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Optimal Management of Beaver Population Using
a Reduced-Order Distributed Parameter Model
and Single Network Adaptive Critics

Radhakant Padhi, Member, IEEE, and S. N. Balakrishnan

Abstract—Beavers are often found to be in conflict with human
interests by creating nuisances like building dams on flowing water
(leading to flooding), blocking irrigation canals, cutting down tim-
bers, etc. At the same time they contribute to raising water tables,
increased vegetation, etc. Consequently, maintaining an optimal
beaver population is beneficial. Because of their diffusion exter-
nality (due to migratory nature), strategies based on lumped pa-
rameter models are often ineffective. Using a distributed param-
eter model for beaver population that accounts for their spatial
and temporal behavior, an optimal control (trapping) strategy is
presented in this paper that leads to a desired distribution of the
animal density in a region in the long run. The optimal control so-
lution presented, imbeds the solution for a large number of initial
conditions (i.e., it has a feedback form), which is otherwise non-
trivial to obtain. The solution obtained can be used in real-time by
a nonexpert in control theory since it involves only using the neural
networks trained offline. Proper orthogonal decomposition-based
basis function design followed by their use in a Galerkin projection
has been incorporated in the solution process as a model reduction
technique. Optimal solutions are obtained through a “single net-
work adaptive critic” (SNAC) neural-network architecture.

Index Terms—Beaver population control, distributed parameter
control, proper orthogonal decomposition, single network adaptive
critic (SNAC), wildlife management.

1. INTRODUCTION

EAVERS are a small mammal species and have a strong

tendency to create nuisances, mainly by building dams
on the flowing water, thereby creating flooding in the low
land areas, roads, crop lands, etc. However, the same activi-
ties sometimes lead to desirable consequences as well—like
increased vegetation, increased water table, etc. Because of
this conflicting situation, an optimal management strategy is
needed to control their population in any particular area. In
the northern United States, beavers are usually desired [25],
whereas in the southern United States they are known for
their nuisance activities [5]. Their nuisance activities have also
been studied beyond the United States [13]. This fascinating
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species still keeps on attracting researchers to study about their
population and impact [19], [20].

Managing the beaver population is difficult due to their mi-
gratory nature. Some of the reasons for this are better avail-
ability of food and water resources, the desire of two-year olds
to set up new colonies, etc. [5]. Because of this migratory nature,
any controlling (harvesting) technique specific to the property of
a particular land owner should also account for the beaver pop-
ulation dynamics in the surroundings, as well as the need of the
neighboring land owners. In mathematical terms, this introduces
the need for a distributed model to design an appropriate man-
agement strategy. Awareness of the need for a proactive beaver
management policy is slowly increasing [19] and, hence, im-
plementing such a strategy may be less difficult as people in a
region may cooperate with the decision of the wildlife manager
more willingly. With the assumption that the neighboring land
owners have a common goal, a distributed parameter model has
been proposed in [5]. An optimal harvesting strategy using this
model has also been proposed [5], [17].

In contrast to the lumped parameter systems, distributed pa-
rameter systems (DPS) are governed by a set of partial differ-
ential equations (PDEs) and are also known as infinite-dimen-
sional systems because of the presence of infinite system modes.
Control of distributed parameter systems has been studied both
from mathematical, as well as the engineering point of view.
An interesting historical perspective of the control of such sys-
tems can be found in [16]. There exists an infinite amount of
dimensional operator theory-based methods for the control of
distributed parameter systems. While there are many advan-
tages, these operator theory-based approaches are mainly lim-
ited to linear systems [11] and some limited classes of nonlinear
problems like spatially invariant systems [2]. Moreover, for im-
plementation purpose the infinite-dimensional control solution
needs to be approximated (e.g., truncating an infinite series, re-
ducing the size of feedback gain matrix, etc.) and, hence, it is
not completely free from approximation errors.

It should be noted, however, that while dealing with infinite
dimensional systems, approximations need to be introduced at
some point or another. An alternate way of dealing with infinite
dimensional systems is to have a finite dimensional approxi-
mation of the system using a set of orthogonal basis functions
via Galerkin projection [14]. Even though such approximation
processes obviously introduce errors at the first place (in strict
mathematical sense), usually these are adequate to address

1063-6536/$20.00 © 2006 IEEE
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practical engineering problems. However, the methodology
of Galerkin projection normally leads to high-order lumped
system representations to adequately represent the properties
of the original system, if arbitrary orthogonal functions (e.g.,
Legendre polynomials, Chebyshev polynomials, Fourier func-
tions, etc.) are used as the basis functions [23]. For this reason,
attention is being increasingly focused in the recent literature
on the technique of proper orthogonal decomposition (POD). In
this technique, a set of “problem oriented” orthogonal functions
is designed to approximately span the solution space of the
original system of PDEs. This is done through the “snap shot
solutions,” which by definition are representative solutions
of the system at arbitrary instants of time. Using these basis
functions in a Galerkin procedure a very low-order lumped
parameter model (i.e., a set of ordinary differential equations)
is created that is usually good enough for control design. For
linear systems, it has been proved that such an approach of
designing the POD-based basis function leads to the optimal
representation of the PDE system in the sense that it captures
the maximum energy of the system with the least number of
basis functions as compared to any other set of orthogonal set
of basis functions [14]. For nonlinear systems, even though
such useful theorems do not exist, the basic underlying idea
still holds. Out of numerous studies published on this topic, we
cite [3], [7], [14], [22], and [24] for reference with respect to
the application of the technique in various linear and nonlinear
distributed parameter problems.

