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Abstract
Context: The bottleneck on interval type-2 fuzzy logic systems is the output processing when using
Centroid Type-Reduction + Defuzzification (CTR+D method). Nie and Tan proposed an approximation
to CTR+D (NT method). Recently, Mendel and Liu improved the NT method (INT method). Numerical
examples (due to Mendel and Liu) exhibit the NT and INT methods as good approximations to CTR+D.
Method: Normalization to the unit interval of membership function domains (examples and
counterexample) and variables involved in the calculations for the three methods. Examples (due to
Mendel and Liu) taken from the literature. Counterexample with piecewise linear membership functions.
Comparison by means of error and percentage relative error.
Results: NT vs. CTR+D: Our counterexample showed an error of 0.1014 and a percentage relative error
of 30.53%. This is respectively 23 and 32 times higher than the worst case obtained in the examples. INT
vs. CTR+D: Our counterexample showed an error of 0.0725 and a percentage relative error of 21.83%.
This is respectively 363 and 546 times higher than the worst case obtained in the examples.
Conclusions: NT and INT methods are not necessarily good approximations to the CTR+D method.
Keywords: Type-2 fuzzy logic system, type-reduction, defuzzification, Nie-Tan method.
Language: English.'
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Resumen
Contexto: El cuello de botella en sistemas de lógica difusa tipo-2 de intervalo es el procesamiento de
salida que usa reducción de tipo centroide + defusificación (método CTR+D). Nie y Tan propusieron una
aproximación a CTR+D (método NT). Recientemente, Mendel y Liu mejoraron la propuesta (método
INT). Ejemplos debidos a Mendel y Liu exhiben a NT e INT como buenas aproximaciones a CTR+D.
Método: Normalización al intervalo unitario de los dominios de las funciones de pertenencia (para
ejemplos y contraejemplo) y de las variables que intervienen en los cálculos de los tres métodos. Ejemplos
tomados de la literatura (debidos a Mendel y Liu). Contraejemplo con funciones de pertenencia lineales
por tramos. Comparación por medio de métricas de error y porcentaje de error relativo.
Resultados: NT vs. CTR+D: El contraejemplo mostró un error de 0.1014 y error relativo porcentual de
30.53%. Esto es respectivamente 23 y 32 veces mayor que el peor caso obtenido en los ejemplos. INT
vs. CTR+D: El contraejemplo mostró un error de 0.0725 y error relativo porcentual de 21.83%. Esto es
respectivamente 363 y 546 veces mayor que el peor caso obtenido en los ejemplos.
Conclusiones: NT e INT no son necesariamente buenas aproximaciones al método CTR+D.
Palabras clave: Sistema de lógica difusa tipo-2, reducción de tipo, defusificación, método Nie-Tan.
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c⃝ The authors; licensee: Revista INGENIERÍA. ISSN 0121-750X, E-ISSN 2344-8393. Cite this paper as:
Rojas, J. D., Salazar, O., Serrano, H.: Nie-Tan Method and its Improved Version: A Counterexample.
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1. Introduction
Type-2 Fuzzy Logic Systems (T2FLS) (Figure 1) are used in several applications because Type-2

Fuzzy Sets (T2FS) provide greater flexibility than Type-1 Fuzzy Sets (T1FS) [1], [2]. In a T2FLS a
crisp numerical input goes through three stages: fuzzification, inferencing, and the output processing.
During the output processing a T2FS is converted into a crisp number. This last stage consists of
two parts: type-reduction and defuzzification. Type-reduction is the procedure by which a T2FS
is converted to a T1FS (called the type-reduced set). This set is then defuzzified to give a crisp
number.
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Figure 1. Type-2 Fuzzy Logic System. Taken from [3], [4].

In order to facilitate operations on T2FLSs, Interval Type-2 Fuzzy Sets (IT2FS) were introduced
(Figure 2). IT2FSs are a simplified version of general T2FSs. IT2FSs are defined by two membership
functions (MF): the Lower Membership Function (LMF) and the Upper Membership Function
(UMF). Any MF between LMF and UMF is called an Embedded Membership Function (EMF). The
region bounded by LMF and UMF is called Footprint of Uncertainty (FOU). The corresponding
FLSs are called Interval Type-2 Fuzzy Logic Systems (IT2FLS) [4].
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0
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x
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Figure 2. Interval Type-2 Fuzzy Set. LMF = Lower
Membership Function. UMF = Upper Membership
Function. EMF = Embedded Membership Function.
FOU = Footprint of Uncertainty (shaded). Adapted from
[4].
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Figure 3. The CTR+D method. Adapted from [3], [4].

