 to ap are taken as in edge E1, while part ap+1 to as are
taken as in edge E2 - this is possible since n ≥ s+ 1 and hence E∗1 is different from all Ei in M . In
general, E∗i has parts a1 to ap as in edge Ei, and parts ap+1 to as as in edge Ei+1, where addition
is modulo n. It is clear that these edges form another perfect matching, and that they are distinct
from the edges taken in M .

Now a sharp cycle C1 is formed by taking the edges in M ∪M∗ in this order:

E1, E
∗
1 , E2, E

∗
2 , . . . , Ei, E

∗
i , Ei+1, E

∗
i+1, . . . , En, E

∗
n.

In general, |Ei ∩E∗i | = a1 + . . .+ ap = t and |E∗i ∩Ei+1| = ap+1 + . . .+ as = z = r − t, and at the
end, E∗n has parts ap+1 to as to coincide with the same parts in E1 to close the cycle. It is clear
that the cycle is (t, z)-sharp since the only intersections between edges are the ones described. If
there exists p such that

t =

i=p∑
i=1

ai =
i=s∑

i=p+1

ai = z = r − t,

then the cycle is t-sharp.
Now if q ≥ r, then for the next r vertices in V1 to Vn we can create another sharp cycle C2 in

the same way. To link C1 to C2, for the last edge of M∗ in C1, we change the parts ap+1 to as to
coincide with the equivalent parts in the first edge of M in C2, thus linking the two cycles.

Hence if q = xr, we proceed this way to obtain a sharp Hamiltonian cycle C = C1∪C2∪ . . .∪Cx,
where we change the parts ap+1 to as in the last edge of Cx to coincide with the corresponding
parts in the first edge of C1, thus forming a (t, z)-sharp Hamiltonian cycle in H.

Now if there exists p such that

t =

i=p∑
i=1

ai =

i=s∑
i=p+1

ai,

it is clear that the cycle is t-sharp.

Lemma 3.3. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), s ≥ 2 and ∆ = a1 ≥ a2 ≥ . . . ≥ as =
δ ≥ 1. Let 1 ≤ p < s, and let

t =

i=p∑
i=1

ai and z =

i=s∑
i=p+1

ai = r − t.

If r + 1|q and n ≥ s+ 1, then H has an (t− 1, z)-sharp Hamiltonian cycle.

Proof. Let us first consider the first r + 1 vertices in V1, . . . , Vn as an (r + 1) × n grid of vertices.
As in the previous Lemma, we will construct two matchings M and M∗, whose edges can be used
to form a sharp cycle C1 with 2n edges.

The first matching M is constructed in exactly the same way as M was constructed in Lemma
3.2 to cover the top r×n grid of vertices, having n edges and leaving out the vertices in the (r+1)th

row.
For the second matching M∗, again we take 1 ≤ p < s, and let

t =

i=p∑
i=1

ai and z =

i=s∑
i=p+1

ai = r − t.
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The edges are then formed as follows: for edge E∗1 , part a1 is taken as in E1, but replacing the last
vertex in this part with the (r+ 1)th vertex in the same class. Parts a2 to ap are taken as per edge
E1, while parts ap+1 to as are taken as per edge E2. Therefore, in general, E∗i has part a1 taken
from Vi to include the top a1 − 1 vertices, and the last vertex in the class, parts a2 to ap as per
edge Ei , and parts ap+1 to as as in edge Ei+1.

Now the sharp cycle is C1 = (E1, E
∗
1 , E2, E

∗
2 , . . . , En, E

∗
n) so that |Ei ∩ E∗i | = t − 1, and |E∗i ∩

Ei+1| = z = r − t. The last edge E∗n intersects E1 in parts ap+1 to as.
Now if q ≥ r+ 1 and (r+ 1)|q, then for the next r+ 1 vertices in V1 to Vn we can create another

cycle C2 in the same way. To link C1 to C2, for E∗n, we change the parts ap+1 to as to coincide
with the equivalent parts in the first edge of M in C2, thus linking the two cycles.