The main goal of this research is to come up with an “optimal”
beaver harvesting scheme in the entire region of interest. The
obvious choice in this regard is to use optimal control theory.
In fact, many difficult real-life lumped parameter problems can
be formulated in the framework of optimal control theory [6],
[18]. An interested reader can refer to [8] for the application
of optimal control techniques for bioeconomic problems. It is
well-known that the dynamic programming formulation offers
the most comprehensive solution approach to nonlinear optimal
control in a state feedback form [6]; a feedback control is de-
sirable because of its beneficial properties like robustness with
respect to noise and modeling uncertainties. However, solving
the associated Hamilton—Jacobi-Bellman (HJB) equation de-
mands a very large (rather infeasible) amount of computations
and storage space dedicated for this purpose. An innovative idea
was proposed in [26] to get around this numerical complexity by
using an “approximate dynamic programming” (ADP) formula-
tion. The solution to the ADP formulation is obtained through a
dual neural-network approach called adaptive critic (AC). In one
version of the AC approach, called the dual heuristic program-
ming (DHP), one network (called the action network) represents
the mapping between the state and control variables, while a
second network (called the critic network) represents the map-
ping between the state and costate variables. The optimal solu-
tion is reached after the two networks iteratively train each other
successfully. This DHP process, aided by the nonlinear function
approximation capabilities of neural networks, overcomes the
computational complexity that had been the bottleneck of the
dynamic programming approach. Another important advantage

of this method is that this solution can be implemented online,
since the control computation requires only a few multiplica-
tions of the network weights that are trained offline.

One of the many benefits of a neural-network approach for
control design, which has extensively been used in the control
of lumped parameter systems [15], is its ability to control non-
linear plants. This paper uses a variant (rather a significant im-
provement) of the AC architecture and is named “single net-
work adaptive critics” (SNAC). The SNAC architecture retains
all the powerful features of the AC technique. However, there
is no need of “action” networks and, hence, there is no require-
ment of iterative training loops between the “action” and “critic”
networks, which are necessary in a typical AC procedure. Con-
sequently, it leads to a considerable amount of computational
savings besides eliminating the error associated with the addi-
tional neural-network approximations.

In this paper, our goal is to design an optimal harvesting
strategy so as to achieve a desired beaver population distribu-
tion throughout a region under consideration over a long run.
Even though many population control techniques are available,
like relocating the food resources, poisoning the food resources,
etc., in this work the methods of control are trapping and sub-
sequent killing (for pelt value) or relocation in case of a nega-
tive control demand elsewhere in the region. The solution uses
the ideas of model reduction with proper orthogonal decomposi-
tion (POD) technique-based basis functions and the philosophy
of SNAC-based optimal control design. The effectiveness of
the resulting control is tested from numerous simulations, even
though a set of representative results are presented because of
space limitations.

Besides solving the application problem under consideration,
the content in this paper can be interpreted to have two main
developmental contributions: 1) it uses a newly developed
SNAC technique, which has significant computational savings
as compared to the DHP/AC technique currently used by many
neural network researchers and 2) the technique presented also
serves as a computational tool to synthesize a feedback form
of optimal control solutions for distributed parameter systems,
in general. To the best of our knowledge, this is probably the
first paper in which a neural-network-based controller has been
designed for a two-dimensional (2-D) distributed parameter
system. Besides the advantages, the approach followed in this
paper differs from that presented in [5] and [17] in the sense
that, it is based on a “tracking” formulation and any desired
profile can be achieved, subjected to the limitations in control
actuation. The numerical results show that the magnitude of
error in tracking the required beaver density profile after five
years is much smaller than the errors after ten years in the
results presented in [5], [17].

The rest of the paper is organized as follows. In Section II,
the distributed parameter model for beaver population is pre-
sented and the control objective is defined. The steps in the re-
duced-order model development using POD basis functions are
presented in Section III. In Section IV, the SNAC technique is
discussed in detail. The numerical results are presented and con-
clusions are drawn in Sections V and VI, respectively.
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II. BEAVER POPULATION MODEL AND
CONTROLLER OBJECTIVE

A. Beaver Population Model

Assuming the beaver population distribution to be contin-
uous in a territory, the following distributed parameter model
has been developed in the literature for beaver population den-
sity [5], [17]:

A
%—t =aV2Z + (aZ —bZ*) — PZ inQx (0,t;)

Z(yl,yg,t) =c ondf) x (Otf)
Z(y1,92,0) = Zo(y1,y2) inQatt=0 (D

where Z is the beaver population density in heads per square
miles (hd/mi?) and P is the portion of Z to be trapped per
year (yr’l), which acts as a control variable. «, a, and b are
growth parameters of the model (their meanings and values are
in Table I). Note that the term (aZ — bZ?) represents the den-
sity-dependent annual biological productivity of beavers in the
absence of dispersion. Assuming that the spatial domain Q € R?
and it is a rectangle, A 2 {y = (y1,92) : v1 € [0,L4], y2 €
[0, Lo]}, where Ly and Lo are the lengths of its sides. IS rep-
resents the boundary of  and time ¢ € (0,¢7) and Zy(y1,y2)
represents the initial density distribution. Based on a study for
the state of New York by its Department of Environmental Con-
servation, the parameters of the model obtained in [5] and [17]
are as given in Table 1.