Since IT2FLSs were proposed, centroid type-reduction1 (Figure 3) has been one of the main areas
of study, mainly due to its high computational cost [3], [6]–[9]. If Ã is an IT2FS, the main problem

1Centroid type-reduction is classified into two forms: discrete and continuous [5]. From a discretization of the MFs
it is possible to switch from continuous to discrete. This paper discusses the continuous version, but several results are
applied to the discrete case.
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consists in finding the type-reduced set2 CÃ = [cl, cr], where cl and cr are the endpoints of CÃ. The
interval [cl, cr] contains the centroids of all EMFs in the FOU. Defuzzification, which consists in
averaging cl and cr to get cM = (cl+ cr)/2, is a relatively simple step in IT2FLSs. Figure 3 is what
we shall refer to as the Centroid Type-Reduction + Defuzzification (CTR+D) method3.

Nie and Tan [13] proposed an approximation to the CTR+D method. It is known as the Nie-Tan
(NT) method. It consists in averaging LMF and UMF to get an average MF (AMF). The defuzzified
value cNT is the centroid of this AMF (Figure 4(a)). Mendel and Liu [11], [12] improved the NT
method. Their improvement is still an approximation. It is known as the Improved Nie-Tan (INT)
method. It consists in adding to cNT a correction factor δ, i.e., cINT = cNT + δ (Figure 4(b)).
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+
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(b)
Figure 4. (a) The NT method. (b) The INT method.

Mendel and Liu showed four numerical examples in order to illustrate their theoretical results.
These authors claimed that cNT is a first-order approximation to cM = (cl + cr)/2, and cINT is
a better third-order approximation to cM . Their examples included IT2FSs defined over different
domains, and they used the following metrics for comparison:

1. Absolute error: ENT = |cNT − cM | and EINT = |cINT − cM |,

2. Percentage relative error: RENT =

(
ENT

|cM |

)
× 100% and REINT =

(
EINT

|cM |

)
× 100%,

3. Difference of absolute errors: ENT − EINT , and

4. Absolute error ratio:
ENT

EINT

=
RENT

REINT

.

Their numerical results showed 0 ≤ ENT ≤ 0.0844, 0 ≤ EINT ≤ 0.0014, 0% ≤ RENT ≤
2.22%, and 0% ≤ REINT ≤ 0.04%. In terms of error comparison, their results showed 0 ≤
ENT − EINT ≤ 0.0829 and 4.29 ≤ ENT/EINT ≤ 58.93. Although these results seem to exhibit
the NT and INT methods as a good approximation to the CTR+D method, in this paper we will
show this is not necessarily true.

The metrics shown above depend on two things: (1) the domain where LMF and UMF are defined
and (2) the images of these two MFs. Let us explain this point in general terms. Let Ã be an IT2FS

2An alternative notation as interval set is CÃ = 1/ [cl, cr]. In this paper we use standard mathematical notation [10].
3It is called the “KM + Defuzzification” method in [11], [12].
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defined over a domain X . If µAe : X 7→ [0, 1] : x 7→ µAe(x) is an EMF then its centroid is given
by

CAe =

∫
X

xµAe(x)dx∫
X

µAe(x)dx

.

Therefore, CAe depends on two things for its calculation: (1) the domain X and (2) the image4

of µAe , denoted as Im(µAe). As a consequence, if M is a metric calculated from CAe1 and
CAe2 (centroids of two EMFs), M depends on X , Im(µAe1) and Im(µAe2). As we will see in
next sections: cM , cNT and cINT are calculated from X , LMF and UMF (two particular EMFs).
Therefore, ENT , EINT , RENT , REINT , ENT − EINT , and ENT/EINT = RENT/REINT depend
on the domain where LMF and UMF are defined and the images of these two MFs.

