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HAMILTONIAN BASED ADAPTIVE CRITICS 
FOR AIRCRAFT CONTROL 

S. N. Balakrishnan and Jie Shen 
Dept. of Mechanical and Aerospace Engineering 

and Engineering Mechanics 
University of Missouri-Rolla 

Rolla, MO 65401 -0249 
(31 4) 341 -4675 

1. INTRODUCTION 

Aircraft designs are becoming more complex in 
order to either operate more efficiently as in the 
commercial sector or to push the performance 
envelopes as in the military sector. An 
interesting outcome of this scenario is that 
‘control’ has come to play an important role in 
helping realize these objectives. Increasingly, 
control is becoming an integral part of an 
aircraft design rather than an afterthought. 
More effective and efficient control of an aircraft 
is certain to lead to improved performance at a 
lower cost. 

One other consequence of complexity in design 
is the need to consider innovative controller 
designs since existing designs are bound to be 
inadequate (for example, in high-angle of attack 
flights). We investigate the use of neural 
networks in this paper to formulate useful and 
efficient controllers. Controllers, in general, are 
designed to fulfill one of two functions. The first 
is called ‘regulation whereby the controller 
drives the errors in a system states to zero. 
The second function of a controller is to track a 
reference signal (such as a desired pitch rate, 
etc.) within bounds. In either case, the 
designed controller should be able to operate 
successfully when there are realistic (expected) 
parameter variations within the system being 
controlled (robustness). In the evolution of 
control design, the classical control deals with 
robust controllers but they are essentially single- 
input, single-output (SISO) controllers. They are 
not quite optimal. Optimal controllers can 
handle multiple-input, multiple-output (MIMO) 

directly. However, robustness of an observer 
based optimal controller is not guaranteed. A 
lot of current research is devoted to build robust 
MIMO controllers based on some kind of 
optimization. It is hoped that in this area the 
field of neural networks can play a significant 
role. We investigate the use of neural networks 
to synthesize optimal controllers in this study. 
(The robustness studies currently under 
progress will be reported later.) We formulate a 
Hamiltonian based ‘adaptive critic’ (Figure 1) 
which provides optimal control for a wide range 
of initial conditions. Unlike other neural network 
solutions, this system of networks generates its 
own targets for their training. The ‘adaptive- 
critic’ system is based on reinforcement learning 
and consists of two neural networks (if the 
model is known). One element, called ‘the 
critic,’ provides an assessment of the second 
element called ‘the action’ (control) network so 
that its outputs are ‘better’ in the future [3,4]. 
We use this concept to solve the Hamiltonian 
based control equations associated with optimal 
control. In the remainder of the paper, we 
present the general optimal control problem and 
the associated equations in Section I I .  A scalar 
problem in order to demonstrate the procedure 
in adaptive critic based solutions is presented in 
Section Ill. A typical aircraft control problem is 
also presented in Section 111. The conclusions 
are summarized in Section IV. 

11. PROBLEM FORMULATION AND 
SOLUTION DEVELOPMENT 

Cost Function 
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Through the neural network methodology 
presented in this study, we will be able to solve 
a class of optimal control problems. The cost 
function in such cases is given by, J, where 

In Eqn. (l), Li() can be a linear or nonlinear 
function of the states and/or control and4( ) 
can be a linear or nonlinear function of terminal 
states. I indicates the stage. The underlying 
system model is given by 

x(i + 1) = f,(x(i), u(i)) (2) 

where fi( ) can be either linear or nonlinear. The 
optimal control problem can be formulated in 
terms of Hamiltonian [l] where the Hamiltonian, 
Hi, is given by 

The propagation equations for the Lagrange 
Multiplier, i = 0,1, ... N-1, are given by 

with boundary condition on A as 

The optimality condition is 

aHi/&(i) = 0, i = 0, I ,  ..., n - 1  (6) 

Note that for a steady state regulator problem 
@() is zero and N- large. 

Adaptive Critic 

The goal of the neural networks is to find the 
control which minimizes the cost in Eqn. (1) by 
solving Eqn. (2) and (4) with the use of Eqn. (6) 
and boundary conditions given by Eq. (5) and 
the known initial states. 