The assumption ¢ > 0 to be a constant describes the boundary
condition. Note that the condition Z(y1,y2,t) = ¢ on 9Q x
(0,ty) in (1) differs from the model in [5] and [17] in the sense
that they have assumed ¢ = 0. This modification was introduced
both to avoid a numerical problem in the control computation
(see Section II-B). It also makes better physical sense to have
a nonzero boundary condition as the number of beavers is not
expected to be exactly zero on the boundary. In our numerical
simulations ¢ = 1.

It is clear from (1) that the growth (or decay) of the popula-
tion density is a dynamic process that depends on the param-
eters of the model. Some of the reasons for the diffusion term
in the model include migration of two-year-olds to set up new
colonies, migration of the entire colonies for better food avail-
ability, etc. Similarly, some of the main reasons for the decay
terms include their natural demise, being eaten by predators, dis-
eases due to contaminated water (their habitat is always close to
water resources), etc. Even though many types of control tech-
niques are available (e.g., relocating their food resource, poi-
soning their food habitat, introducing predators, trapping by hu-
mans, etc.), the application of a particular technique is dictated
by the nature of the problem for a particular region. The model
in (1) assumes that there is a collective goal for all of the land
owners (which includes the person in charge of the public land)
of a particular region of interest and that the owners are willing
to act collectively for their mutual benefit.

B. Controller Objective

The objective of this controller in this study is to trap the
beavers throughout the territory in an optimal way that leads

TABLE 1
PARAMETERS OF THE BEAVER POPULATION MODEL

Symbol Meaning Units Value
a Maximum rate of net ! 0.335
recruitment
b Density dependence of mi® hds™ yr~! 0.2066315
beaver stock
a Diffusion coefficient mi yr~! 725.27

to a desired distribution Z*(y) in the long run. This leads to an
optimal controller formulation in an infinite-time framework.

1) Choice of the Desired Distribution: The territory consid-
ered in this paper is a forest land and the desired distributions
wanted by a wildlife manager Z*(y) are restricted to satisfy the
following conditions:

1) Z* > 0in Q;

2) Z* = cin 0%,

3) Z* is continuous and smooth (i.e., VZZ* continuous);

4) (V2Z*]Z*) is finite whenever Z* = 0.

Condition 1 is assumed because of the fact that Z* < 0
has no physical meaning. Condition 2 is imposed to reflect the
problem dynamics. Note that with this condition Z* satisfies the
boundary condition for Z in (1). The necessity of conditions 3
and 4 will be clear from the discussions later in this section [see
31

Without loss of generality, it is assumed that Z* = ¢ = 1
throughout €2 as the desired profile. It satisfies all of the con-
ditions mentioned above. However, note that the underlying
technique is not constrained by this assumption. If some other
profile is desired (satisfying the above condition), the tech-
nique presented in this study can achieve that also. The goal
of this study is the same as in [5] and [17], in the sense that
their studies seeked to achieve a desired profile Z* = ¢ = 0
throughout €2 (note that they have assumed Z* = ¢ on 0f)
as well). In such a case, the tracking problem reduces to a
regulator problem, and hence, there is no need of the feedfor-
ward controller (condition 4 mentioned above is not needed in
that case). However, the technique presented here is capable
of solving tracking problems as well, and, hence, is capable
of achieving a wider set of objectives as compared to the one
presented in [5] and [17].

2) Feedforward Controller: Let P* be the associated con-
trol with Z* so that Z* remains at steady state. Then from (1),
it is clear that Z* and P* should satisfy the following equation:

aV2Z* + 7*(a —bZ* — P*) =0 )
which leads to
V27
P*:(a—bZ*)+a< - ) 3)

The value of P*, as obtained from (3), is a feedforward con-
troller that acts in conjunction with the optimal feedback con-
troller to be developed so that a steady-state condition will be
maintained after Z — Z*. Note that the conditions 3 and 4 im-
posed on Z* make P* well-behaved.

Note that in general, (3) poses a restrictive constraint on the
choice of the desired profiles. Unless the desired profiles have
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sufficiently small curvature, the term a(V2Z*/Z*) becomes
numerically high (mainly because of the high value of «). This
leads to a high value of P*, which is not allowed. Due to the
way control is defined, one must guarantee that P < 1 every-
where in the domain and for all time. This implies that we must
also have P* < 1, since in the steady state essentially P = P*.
Note that because of our selection of a constant desired profile
Z* = ¢ = 1 throughout € (including 992), we have V2Z* = 0
the above problem does not arise. It will be clear from the re-
sults in Section V that the constraints P < 1 and P* < 1 are
satisfied without any problem.