The aim of this paper is to show a counterexample that exhibits higher errors than the corresponding
errors in examples reported in the literature when comparing CTR+D method versus NT and INT
methods5. We chose an IT2FS with piecewise linear MFs, mainly due to its simplicity. In order
to reduce the effect of different domains on the metrics (as we explained above), all the domains
(for examples and counterexample) were taken to a common domain: the unit interval [0, 1]. This
has a consequence: a change on a metric is due mainly to the change in the LMFs and UMFs (the
shape of the FOU). Additionally, all the variables involved in the CTR+D, NT and INT methods
were normalized to the unit interval.

After normalizing Mendel and Liu’s results, their four numerical examples showed 0 ≤ E∗
NT ≤

0.0044, 0 ≤ E∗
INT ≤ 0.0002, 0% ≤ RE∗

NT ≤ 0.96%, and 0% ≤ RE∗
INT ≤ 0.04%. In terms of

error comparison, their examples showed 0 ≤ E∗
NT − E∗

INT ≤ 0.0044 and 4.42 ≤ E∗
NT/E

∗
INT ≤

60.21. Our counterexample showed E∗
NT = 0.1014 (23 times higher than E∗

NT = 0.0044),
E∗

INT = 0.0725 (363 times higher than E∗
INT = 0.0002), RE∗

NT = 30.53% (32 times higher
than RE∗

NT = 0.96%), and RE∗
INT = 21.83% (546 times higher than RE∗

INT = 0.04%). In
terms of error comparison, our counterexample showed E∗

NT −E∗
INT = 0.0289 and E∗

NT/E
∗
INT =

1.3986. We concluded, based on our results, that the NT and INT methods are not necessarily good
approximations to the CTR+D method.

This paper is organized as follows: In Section 2 some preliminaries related to the CTR+D, NT
and INT methods are presented. In Section 3, our normalization to the unit interval is described.
In Section 4, the main results are shown. Finally, discussion and conclusions are presented in
Section 5 and Section 6.

4The image of µAe is Im(µAe) = {µAe(x) | x ∈ X}.
5A comparative study (by means of statistical analysis) was carried out in [14] in order to compare accuracy

and complexity for the Exhaustive Defuzzification method [15] versus the Karnik-Mendel iterative procedure [7]
(EIASC algorithm [16, section III]), the Wu-Mendel approximation (WM algorithm [17, appendix III, pp. 635]), the
Greenfield-Chiclana Collapsing Defuzzifier (collapsing algorithm [18]), and the NT method [13].

INGENIERÍA • VOL. 21 • NO. 2 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 141
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2. Preliminaries

2.1. The CTR+D method
Let Ã be an IT2FS, which is determined by two MFs6 µ : X 7→ [0, 1] and µ : X 7→ [0, 1], defined

over a nonempty set X ⊂ R, such that µ(x) ≤ µ(x) for all x ∈ X . µ is called Lower Membership
Function (LMF) and µ is called Upper Membership Function (UMF). In many applications X is a
closed interval7, therefore from now on we will suppose X = [a, b] ⊂ R, with a < b. The centroid
(type-reduced set) of Ã, denoted by CÃ, is CÃ = [cl, cr] ⊆ X , where cl and cr are

cl = min
µ≤θ≤µ

∫ b

a

xθ(x)dx∫ b

a

θ(x)dx

, and cr = max
µ≤θ≤µ

∫ b

a

xθ(x)dx∫ b

a

θ(x)dx

, (1)

and where θ : X 7→ [0, 1] is a MF such that

µ(x) ≤ θ(x) ≤ µ(x) (2)

for all x ∈ X . The defuzzified value of Ã is

cM =
cl + cr

2
. (3)

It was shown [19], [20] that the θ functions to minimize and maximize (1) are respectively

θl(x) =

{
µ(x), x ≤ xl,

µ(x), x > xl,
and θr(x) =

{
µ(x), x ≤ xr,

µ(x), x > xr,
(4)

where xl, xr ∈ X are unknown (a priori) switch points between µ and µ. The switch points xl and
xr need to be found by means of iterative procedures in order to optimize (1).