Hence if q = x(r + 1), we proceed this way to obtain a sharp Hamiltonian cycle C = C1 ∪
C2 ∪ . . . ∪ Cx, where we change the parts ap+1 to as in the last edge of Cx to coincide with the
corresponding parts in the first edge of C1, thus forming a (t− 1, z)-sharp Hamiltonian cycle in H.

Again, if there exists p such that

t− 1 =

(
i=p∑
i=1

ai

)
− 1 =

i=s∑
i=p+1

ai,

then the cycle is (t− 1)-sharp.

We shall use the following classical theorem by Frobenius which states:

Theorem 3.4. Let a1, a2 be positive integers with gcd(a1, a2) = 1. Then for n ≥ (a1 − 1)(a2 − 1),
there are nonnegative integers x and y such that xa1 + ya2 = n.

Using Lemmas 3.2 and 3.3 combined with Theorem 3.4, we can now present an affirmative
solution to Problem 3.1, which we restate as a Theorem:

Theorem 3.5. Let H = H(n, r, q | σ), where s(σ) ≥ 2. If q ≥ r(r − 1) and n ≥ s+ 1, then H has
a sharp Hamiltonian cycle.

Proof. By Theorem 3.4, we know that if q ≥ r(r − 1), there exist nonnegative integers x and y
such that xr + y(r + 1) = q, since r and r + 1 are always coprime. Divide the q × n grid into x
consecutive grids of size r × n, followed by y consecutive grids of size (r + 1) × n. If we consider
the xr×n grid first, we know that by Lemma 3.2, there is a sharp cycle C1 covering these vertices,
and by Lemma 3.3, there is a sharp cycle C2 covering the y(r+ 1)×n grid. If x = 0 or y = 0, then
C1, respectively C2 give the required sharp Hamiltonian cycle. So we may assume that both x and
y are greater than 0. We now need to look at linking C1 to C2 and viceversa. Firstly, instead of
linking the last edge in C1 with the first one, we link it to the first edge in C2, by changing the
parts ak+1 to as for this last edge and choosing them to coincide with the parts ak+1 to as in the
first edge of C2. The last edge of C2, must be linked to the first edge in C1. So we change the parts
ak+1 to as of the last edge in C2 and let them coincide with the same parts in the first edge in C1.
Thus C1 ∪ C2 form a sharp Hamiltonian cycle in H.

4 k-intersecting Hamiltonian cycles

We now turn to k-intersecting cycles and generalise the results obtained in the previous section
to k-intersecting Hamiltonian cycles in σ-hypergraphs. Recall that a k-intersecting cycle C =
(e1, e2, . . . , ep) is such that

|ei ∩ ei+1 ∩ . . . ∩ ei+k−1| > 0
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for 1 ≤ i ≤ p, where addition is modulo p, while any other collection of k or more edges has an
empty intersection. If V (C) = V (H) then C is a k-intersecting Hamiltonian cycle.

Lemma 4.1. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), s ≥ 2 and ∆ = a1 ≥ a2 ≥ . . . ≥ as =
δ ≥ 1. Let 2 ≤ k ≤ s. If r|q and n ≥ s+ 1, then H has a k-intersecting Hamiltonian cycle.

Proof. Let us consider the first r vertices in V1, . . . , Vn as an r× n grid of vertices. We construct k
perfect matchings M1, . . . ,Mk which we then use to construct a k-intersecting Hamiltonian cycle.
Recall that 2 ≤ k ≤ s, and k = 2 is equivalent to a sharp Hamiltonian cycle.

The first matching M1 is equivalent to the matching M in Lemma 3.2, with edges labelled as
E1,1, E1,2, . . . , E1,n.

In the matching M2, we take edges E2,1 to E2,n so that edge E2,i has parts a1 to ak−1 as in
edge E1,i, while parts ak to as are as in edge E1,i+1.

In the matching M3, we take edges E3,1 to E3,n so that edge E3,i has parts a1 to ak−2 as in
edge E1,i, while parts ak−1 to as are as in edge E1,i+1.

In general, in the matching Mj , we take edges Ej,1 to Ej,n so that edge Ej,i has parts a1 to
ak−j+1 as in edge E1,i, while parts ak−j+2 to as are as in edge E1,i+1, for 2 ≤ j ≤ k. Since n ≥ s+1,
this is possible for all values of k between 2 and s.