3) Deviation Dynamics and Cost Function Selection: With
the availability of the desired final values for state Z* and con-
trol P*, Z 2 Z* +x and P E P* 4+ wu, where x and u are de-
viations in state and control, respectively. Then it follows from
(1) that

— =aViz+(a—P*=20Z* —bx)x—(Z*+x)u
z(y1,y2,t) =0 on 9N

(Y1, 92,0) = Zo(y1,92) —Z" (y1,y2) on Q. )
The goal of the controller design now is to cancel the deviation
terms x and u throughout the domain. This can be achieved by

finding a controller that minimizes
t f—00 Ly Lo

1
J = 3 / //(qw2 + ru?)dyydy, dt 5)
0 0 0

where ¢ > 0 and r > 0 are the weights on state and control, re-
spectively. The selection of the cost function as in (5) along with
the nonlinear dynamics of the problem leads us to a nonlinear
quadratic regulator problem, for which closed-form solution for
control does not exist (to the best knowledge of the authors).
Hence, an adaptive critic neural-network-based numerical ap-
proach is used to find solutions in a domain of interest.

Note that ideally, one should also impose a constraint
fQ P dy > 0, to address an implementation constraint as
beavers cannot be created at will. However, such a restriction is
not used with the assumption that should such a case arise, the
beavers can be bought in from a different territory. Even though
this assumption is made for mathematical tractability, this
condition was not violated in any of our numerous simulation
studies.

III. REDUCED-ORDER MODEL DEVELOPMENT

Distributed parameters are otherwise known as “infinite
dimensional systems” because of the presence of an infinite
number of system modes. Because it is impossible to deal with
an infinite dimensional system (either for control computa-
tion or its implementation), some approximation needs to be
introduced while dealing with such systems. In this research,
“proper orthogonal decomposition” based basis function design
is used followed by their use in a Galerkin projection, which
leads to a very low-dimensional representation of the system
with a good level of accuracy [3], [7], [14], [22], [24]. This
powerful technique has become widely popular in recent years.
In this section, key steps of this procedure are outlined.

A. Basis Function Design Based on Proper Orthogonal
Decomposition (POD)

Proper orthogonal decomposition (POD) is a technique of
finding an optimal set of basis functions, which spans an en-
semble of data optimally in an average sense. Let {U;(y) : 1 <
i < N, y € Q} be an ensemble of data, consisting of set of
N snapshot solutions (observations), of some physical process
over the domain 2 at arbitrary instants of time. The process of
getting the snapshot solutions for the beaver control problem
will be discussed later in Section III-D. The goal of the POD
technique is to design a coherent structure that has the largest
mean square projection on the snapshots. In other words, it is an
effort to find all such possible basis functions ¢, each of which
provides a local maximum for the following figure of merit

I—W;KUMI’H : (6)

The standard Ls inner product is used in (6), which is defined
as (P1,Py) = fQ ®1Pydy. The idea then is to seek a basis
function ® as a linear combination of snapshots of the form

N
=1

where the coefficients w; are to be determined such that ® max-
imizes the cost function in (6). However, we notice that

1 N
2
NZ |(Us, @)
=1

| / | / Ui(y)®(y)Us(y )y )dydy’

1=1

= (K®,®) ®)

Ko = %Z /Ui(y)Ui(y/)q)(y')dy/- )

Defining o 2 (K®,®)/(®, d), it can be seen from (6) and
(8) that the objective now is to find a function ®* that maxi-
mizes o. Following the principle of calculus of variations it can
be shown that this problem leads to K®* = o®*, subjected
to ||®*|| = 1. Substituting for & and K® from their defini-
tions in (7) and (9), after some algebra it can be shown that
CWwW = O'W, where C' = [C,i]'], Cij = (1/N) fQ Ul(y)UJ(y)dy
and W = [wy,..., wy]T. An interested reader can refer to
[14] and [22] for more mathematical details. This is now a stan-
dard matrix eigenvalue and eigenvector problem to find W. It
is clear that ¢;; = cj;, i.e., C' matrix is symmetric. Further-
more, from the definition of o, observe that ¢ > 0. So C' matrix
has N nonnegative real eigenvalues and N orthogonal eigen-
vectors. The eigenvectors can be sorted in a descending order as
01> 09 >,...,2> on > 0. Let the corresponding eigenvectors
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be W' = [w! ..., wi]7, ... WY = [w),.... wY]T. The
N basis functions can be written as
N
= sz‘lUi(y)
i=1
N
oy =Y w]Ui(y). (10)
i=1

The ||®|| = 1 condition is met when W/s are normalized by
forcing (W7, W7) = 1/(No;) with the inner product being
taken in a standard [» (vector) notation. The eigenspectrum can
then be truncated judiciously such that 3" im0 R~ PO =105
where the truncated system has N<N eigenvalues and eigen-
vectors. In that case, the N orthonormal eigenfunctions approx-
imately span the solution space. Usually it turns out that N <
N. An important property of the POD basis functions is that
they are optimal in the sense that for a given number of modes
n, the projection on the subspace spanned by leading n POD
basis functions contains the greatest possible energy on an av-
erage sense [14], [22].

B. Reduced Order Model: Use of Galerkin Projection

After obtaining the basis functions, x and u are expanded as
follows:

M=

a(t,y) = ) &i()®i(y1, y2)

<,
Il
=

M=

u(t,y) = ;i (1) ®;(y1,y2)- (11)

<,
Il
-

Before we proceed further, the following needs to be pointed
out.

e The snapshots are assumed to be spread out symmetric
about zero (since the formulation is based on deviation
dynamics).

e The same basic functions are used in the expansions of x
and u.