Convex combination [21]–[23] was used to characterize all the θ functions that satisfy (2). It is
known that for any θ which satisfies (2), there is at least one MF µΛ : X 7→ [0, 1] such that

θ(x) = µ(x) + µΛ(x)(µ(x)− µ(x)) (5)

for all x ∈ X . If µΛ is taken in (5) as

µΛl
(x) =

{
1, x ≤ xl,

0, x > xl,
and µΛr(x) =

{
0, x ≤ xr,

1, x > xr,
(6)

then (4) is achieved. Therefore, cl = mint∈X α(t) and cr = maxt∈X β(t), where

α(t) =

∫ t

a

xµ(x)dx+

∫ b

t

xµ(x)dx∫ t

a

µ(x)dx+

∫ b

t

µ(x)dx

, and β(t) =

∫ t

a

xµ(x)dx+

∫ b

t

xµ(x)dx∫ t

a

µ(x)dx+

∫ b

t

µ(x)dx

, (7)

6In this paper all the MFs are supposed to be Riemann-Integrable.
7In several papers on the centroid, X is taken as (−∞,∞) with the assumption that all integrals are convergent.

However, over this domain the centroid of an IT2FS could not exist. See [5, sec. 2.1] for an example.
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for all t ∈ X .

It was also shown [19], [20], [24] that α(cl) = cl and β(cr) = cr (cl and cr are fixed points of α
and β), i.e.,

cl =

∫ cl

a

xµ(x)dx+

∫ b

cl

xµ(x)dx∫ cl

a

µ(x)dx+

∫ b

cl

µ(x)dx

, and cr =

∫ cr

a

xµ(x)dx+

∫ b

cr

xµ(x)dx∫ cr

a

µ(x)dx+

∫ b

cr

µ(x)dx

. (8)

From (8) it was shown [11], [12], [25] that the problem of finding cl and cr is equivalent to find
the roots in [a, b] of

φ(t) =

∫ t

a

(t− x)µ(x)dx+

∫ b

t

(t− x)µ(x)dx, (9)

ω(t) =

∫ t

a

(t− x)µ(x)dx+

∫ b

t

(t− x)µ(x)dx, (10)

which are defined for all t ∈ X , and where φ(cl) = 0 and ω(cr) = 0. It was also shown [25]
that the Karnik-Mendel algorithm is equivalent to applying the Newton-Raphson method to find
the roots of φ and ω.

2.2. The NT method
In the Nie and Tan’s original method [13], the MF obtained after type-reducing is the average of
µ and µ, i.e., µNT (x) = (µ(x) + µ(x))/2 for all x ∈ X . Therefore, its defuzzified value is

cNT =

∫ b

a

xµNT (x)dx∫ b

a

µNT (x)dx

. (11)

Mendel and Liu [11], [12] claimed that cNT is a first-order approximation to cM = (cl + cr)/2.

2.3. The INT method
Mendel and Liu [11], [12] proposed the improved Nie-Tan method, which is

cINT = cNT + δ, (12)

where cNT is given in Section 2.2, and δ is given by

δ =

2

(∫ cNT

a

(cNT − x)µ(x)dx+

∫ b

cNT

(cNT − x)µ(x)dx

)
(∫ b

a

(µ(x) + µ(x))dx

)2

×
(∫ cNT

a

(µ(x)− µ(x))dx−
∫ b

cNT

(µ(x)− µ(x))dx

)
. (13)
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These authors claimed that cINT is a better third-order approximation to cM = (cl + cr)/2.

3. Normalization to the unit interval
Since the domain of µ and µ is X = [a, b], with a < b, a bijective function is established [a, b] 7→
[0, 1] : x 7→ y which is given by

y =
x− a

b− a
. (14)

Its inverse function [0, 1] 7→ [a, b] : y 7→ x (also a bijection) is given by

x = a+ y(b− a). (15)

By means of (15) we define MFs with normalized domain (to the unit interval) µ∗ : [0, 1] 7→ [0, 1]
and µ∗ : [0, 1] 7→ [0, 1] given by

µ∗(y) = µ(a+ y(b− a)), (16)
µ∗(y) = µ(a+ y(b− a)), (17)

for all y ∈ [0, 1], and where µ∗(y) ≤ µ∗(y) holds for all y ∈ [0, 1].