In order to accomplish this task, we use two 
networks. One network called ‘action’ models 

the control, u(i), for which the inputs are x(i). In 
order to train the control network, first, x(i), is 
randomized and the action network outputs u(i). 
The system model in Eqn. (2) is then used to 
find x(i+ 1). The derivatives 6fi/aX(i) andaLi/aX(i) 
can all be calculated since x(i) and u(i) are 
known. Now, a randomized critic network is 
considered and A(i) and A(i + 1) are calculated 
corresponding to x(i) and x(i + 1). With X(i + 1) , 
the target A(i), denoted by A*(i), can be 
calculated by using Eqn. (4). The difference 
between A*(i) and A(i) is used to correct the 
critic network. After the critic network has 
converged, we use this critic or supervisory 
network to correct the action network. This is 
done by finding u(i) for random x(i) and 
correcting them through the use of the model 
equation in Eqn. (2) to find x(i+l), and use 
x(i+ 1) to find A(i + 1 ) from the critic network 
corresponding to x(i + 1). By using A(i + 1) in 
Eqn. (6), we can solve for the target u*(i) and 
use it to correct the action network. 

This two-step procedure continues till a 
predetermined level of convergence is reached. 

HI. APPLICATIONS 

In this section of the study, two specific 
examples will be dealt with. The first of these is 
an infinite horizon one dimensional linear 
problem. After this motivating example, a four- 
dimensional aircraft control problem is 
presented. 

- A. Infinite Time 1-D Linear Application 

The first application deals with a problem of the 
form 

x(i+l)=k(i)+3u(i)  (7) 

and a cost function of the form 
OI 

J=C [2%2(i)+2u2(i) + l . lx(i)  u ( i ) ]  (8) 
r.0 

As a first step in the ‘solution, a stabilizing 
controller is defined. In the case of this 
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problem, the initial control is defined as 

~(i)=-O.4~(i)  . (9)  

Alternately, the control can be initiated by a 
network with random weights. Next, a neural 
network is designed and the initial weights of 
this network are randomized. For this problem, 
the network has three layers and each of the 
hidden layers possesses three neurons. This 
network functions as the critic. 

It can be observed that for the infinite horizon 
problem the cost associated with state x(i) at 
time t should be equal to the cost associated 
with state x(i) at time t+ 1; therefore, a single 
critic can be used to calculate both A(x(i)) and 
A(x(i+ 1)). The Hamiltonian, Hi, in this case is 

Hi (x(i), u(i)) = x2(i) + u2(i) 

+ 2x(i) u(i) + A(i + 1) (x(i) + 2 u(i)) 
(10) 

Note that we can obtain the derivatives of the 
Hamiltonian from Eqn. 6. This, in combination 
with the critic outputs and the system model 
derivatives, allows the use of Eqn. 4 to 
determine the target value for the critic A*(x(i)). 
This target value is calculated for random values 
of x(i) until the critic network converges. 

After the critic converges, a new neural network 
is initialized to act as the action network. For 
this problem a neural network with two hidden 
layers and three neurons per layer is chosen. 
The action network is then trained using a 
gradient descent algorithm with outputs from the 
converged critic network which are used in 
solving Eqn. 6 for control. 

After the action network converges, the critic is 
again trained using the outputs of the new 
action network. (Note that the weights of the 
critic are not randomized. Instead, the weights 
from the previous critic are used as the initial 
weights.) This process is repeated until both 
networks converge. At this point, the outputs of 
the action network produce optimal control. 

The evolution of the control law (or the action 
network) is presented in Figure 2. The square 
solid line represents the assumed control used 

in the design of the first critic. The 
corresponding critic is presented by a square 
line in Figure 3. Other curves in Figure 3 
represent the evolution of the critic. In three 
iterations of the action and critic networks, both 
networks have shown close convergence as 
can be observed from Figures 2 and 3. At this 
point, the action network is expected to output 
control which is optimal (even though we have 
presented a few more iterations). In order to 
check the optimality of the output, the optimal 
control law obtained through a Ricatti solution 
formulation [l] is also shown in Figure 4. It is 
observed that at almost all the points 
considered, the neural network based control is 
nearly identical with the Ricatti solution. 

A similar comprehensive controller was 
introduced by Balakrishnan and Biega [4]. In 
that paper, they used a dynamic programming 
based adaptive critic to produce optimal control. 
The results of the formulation in [4] for the same 
scalar problem are presented in Fig. [4]. Note 
that it takes ten iterations for the networks to 
output optimal control for the dynamic 
programming based critic while the Hamiltonian 
based critic is close to the optimal control in 
only three iterations. 

Figure 5 shows a comparison of the system 
state being controlled by both the optimal 
control (Ricatti solution) and the control 
determined by this adaptive critic based method 
for x(0) =-20. Note that this initial condition was 
chosen arbitrarily. The neural network has 
determined the near optimal control law for each 
point within its training range. 