*  Once the functional relationship between Z; and 1,V j =
1,2,..., N, are captured, the desired feedback controller
can be easily computed.

* Because all ®;s are orthonormal, one can also notice that
(x,®;) = &;(t). This fact is required for the neural-net-
work synthesis.

* The principle of Galerkin projection [14] is used after
substituting (11) into (4) to obtain the following re-
duced-order finite-dimensional model for the deviation
dynamics:

12)

where X 2 [21...85]7, 0 2 [y ... a5]7. A(X) and B(X)
are defined as

A(X) 2 A; + bAy(X)

B(X) 2By + 4y(X) (13a)

where forn, j = 1,... 7]\7, the matrices A;, By, and AZ(X)

are defined as follows:

Ly Lo
Alnjé_/ /[V@ V<I’+(2bZ*+P*)<I’n<I>]] dygdy1+a6n]’
Ll Lo
B, 2 - //Z 3,3 dysdy, (13b)
Ll LQ

>

Agnj = — //:vq)jfbjdygdyl
0 0

In (13b), 6,,; is the “delta function,” which means 6,; = 1,
only if n = j. Otherwise, 0,; = 0. Note that even though
(12) is simply written in “linear-looking” form. It is still a non-
linear equation and no approximation (like linearization) has
been used here.

Next, substituting for  and « from (11) in the cost function
expression (5), we get

% / (XTQX + UTRU)dt (14)
0

where Q = gl and R = rlg.

Equations (12)—(14) represent a nonlinear quadratic regu-
lator optimal control problem. This problem is solved using the
SNAC technique (see Section IV).

C. Domain of Interest and Selection of Initial Conditions

It is well known that the Fourier series is a universal function
approximator. So, any possible initial condition can be written
in the following form:

(0,91, 92)

N2
E Jk\I}Jk

1k=1
o (ITYL o ETye
] (7 )s(52)]

Ny
N 2

where \I}jk = (2/\/ L1Lg)Sin(jﬂ'yl/Ll)Sin(kﬂ'yQ/Lg) is a
Fourier basis function for mode-jk. Typically, N1, N, are
used-defined sufficiently large positive integers. Values of
N1 = 4 and N5 = 5 are used to produce N1 No = 20 possible
modes. Any other higher values for Ny, Ny should also work
fine. Note that (U;x, Vs,) = 0;x01m, Where &, Oy, are
delta-functions.
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With the selection of the Fourier expansion for x as in (15),
the following equations can be derived (after some algebra):

N1 Ns

_ 2
=> > b
J=1 k=1

Ly Lo

e / / (Va - Vao)dyadys
0 0
N1 N

=33 b5 (/L) +

j:l k=1

< .T vx Zzb]k .77‘—/[/1

7=1k=1

(16)

(km/Ly)?]  (17)

+ (km/L2)*] . (18)

Next, an “envelope profile” was selected, which has the fol-
lowing form:

xem'(yh y2) = AenVSin<7Ty1/Ll)Sin(ﬂ_yZ/LZ)- (19)
With the selection of this expression for z.yy, after some al-
gebra, the following can be derived:

||xcnv||2 = <'Z'cnvvwcnv> = Acnv(L L2/4) (20)
Ly Ly
P / / (Vs - Ve )y
= Aim (1/L +1/L3) (L1 L2/4) 1)
||v2xenv||2 = <V2‘Tem'7 v21Eenv>
= Azt (1/LY +1/L3) (L1 Lo /1) (22)

Now, the following set is defined as the domain of interest:

S={ao(u1,92) ¢ lwoll? < llzen .

l25]I* < Fallwen 1%, V2201 < kzllvzxeanQ}(%)

env |
where k1, ko are positive constants. In the numerical experi-
ments conducted, we selected Aepy = 1, k1 = 2, and ky = 4.
Any profile in set S can be deemed as a feasible initial condi-
tion for our problem. By using (15)—(22), an algorithm to gen-
erate the initial conditions that satisfy the inequality constraints
in (23) was generated. The details of this algorithm are omitted
here for brevity.

D. Snapshot Solution Generation

Snapshot solutions, which should be representative state so-
lutions under the application of ““a reasonably good control,” are
the key to the success in finding a proper reduced-order model.
It is a common practice to assume an open-loop control for this
purpose [22]. However, a feedback solution will be better for
our application, since that is what is aimed in this paper. The
following procedure is used to generate snapshots.

The spatial domain Q\JQ is discretized denoting
m; = 1,...,M; as the node points along ¥; and
my = ., M5 as the node points along y,. Then, for

my = 2,..., (Ml - 1) and mo = 2,. (M2 — 1) the
following ordinary differential equations can be written [12]:

. 1
Tmymy =X Ay2 ($m1+1,m2 - 2$m17m2 +zm171;m2)
1
1
+A 2 ($m1,m2+1 = 2Ty my + xml,mg,l)
Y3

+ (a - 2bZ:ﬂl ma P’;:ll mz) ijlva

— bz’

*
- Zm1 m)Umlme my,ma

- lml,mg Um1,m2- (24)

Itis also observed that z,,,, 1, = O foreitherm, = 1, M, or
ma = 1, M> for all time ¢ (because of the boundary conditions).
By defining

A
X: |:[x2’2...27M1_1’2]T --[1172,]\,[2_ ---le—l,Mg—l]Ti|

and

A
U= [[u2,2 coouns—12)t e [ua -1 - - U, —1,MQ—1]T}
the following finite-dimensional approximated system dy-
namics can be written as:

X =AX)-X+B(X)-U (25)
where the matrices A(X), B(X) are appropriately defined (we
have omitted the detailed expressions for brevity). Next, the cost
function was also approximated using this discretized system in
the form

% / (XTQX + UTRU)dt (26)
0

where Q = (1/2)(](Ay1Ay2)I(1ul,2)(1\/[2,2) and R =
(1/2)r(Ay1Ay2)I(ar, —2)(n,—2)- Even though the dimensions
are high, nevertheless, (25)—(26) form an analogous nonlinear
quadratic regulator optimal control problem in a finite-dimen-
sional framework.