3.1. Normalized CTR+D method
By means of (14)–(17), the normalized version of (7) is (after some algebra8):

α∗(z) =

∫ z

0

yµ∗(y)dy +

∫ 1

z

yµ∗(y)dy∫ z

0

µ∗(y)dy +

∫ 1

z

µ∗(y)dy

, and β∗(z) =

∫ z

0

yµ∗(y)dy +

∫ 1

z

yµ∗(y)dy∫ z

0

µ∗(y)dy +

∫ 1

z

µ∗(y)dy

, (18)

where z = (t−a)/(b−a), α∗(z) = (α(t)−a)/(b−a), and β∗(z) = (β(t)−a)/(b−a). Therefore
c∗l = minz∈[0,1] α

∗(z), c∗r = maxz∈[0,1] β
∗(z) and c∗M = (c∗l + c∗r)/2 where

c∗l =
cl − a

b− a
, c∗r =

cr − a

b− a
and c∗M =

cM − a

b− a
. (19)

It should be noted that from (14) we have z, α∗, β∗, c∗l , c
∗
r, c

∗
M ∈ [0, 1]. Similarly (9)–(10) are

reduced to

φ∗(z) =

∫ z

0

(z − y)µ∗(y)dy +

∫ 1

z

(z − y)µ∗(y)dy, (20)

ω∗(z) =

∫ z

0

(z − y)µ∗(y)dy +

∫ 1

z

(z − y)µ∗(y)dy, (21)

where φ∗(z) = φ(t)/(b − a)2 and ω∗(z) = ω(t)/(b − a)2. Since φ(cl) = 0 and ω(cr) = 0 then
φ∗(c∗l ) = 0 and ω∗(c∗r) = 0. Therefore c∗l and c∗r are roots in [0, 1] of φ∗ and ω∗. It is not difficult

8The substitution x = a + y(b − a) yields dx = (b − a)dy, which is the required substitution for dx. The other
variables are obtained by performing the corresponding substitutions.
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to verify that φ∗, ω∗ ∈ [−1/2, 1/2]. Although φ∗ and ω∗ are not in the unit interval, we only need
their roots in [0, 1]. Additionally, there is a relation among φ∗ and ω∗:

φ∗(z) + ω∗(z) = z(B +D)− (A+ C), (22)

for all z ∈ [0, 1], where

A =

∫ 1

0

yµ∗(y)dy, B =

∫ 1

0

µ∗(y)dy, C =

∫ 1

0

yµ∗(y)dy, and D =

∫ 1

0

µ∗(y)dy. (23)

3.2. Normalized NT method
By means of (14)–(17) the normalized version of (11) is (after some algebra):

c∗NT =

∫ 1

0

yµ∗
NT (y)dy∫ 1

0

µ∗
NT (y)dy

, (24)

where µ∗
NT (y) = (µ∗(y) + µ∗(y))/2 for all y ∈ [0, 1], and

c∗NT =
cNT − a

b− a
. (25)

From (14) we have that c∗NT ∈ [0, 1].

3.3. Normalized INT method
By means of (14)–(17), the normalized version of (12) is (after some algebra):

c∗INT = c∗NT + δ∗, (26)

where

c∗INT =
cINT − a

b− a
, and δ∗ =

δ

b− a
. (27)

From (14) we have that c∗INT ∈ [0, 1]. c∗NT is given in Section 3.2, and δ∗ is given by

δ∗ =

2

(∫ c∗NT

0

(c∗NT − y)µ∗(y)dy +

∫ 1

c∗NT

(c∗NT − y)µ∗(y)dy

)
(∫ 1

0

(µ∗(y) + µ∗(y))dy

)2

×

(∫ c∗NT

0

(µ∗(y)− µ∗(y))dy −
∫ 1

c∗NT

(µ∗(y)− µ∗(y))dy

)
. (28)
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4. Results

4.1. Original Mendel and Liu’s numerical examples
Mendel and Liu [11], [12] showed the following four numerical examples.