Now we form a k-intersecting cycle C1 by taking the edges in the following order

E1,1, E2,1, . . . , Ek,1, E1,2, . . . , Ek,2, . . . , E1,i, E2,i, . . . , Ek,i, E1,i+1, . . . , Ek,i+1, . . . , E1,n, . . . , Ek,n.

We now look at the intersections:

E1,1, E2,1, . . . , Ek,1 intersect in part a1 in V1.

E2,1, E3,1, . . . , E1,2 intersect in parts ak to as in Vk+1 to Vs+1.

E3,1, E4,1, . . . , E2,2 intersect in part ak−1 in Vk.

In general, for the remaining edges, Ej,i, Ej+1,i, . . . , Ej−1,i+1 intersect in part ak−j+2 for 3 ≤ j ≤
k. The last k−1 edges intersect E1,1 in parts ak to as in Vk to Vs, making this cycle a k-intersecting
cycle. Any other sets of k or more edges will have an empty intersection since they will always
include two edges from one matching, which have an empty intersection by definition.

Now if q ≥ r and r|q, then for the next r vertices in V1 to Vn we can create another cycle C2 in
the same way. To link C1 and C2, we must consider the last k − 1 edges taken in C1, that is edge
E2,n to Ek,n. For edge E2,n,we change parts ak to as and choose them to coincide with the same
parts in the first edge in C2, and in general, for edge Ej,n we change parts ak−j+2 to as and choose
them to coincide with the same parts in the first edge in C2.

Hence if q = pr, we have a k-intersecting Hamiltonian cycle C = C1 ∪ C2 ∪ . . . ∪ Cp, with the
last k − 1 edges of Cp intersecting the first edge of C1 by changing the respective parts in these
edges in a similar way as described for C1 intersecting C2.

Figure 2 shows the first two edges in the four perfect matchings required for a 4-intersecting
Hamiltonian cycle when σ = (a1, a2, . . . , a6), q = r and n = 7. The boxes represent the parts a1 to
a6 ordered from top to bottom — Ej,1 is shaded in light grey while Ej,2 is shaded in dark grey, for
1 ≤ j ≤ 4. Each matching has seven distinct edges.

Lemma 4.2. Let H = H(n, r, q | σ) with σ = (a1, a2, . . . , as), s ≥ 2 and ∆ = a1 ≥ a2 ≥ . . . ≥ as =
δ ≥ 1. Let 2 ≤ k ≤ s. If (r + 1)|q and n ≥ s+ 1, then H has a k-intersecting Hamiltonian cycle.

Proof. Let us consider the first r + 1 vertices in V1, . . . , Vn as an (r + 1) × n grid of vertices. We
construct k matchings M1, . . . ,Mk which we then use to construct a k-intersecting Hamiltonian
cycle, using a method similar to that used in the previous lemma.
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Figure 2: σ = (a1, a2, . . . , a6) - matchings M1 to M4

The first matching M1 is for the top r vertices in V1 to Vn, and is equivalent to the matching
M in Lemma 4.1, with edges labelled as E1,1, E1,2, . . . , E1,n.

In the matching M2 for the (r + 1)× n grid , we take edges E2,1 to E2,n so that edge E2,i has
part a1 as in E1,i, but replacing the last vertex in this part with the (r + 1)th vertex in the same
class, parts a2 to ak−1 as in edge E1,i, while parts ak to as are as in edge E1,i+1.

In the matching M3, we take edges E3,1 to E3,n so that edge E3,i has part a1 as in edge E2,i,
parts a2 to ak−2 as in edge E1,i, while parts ak−1 to as are as in edge E1,i+1.

In general, in the matching Mj , we take edges Ej,1 to Ej,n so that edge Ej,i has parts a1 as in
edge E2,i, parts a2 to ak−j+1 as in edge E1,i, while parts ak−j+2 to as are as in edge E1,i+1, for
3 ≤ j ≤ k.

Now we form a k-intersecting cycle C1 by taking the edges in the following order:

E1,1, E2,1, . . . , Ek,1, E1,2, . . . , Ek,2, . . . , E1,i, E2,i, . . . , Ek,i, E1,i+1, . . . , Ek,i+1, . . . , E1,n, . . . , Ek,n.