Note that the system dynamics in (25) naturally comes out
to be in the state dependent coefficient (SDC) form and the cost
function in (26) is quadratic. In addition, it is an infinite time for-
mulation. This is a classic case for applying the recently-devel-
oped state dependent Riccati equation (SDRE) technique. The
essential idea in this technique is to treat the problem as a linear
quadratic regulator (LQR) problem and solve the associated al-
gebraic Riccati equation [6], [18] at each instant of time, to find
out a time-varying Riccati matrix P(t). Then, gain matrix is
computed as K (t) = R~'BT(X) - P(t) and the control solu-
tion is given by U(t) = —K () X. An interested reader can see
[9], [10], and [21] for more details about the SDRE technique.
A key point to note, however, is that this technique can only lead
to a “suboptimal” controller. This happens mainly because even
though the state and optimal control equations are satisfied for
all time, the associated costate equation is satisfied only asymp-
totically [9], [21]. On the other hand, the SNAC technique used
here leads to obtaining an “optimal” controller, since all three
equations are satisfied for all time.
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We have used this SDRE technique to synthesize a subop-
timal feedback nonlinear controller for the purpose of collecting
snapshot solutions. Taking an arbitrary initial condition (as out-
lined in Section III-C), the system is simulated for ¢ty = 3 yr.
Once the solution is obtained for a particular initial condition,
representative solutions are collected at arbitrary instants of time
and assumed as representative snapshot solutions. In this re-
search, the problem was solved using a gradient technique for
50 different initial conditions and 20 random solutions were col-
lected from each of them, thereby collecting 1000 snapshots in
total. The POD basis functions are designed with these snap-
shot solutions are subsequently used in a Galerkin projection
to obtain a reduced-order representation of the model and cost
function (see Sections III-A and III-B).

IV. SINGLE NETWORK ADAPTIVE CRITICS (SNAC)

In this section, a neural-network structure is proposed for
solving the optimal control problem. This control synthesis is
essentially obtained through, what is called a set of critic net-
works. This is to retain the terminology of the adaptive critic
methodology outlined earlier in [1] and [26]. However, the need
of the action networks in the adaptive critic framework is elim-
inated. Hence this methodology can be considered as a good
improvement of the adaptive critic technique and it is called the
single network adaptive critic (SNAC).

A. Optimality Conditions

The necessary conditions of optimality for a lumped system
driven by the system dynamics in (12) and cost function in (14),
are well known [6], [18]. First, a Hamiltonian variable is defined
as

= %(XTQX +OTRO) 4T [A(X) - X + BX) - 0]
(27)

where A is the Lagrange multiplier variable. Then the optimal
control equation is given by

OH
ou )
which leads to
U=—-R'BT(X)-\ (29)
The costate equation is given by
. OH fe o
A=— <af(> = —(@X+AT(X)-x) G0

(12), (29), and (30) need to be solved simultaneously, along with
the boundary conditions for optimal control with X (0) is known
and A(t; — o0) = 0.

It should be noted, however, that the adaptive critic method-
ology using a set of neural networks needs a discrete version of
the problem. At any instant of time k, the discrete versions of
state and costate equations are

Xiy1 = Fy(Xi, U) (31)
A = Ga( Xk, Ugy Ajg1) (32)

where Fd and G 4 are the resulting algebraic functions of their ar-
guments. From (39), the optimal control equation can be written
as

U = Xk, A1) (33)

where £ is the resulting explicit algebraic function of its argu-
ments. A fourth-order Runge—Kutta method [12], with constant
step size in time At = 1 week = 0.0192 yr, was used in this
study.

B. Neural Network Synthesis Process

1) State Generation for Training: In the controller synthesis
process, a set of states for training needs to be chosen so that its
elements approximately cover the states that are possible ini-
tial conditions in the domain of interest. S should also contain
all possible states of the controlled system as they evolve from
different initial conditions. Once the snapshot solutions are gen-
erated and POD basis functions are designed, the minimum and
maximum values for the individual elements of X 1 can be fixed
as follows.

Let X max denote the vector of maximum values for X 1 and
e min the vector for minimum Values Then, ﬁxmg a positive
constant 0 < ¢; < 1, the states X k € Ci [Xmm Xmak] are
selected. Let S; = {Xk X € ¢ [Xmm Xmax]}- Then, for
c1<cp<e3<...,8 CSy C S3C....Hence,forsomei =
I, ¢y =1and S T w111 include the domam of interest for initial
conditions. At the beginning a small value for the constant c;
is fixed and the networks is trained with these states, randomly
generated within S;. Once the critic networks converge for this
set, a value of co close to c; is picked and the network training
is continued for the profiles within Ss and so on, until the set
S; includes domain of interest for the initial conditions. In this
work, the values of the constants are updated progressively from
1 =0.05¢=c¢14+0.05(—1)fori=2,3,...,untili =1,
where c; = 1.