1. Symmetric Gaussian MFs with uncertain deviation defined for all x ∈ X = [0, 10]:

µ
Ã1
(x) = exp

(
−1

2

(
x− 5

0.25

)2
)
, (29)

µÃ1
(x) = exp

(
−1

2

(
x− 5

1.75

)2
)
. (30)

2. Triangular LMF and Gaussian UMF defined for all x ∈ X = [−5, 14]:

µ
Ã2
(x) =

{
0.6(x+ 5)/19, x < 2.6,

0.4(14− x)/19, x ≥ 2.6.
(31)

µÃ2
(x) =


exp

(
−1

2

(
x− 2

5

)2
)
, x < 7.185,

exp

(
−1

2

(
x− 9

1.75

)2
)
, x ≥ 7.185.

(32)

3. Piecewise Gaussian MFs defined for all x ∈ X = [0, 10]:

µ
Ã3
(x) = max

{
0.5 exp

(
−(x− 3)2

2

)
, 0.4 exp

(
−(x− 6)2

2

)}
. (33)

µÃ3
(x) = max

{
exp

(
−(x− 3)2

8

)
, 0.8 exp

(
−(x− 6)2

8

)}
. (34)

4. Piecewise Linear MFs defined for all x ∈ X = [1, 8]:

µ
Ã4
(x) = max


(x− 1)/6, 1 ≤ x ≤ 4,
(7− x)/6, 4 ≤ x ≤ 7,

0, otherwise.

 ,

(x− 3)/6, 3 ≤ x ≤ 5,
(8− x)/9, 5 ≤ x ≤ 8,

0, otherwise.

 . (35)

µÃ4
(x) = max


(x− 1)/2, 1 ≤ x ≤ 3,
(7− x)/4, 3 ≤ x ≤ 7,

0, otherwise.

 ,

 (x− 2)/5, 2 ≤ x ≤ 6,
(16− 2x)/5, 6 ≤ x ≤ 8,

0, otherwise.

 . (36)

Their results are summarized in Table I. These authors used the following metrics for comparison:

1. Absolute error: ENT = |cNT − cM | and EINT = |cINT − cM |.

2. Percentage relative error: RENT =
ENT

|cM |
× 100% and REINT =

EINT

|cM |
× 100%.
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3. Difference of absolute errors: ENT − EINT .

4. Absolute error ratio:
ENT

EINT

=
RENT

REINT

.

Table I. Computation results in the continuous case. Taken and adapted from [11], [12].
Domain NT method INT method Error comparison

IT2FS [a, b] cM = (cl + cr)/2 cNT ENT RENT cINT EINT REINT ENT − EINT ENT /EINT

Ã1 [0, 10] 5.0 5.0 0 0 5.0 0 0 0 —
Ã2 [−5, 14] 3.7984 3.7141 0.0844 2.22% 3.797 0.0014 0.04% 0.0829 58.93

Ã3 [0, 10] 4.4152 4.3953 0.0200 0.45% 4.4158 0.0006 0.01% 0.0194 33.63

Ã4 [1, 8] 4.3261 4.3208 0.0053 0.12% 4.3273 0.0012 0.03% 0.0041 4.29

4.2. Normalized results
The corresponding IT2FSs with a normalized domain (37)–(44) are found by means of (29)–(36)

by substituting x ∈ X by a + y(b − a), where y ∈ [0, 1]. The a and b values depend on the
X-domain for each IT2FS. For example, for (35)–(36) we have a = 1 and b = 8.

1. Symmetric Gaussian MFs with uncertain deviation (Figure 5(a)) defined for all y ∈ [0, 1]:

µ∗
Ã1
(y) = exp

(
−1

2
(40y − 20)2

)
, (37)

µ∗
Ã1
(y) = exp

(
−1

2

(
40y − 20

7

)2
)
. (38)

2. Triangular LMF and Gaussian UMF (Figure 5(b)) defined for all y ∈ [0, 1]:

µ∗
Ã2
(y) =

{
3y/5, y < 2/5,

2(1− y)/5, y ≥ 2/5.
(39)

µ∗
Ã2
(y) =


exp

(
−1

2

(
19y − 7

5

)2
)
, y < 624/973,

exp

(
−1

2

(
76y − 56

7

)2
)
, y ≥ 624/973.