We now look at the intersections:

E1,1, E2,1, . . . , Ek,1 intersect in a1 − 1 vertices in part a1 in V1.

E2,1, E3,1, . . . , E1,2 intersect in parts ak to as in Vk+1 to Vs+1.

E3,1, E4,1, . . . , E2,2 intersect in part ak−1 in Vk.

In general, Ej,i, Ej+1,i, . . . , Ej−1,i+1 intersect in part ak−j+2 for 3 ≤ j ≤ k. The last k− 1 edges
intersect E1,1 in parts ak to as in Vk to Vs, making this cycle a k-intersecting cycle. Any other sets
of k or more edges will have an empty intersection since they will always include two edges from
one matching, which have an empty intersection by definition.

Now if q ≥ r+ 1 and (r+ 1)|q, then for the next r+ 1 vertices in V1 to Vn we can create another
cycle C2 in the same way. To link C1 and C2, we must consider the last k − 1 edges taken in C1,
that is edge E2,n to Ek,n. For edge E2,n,we change parts ak to as and choose them to coincide with
the same parts in the first edge in C2, and in general, for edge Ej,n we change parts ak−j+2 to as
and choose them to coincide with the same parts in he first edge in C2.
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Hence if q = p(r + 1), we have a k-intersecting Hamiltonian cycle C = C1 ∪C2 ∪ . . . ∪Cp, with
the last k− 1 edges of Cp intersecting the first edge of C1 by changing the respective parts in these
edges in a similar way as described for C1 intersecting C2.

We can now prove a generalised form of Theorem 3.5:

Theorem 4.3. Let H = H(n, r, q | σ), where s(σ) ≥ 2. For 2 ≤ k ≤ s, if q ≥ r(r − 1) and
n ≥ s+ 1, then H has a k-intersecting Hamiltonian cycle.

Proof. By Theorem 3.4, we know that if q ≥ r(r−1), there exist nonnegative integers x and y such
that xr + y(r + 1) = q, since r and r + 1 are always coprime. So let us divide the q × n grid into
x consecutive grids of size r × n, followed by y consecutive grids of size (r + 1)× n. If we consider
the xr× n grid first, we know that by Lemma 4.1, there is a k-intersecting cycle C1 covering these
vertices, and by Lemma 4.2, there is a k-intersecting cycle C2 covering the y(r + 1) × n grid. If
x = 0 or y = 0, then C1, respectively C2 give the required k-intersecting Hamiltonian cycle. So we
may assume that both x and y are greater than 0. We now need to look at linking C1 to C2 and
vice versa. Firstly, instead of linking the last k − 1 edges in C1 with the first one, we link them to
the first edge in C2, as follows: for edge E2,n,we change parts ak to as and take them to coincide
with the same parts in the first edge in C2, and in general, for edge Ej,n we change parts ak−j+2

to as and take them toncoincide with the same parts in the first edge in C2.

The last k − 1 edges of C2, must be linked to the first edge in C1. So we change the respective
parts in these edges and take them to coincide with the same parts in the first edge in C1, in a
similar way to how we linked the last k− 1 edges in C1 to the first edge in C2. Thus C1 ∪C2 form
a k-intersecting Hamiltonian cycle in H.

5 Conclusion

The paper [2] defined σ-hypergraphs and started their study in order to investigate what are known
as mixed colourings or Voloshin colouring [11] of hypergraphs. In the colourings in [2], no edge
was allowed to have all vertices having the same colour, or all vertices having different colours.
This study was continued in [3]. These papers demonstrated the versatility of σ-hypergraphs in
obtaining interesting results on mixed colourings. In [4], the study of σ-hypergraphs was extended
to two other classical areas of graph and hypergraph theory: matchings and independence. In
this paper we continue in this vein, showing that σ-hypergraphs can also give elegant results on
Hamiltonicity.
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[8] Kühn, D. and Osthus, D. Hamilton Cycles in Graphs and Hypergraphs: an Extremal Perspec-
tive. ArXiv e-prints, 2014.
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