2) Training Procedure: Since neural networks are capable
of doing universal function approximations [4], the idea here
is to capture the optimal relationship between the state X} and
co-state Ar41 using a neural network. For faster training, how-
ever, we have synthesized separate networks for each element
of the vector A\p41. Smce U, & 1s an explicit function of X 1 and
Ak+1, optimal control U, & can be calculated from (33).

The SNAC training algorithm is described in the following
steps [Fig. 1].

1) Fix ¢; and generate S;.

2) For each element X}, of S; follow the steps below.

e Input X r to the network(s) to get A\p41. Denote the
actual output as Ay, ;.

e (Calculate Uk, knowing Xk and Apy1, from optimal
control equation (33).

. Get Xk+1 from the state equation (31), using Xk and
Up.

e Input X k+1 to the network(s) to get Axo.

e Calculate A1, form the costate equation (32). Let us
denote this as A}, ;.

3) Train the network(s), with all X  as input and all corre-
sponding A}, as output.
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Fig. 1. Schematic of simplified adaptive critic neural-network synthesis.

4) If proper convergence is achieved, stop and revert to step 1
with S; 1. If not, go to step 1 and retrain the networks with
anew S;.

In order to minimize the chance of getting trapped in a local
minimum, a batch training is used wherein the network is
trained for all of the elements of S; together.

3) Convergence Condition: At each c; it should be assured
that the proper convergence in training is reached. For this pur-
pose, generate a set S; of profiles in exactly the same manner
used to generate S;.

¢ Fix a tolerance value tol (we have fixed tol = 0.05).

» Using the state profiles from S, generate the target out-
puts as described in Section IV-B. Let the outputs be
A A

* Generate the actual output from the networks, by using
the state profiles from S};. Say the values of the outputs
are A{7, ..., A%

* Check whether simultaneously ||)\§ = A¥l2/ ||/\§ 2 <
tol, ¥V 5 = 1,2,..., N.If yes, then the networks have
converged.

Note that after successful training of the networks offline, the
control can be implemented online, since it can then be com-
puted by simply using the networks.

4) Neural Network Structure and Initialization: Since N =
4 for the beaver problem, four critic networks are used with X}
as inputs and a component of the vector A,y as the output. For
the wildlife management problem, the network architecture is
T4,6,6,1, where m4 ¢ 6,1 means that there are four neurons in the
input layer, six neurons in the first hidden layer, six neurons in
the second hidden layer, and one neuron in the output layer. For
activation functions, a rangent sigmoid function for the input and
hidden layers and a linear function for the output layer are used.
Simulation results indicate the network choices were adequate.

Note that the reduced-order dynamics (12)—(13) is in the con-
trol-affine SDC form and the associated cost function (14) is
also quadratic. This facilitates the use of the SDRE technique
to this reduced-order problem as well [9], [10], [21]. Hence,
the randomly chosen weights of the networks were first trained
with respect to this solution (we call this process “pretraining”),

7' Beaver population density (hdfmilez)

Fig. 2. Required steady-state population density distribution.

P*: Portion of population trapped (yr")

¥2 0

¥l

Fig. 3. Required steady-state trapping rate for population density distribution
in Fig. 2.

before starting the SNAC training outlined in Section IV-B.
Further details of this process are omitted for brevity.

V. NUMERICAL RESULTS

A. Selection of Numerical Values

The values of parameters used in the numerical exper-
iments in this study are the same as used in [5] and [17]
wherever relevant. A spatial domain having L; = 62.75 mi
and Lo = 112.95 mi was selected and the grid parameters are
Ay = Ays = 12.55 mi. The time step At = (7/365) yr (one
week) was chosen, which means that the control solution (rate
of beavers to be harvested) is updated every week. For the cost
function weights ¢ = » = 1 was chosen.

B. Analysis of Results

The main goal for this problem was to drive the actual beaver
population density distribution Z to a required beaver popula-
tion density distribution Z*. According to the formulation in this
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Beaver population density (hd/mile2)

Fig. 4.

Portion of population trapped (yr1)

y2 e

y1

Fig.5. Trapping rate (control) distribution for the initial condition as in Fig. 4.

study, the distribution of the control variable P, which is the por-
tion of Z to be trapped per year (see Section II), should approach
a steady-state distribution for any initial condition in the domain
of interest for which the networks have been trained. This has
been verified from a large number of simulation studies. How-
ever, since it is impossible to all the simulation results (due to
space constraints), the results for one representative case is pre-
sented in Figs. 2—17. For the rest of the discussion in this section,
we call P as the “trapping rate” for convenience.

Figs. 2-3 depict the steady-state beaver population density
distribution and the associated steady-state trapping rate, re-
spectively. In other words, starting from any initial condition
that has been accounted for training the networks, the popula-
tion density distribution and the trapping rate distribution should
converge to these distributions with time.