(40)

3. Piecewise Gaussian MFs (Figure 5(c)) defined for all y ∈ [0, 1]:

µ∗
Ã3
(y) = max

{
0.5 exp

(
−(10y − 3)2

2

)
, 0.4 exp

(
−(10y − 6)2

2

)}
. (41)

µ∗
Ã3
(y) = max

{
exp

(
−(10y − 3)2

8

)
, 0.8 exp

(
−(10y − 6)2

8

)}
. (42)
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4. Piecewise Linear MFs (Figure 5(d)) defined for all y ∈ [0, 1]:

µ∗
Ã4
(y) = max


 7y/6, 0 ≤ y ≤ 3/7,
(6− 7y)/6, 3/7 ≤ y ≤ 6/7,

0, otherwise.

 ,

(7y − 2)/6, 2/7 ≤ y ≤ 4/7,
7(1− y)/9, 4/7 ≤ y ≤ 1,

0, otherwise.

 .

(43)

µ∗
Ã4
(y) = max


 7y/2, 0 ≤ y ≤ 2/7,
(6− 7y)/4, 2/7 ≤ y ≤ 6/7,

0, otherwise.

 ,

 (7y − 1)/5, 1/7 ≤ y ≤ 5/7,
14(1− y)/5, 5/7 ≤ y ≤ 1,

0, otherwise.

 .

(44)
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Figure 5. IT2FSs with normalized domain (37)–(44).

In Table II we show c∗M = (cM − a)/(b − a), c∗NT = (cNT − a)/(b − a) and c∗INT = (cINT −
a)/(b − a), which are the normalization to the unit interval of cM , cNT and cINT in Table I. We
recalculated the following metrics:
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1. Absolute error: E∗
NT = |c∗NT − c∗M | and E∗

INT = |c∗INT − c∗M |.

2. Percentage relative error: RE∗
NT =

E∗
NT

c∗M
× 100% and RE∗

INT =
E∗

INT

c∗M
× 100%.

3. Difference of absolute errors: E∗
NT − E∗

INT .

4. Absolute error ratio:
E∗

NT

E∗
INT

=
RE∗

NT

RE∗
INT

.

Table II. Normalization to the unit interval of the results in Table I.
Normalized NT method Normalized INT method Error comparison

IT2FS† c∗M = (c∗l + c∗r)/2 c∗NT E∗
NT RE∗

NT c∗INT E∗
INT RE∗

INT E∗
NT − E∗

INT E∗
NT /E

∗
INT

Ã∗
1 0.5 0.5 0 0 0.5 0 0 0 —

Ã∗
2 0.4631 0.4586 0.0044 0.96% 0.4630 0.0001 0.02% 0.0044 60.21

Ã∗
3 0.4415 0.4395 0.0020 0.45% 0.4416 0.0001 0.01% 0.0019 33.17

Ã∗
4 0.4752 0.4744 0.0008 0.16% 0.4753 0.0002 0.04% 0.0006 4.42

† IT2FSs with normalized domain (37)–(44).

4.3. A counterexample
Let Ã∗ be an IT2FS defined over [0, 1], and determined by piecewise linear MFs (Figure 6):

µ∗(y) =

{
(y + 3.24)/3.79, y ≤ 0.1,

0, otherwise,
(45)

µ∗(y) =


(y + 2.43)/2.84, y ≤ 0.41,

1, 0.41 < y < 0.68,

(1.24− y)/0.56, y ≥ 0.68.

(46)

for all y ∈ [0, 1].
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Figure 6. IT2FS with normalized domain (45)–(46).
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After calculating9 c∗M , c∗NT , c∗INT , and the corresponding metrics for (45)–(46), we got the results
in Table III.

Table III. Computation results for our counterexample.
Normalized NT method Normalized INT method Error comparison

IT2FS† c∗M = (c∗l + c∗r)/2 c∗NT E∗
NT RE∗

NT c∗INT E∗
INT RE∗

INT E∗
NT − E∗

INT E∗
NT /E

∗
INT

Ã∗ 0.3321 0.4335 0.1014 30.53% 0.4046 0.0725 21.83% 0.0289 1.3986
† IT2FS with normalized domain (45)–(46).

5. Discussion
As we can see in Table III, our counterexample showed the following:

1. An absolute error E∗
NT = 0.1014. This is almost 23 times higher than E∗

NT = 0.0044 (worst
case in Table II).

2. A percentage relative error RE∗
NT = 30.53%. This is almost 32 times higher than RE∗

NT =
0.96% (worst case in Table II).