- B. Aircraft Control Apdication 

We consider the synthesis of an optimal 
longitudinal autopilot in this section. The 
performance index in this application is an 
infinite-time quadratic cost function. The 
minimizing control is expected to drive the 
deviations of the longitudinal dynamics in pitch 
angle, 6 ,  pitch rate, q, forward velocity, U’, and 
angle of attack, a ,  to zero. 

The orientation of an aircraft involving 
longitudinal dynamics is shown in Figure 6. The 
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linearized equations of motion of an aircraft in a 
vertical plane are given by 

ic = h + B u  (11) 
where the elements of the state space x are 

x = [u’,al~,qlT. (1 2) 

Q =  

Elements a,,, i=1,2,3,4, j =  1,2,3,4 of the 4x4 
matrix, A, represent the dynamic stability 
derivatives and are given by 

10.37 0 0 0 
0 3.7*E-7 1.65*E-3 0 
0 1.65*E-7 7.25 0 

- 0  0 0 14.W 

a,, = -0.0148, a,, = -13.88, a13 = -32.2, a14 = 0 
a,, = - 0.00019, a, = -0.84, q3= 0, a24 = 1, 
a,, = 0, a,, = 0, am = 0, a, = 1 
a,, = 0.00005, a,, = -4.8, a, = 0, a,, = -0.5. 

(1 3) 

Elements b,,, i = 1,2,3,4, j = 1 of the 4x1 matrix B 
represent the control derivatives and are given 
by 

b,,= -1.1 b2,= -0.11 b31= 0 and b4,= -8.74. 
(1 4) 

The control variable U represents elevator 
deflection. 

The performance index, J, is formulated so as 
to keep the pitch angle, pitch rate, normal 
acceleration and elevator deflection low and 
penalize if they exceed the prespecified 
maximum values. That is, 

* 

where 

emax = 0.26 rad, gmax = 0.31 rad/sec, 

nk = 6 g‘s and U,,, = 0.1 rad 
* 

n, represents normal acceleration and, g, is the 
gravitational acceleration which is set at 32.2 
ft/sec2. Note that nz can be obtained in terms 
of other states as 

n, = (volg) (q - 4 (1 6) 
where Vo is the steady state aircraft velocity. 

Note that this performance index, with the use 
of Eqns. 15 and 16 has the form .. 

J = [ ( x ‘Qx+ U ‘Ru + 2~ T P ~ )  dt (1 7) 
0 

where Q, R and P are appropriate weighting 
matrices in terms of e,, q,, nk, and U,. 

Note that P is present because of cross terms 
in x and U which occur after n, is rewritten in 
terms of state equations. Solutions to this 
optimization problem is obtained using the 
adaptive critic approach described in the last 
section. 

The numerical results from these experiments 
are presented in Figures 7-12. Histories of 
u’(t), a(t), e(t), and q(t) with time are 
presented in Figures 8-1 1, respectively. In order 
to demonstrate the versatility of the adaptive 
critic approach, we have presented plots of the 
neural network-based states and optimal state 
histories for initial conditions in Figures 
7-10. In each one of the cases, we can observe 
that the optimal trajectories (from exact Ricatti 
solutions) and the neural network based 
solutions are virtually identical. It should be 
observed that all these control outputs are 
generated from one converged neural network. 
In other words, the action network can be used 
as one repository of gains for various operating 
conditions or errors. It is a feedback controller 
since the inputs are the current states and the 
outputs are the control values. Note that no 
external training is necessary to achieve this. 
The optimal control history and the neural 
network based control history are presented in 
Figure 12. 
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IV. CONCLUSIONS 
Figure 1. Adaptive Critic lor Contra 

A new Hamiltonian based adaptive critic 
architecture to solve optimal control problems 
has been presented. A scalar problem has 
been solved to illustrate the steps in the design 
process of the dual network structure. It has 
been shown that these networks can produce 
near optimal control policies for infinite horizon 
problems such as an aircraft control problem. 
This architecture requires 00 external training 
data and yields optimal control through the 
entire range of operation and can be used in 
closed loop. Since the controller network 
contains an envelope of gains, it can act as an 
autopilot. The added advantage of this 
approach is that the critic network can provide 
fault tolerance. Future work on this topic will 
investigate the robustness of such network 
controllers and the use of this method for finite- 
horizon class of problems. 
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