3. An absolute error E∗
INT = 0.0725. This is almost 363 times higher than E∗

INT = 0.0002
(worst case in Table II).

4. An percentage relative error RE∗
INT = 21.83%. This is almost 546 times higher than

RE∗
INT = 0.04% (worst case in Table II).

In terms of error comparison E∗
NT − E∗

INT = 0.0289 and E∗
NT/E

∗
INT = 1.3986, our example

showed that E∗
NT is comparable (in magnitude) with respect to E∗

INT , in contrast with the results
in Table II.

6. Conclusions
This paper showed a counterexample that exhibits higher errors than the corresponding errors in

examples reported in the literature when comparing the NT and INT methods versus the CTR+D
method. We chose an IT2FS with piecewise linear MFs as our counterexample, mainly due
to its simplicity. All the domains (for examples and counterexample) were taken to the unit
interval [0, 1] in order to reduce the effect of different domains on the metrics that we used for
comparison. Additionally, all the variables involved in the three methods were normalized to the
unit interval. We concluded, based on our results, that the NT and INT methods are not necessarily
good approximations to the CTR+D method.

A. Source code for the counterexample in Section 4.3
The source code presented in this section was executed on MATLAB 7.14.0.739 (R2012a), on a
laptop with Microsoft Windows XP Professional 32 bit, Intel(R) Atom(TM) CPU Z520 1.33 GHz,

9In Appendix A we present a source code for the numerical calculation
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1014 MB of RAM. See the main text for a description of each variable in the following code.

%--------------------------------------------------------------------------
% Definition of LMF and UMF.
% LMF = Lower Membership Function
% UMF = Upper Membership Function
%--------------------------------------------------------------------------
clear all
syms y z % Symbolic variables
LMF = ((y + 3.24)/3.79) * heaviside(0.1 - y);
UMF = ((y + 2.43)/2.84) * heaviside(0.41 - y) + ...

(heaviside(y - 0.41) - heaviside(y - 0.68)) + ...
((1.24 - y)/0.56) * heaviside(y - 0.68);

%--------------------------------------------------------------------------
% CTR+D method
%--------------------------------------------------------------------------
A = int(y * UMF, y, 0, 1);
B = int(UMF, y, 0, 1);
C = int(y * LMF, y, 0, 1);
D = int(LMF, y, 0, 1);
phi = int((z-y) * UMF, y, 0, z) + int((z-y) * LMF, y, z, 1);
omega = z * (B + D) - (A + C) - phi;
sol = solve(phi, ’Real’, true); % Solve phi = 0. Find real values
index = find(sol >= 0 & sol <= 1);
c_l = vpa(sol(index), 4) % We choose the root of phi in [0,1] as c_l
sol = solve(omega, ’Real’, true); % Solve omega = 0. Find real values
index = find(sol >= 0 & sol <= 1);
c_r = vpa(sol(index), 4) % We choose the root of omega in [0,1] as c_r
c_M = vpa((c_l + c_r)/2, 4) % CTR+D method
%--------------------------------------------------------------------------
% NT method
% AMF = Average Membership Function
%--------------------------------------------------------------------------
AMF = (LMF + UMF) / 2;
c_NT = int(y * AMF, y, 0, 1) / int(AMF, y, 0, 1);
c_NT = vpa(c_NT, 4) % Nie-Tan method
%--------------------------------------------------------------------------
% INT method
%--------------------------------------------------------------------------
num1_delta = int((c_NT-y)*UMF, y, 0, c_NT) + int((c_NT-y)*LMF, y, c_NT, 1);
num2_delta = int(UMF-LMF, y, 0, c_NT) - int(UMF-LMF, y, c_NT, 1);
den_delta = (int(UMF, y, 0, 1) + int(LMF, y, 0, 1)) ˆ 2;
delta = 2 * num1_delta * num2_delta / den_delta;
c_INT = c_NT + delta;
c_INT = vpa(c_INT, 4) % Improved Nie-Tan method
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INGENIERÍA • VOL. 21 • NO. 2 • ISSN 0121-750X • E-ISSN 2344-8393 • UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS 151
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Electronics Engineer, Universidad Distrital Francisco José de Caldas. Master in Industrial Engineering, Universidad
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