The randomly chosen initial condition for the population den-
sity distribution (at time ¢ = 0) for this simulation and the com-
puted trapping rate distribution are as shown in Figs. 4 and 5,
respectively.

Beaver population density (hd/mile?)

Fig

Portion of population trapped (yr1)

Fig.

Beaver population density (hd/mile2)

Fig. 8.

Population density distribution at # = 1 yr.

Since it is impossible to show a 3-D surface plot as it evolves
with time, distributions for population density (state) and trap-
ping rate (control) are presented at different time instants. At
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Portion of population trapped (yr')

0
y2 0 ¥

Fig. 9. Trapping rate distribution att = 1 yr.

=
ga

Beaver population density (hd/mile2)

Fig. 10. Population density distribution at t = 5 yr.

4a

t = 6 mo, the state and control are as in Figs. 6 and 7, re-
spectively. At ¢ = 1 yr, the state and control are as in Figs. 8
and 9, respectively. From these figures, it is clear that both the
state and control are developing toward their respective desired
steady-state profiles. In other words, the beaver population den-
sity distribution, as well as the trapping rate distribution, de-
velops toward their respective desired steady-state distributions,
respectively.

Note that the problem in this study has been formulated in an
infinite time framework and the simulation can essentially be
continued for as long as one wishes. Simulations in this paper
were carried out for t = 5 yr. It was observed in the simulations
that the steady-state distributions for beaver population density
and their trapping rate were reached in approximately two years.
The population density distribution and trapping rate distribu-
tion at £ = 5 yr are shown in Figs. 10 and 11, respectively.

It is evident that the Figs. 10 and 11 are quite close to the
respective desired steady-state distributions (compared with
Figs. 2 and 3, respectively). However, to show even better
accuracy that can be reached, the error between the actual

Portion of population trapped (yr1)

¥2 00

y1

Fig. 11.

Trapping rate distribution at t = 5 yr.

(22
{

=
i

N
L

o
£

Deviation in beaver population density

Fig. 12. Error between actual population density distribution and desired
population density distribution att = 5 yr.

population density distribution and its desired steady-state
population density distribution, as well as the actual trapping
rate distribution and its desired steady-state trapping rate dis-
tribution at ¢ = 5 yr were plotted. These are shown in Figs. 12
and 13, respectively.

It is quite clear from Figs. 12 and 13 that the order of mag-
nitude of the error of population density (state) is five-orders
of magnitude smaller than its desired steady-state distribution.
Similarly, the order of magnitude of the error in the trapping
rate (control) is three-orders of magnitude smaller than the de-
sired steady-state trapping rate distribution. These trends show
that the controller performance is excellent in driving the state
to the desired target.

To further illustrate the way the state and control develop to-
ward their steady state, the time histories of the lumped param-
eter states and controls for the state and control deviations (see
Section III-B) are shown in Figs. 14 and 15, respectively. From
these figures, it is clear that the state and control converge to



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

638

S R Rl S e e el

U Py~
[EREEREE LR ER R

1.01

1 gy J
0.99 {-{----
0.98 H-----
097 f-----
0.96 f------

Z'z-apou e Apsuap uoe|ndod Ja seag

paddesy uonendod jo uoipod ul uojelAsq

Time (yr)

Error between actual trapping rate distribution and desired trapping

Fig. 13.

Fig. 16. Population density evolution at node-2,2.

rate distribution at t = 5 yr.

Time (yr)

'
‘
'
'
©
v
'
'
'
'
'
L
v
'
'
'
'
'
'
r
'
'
'
'
'
'
r
'
'
'
‘
'
-
'
'
'
'
'
'
L
v
'
'
'
'
'
'

. . AU U

R, NP
T

0.13

0129 f--f---
01275 th-----
0127 ff------
0.1265 |------
0.1255

Z'z-apou Je paddel} vongeindod jo uoipog

SaIWEUAD UDIEIABD 104 S8JE)S JapIo-paanpay

Fig. 17. Trapping rate evolution at node-2,2.

Tirne (yr)

Fig. 14. Lumped parameter state histories for the state deviation.

as well as the

trapping rate are not observed, the management policy proposed

,it is obvious how the state
here is more likely to be accepted by the farmers.

we arbitrarily chose node-22 and plotted the beaver
and control evolve toward their respective steady-state values.

Next, to see the time history at a specific location in the do-
Note that the SDRE technique, which was used both to gen-
erate the snap-shot solutions, as well as for “pretraining” the

main clearly,
The over-shooting is minimal, indicating that the choice of the

cost function weight parameters ¢ = r = 1 was appropriate.
A similar trend was observed at all node points. Note that since

their respective targets in about two years and stay there after-
wards. Such phenomena were observed in all the simulations.
population density and trapping rate at that location in Figs. 16
large oscillations of both the population density,

and 17, respectively. From these plots

' ' '
' ' ' '
bmemeeeem [ demmmmeaan R [ —
v ' v '
' ' ' '
' ' ' '
bmeeeeeem [ demeeeae [ R —
' ' ' '
' ' ' '
' ' ' '
' ' ' '
F-------- EEEEEEEE qmmmmmmme- Fommmmm- R R —
' ' ' '
' ' ' '
' '
' ' ' '
' ' ' '
' ' ' '
' ' ' '
' ' ' '
v ' ' '
' ' ' '
' ' ' '
' ' ' '
e m [ demeeeae R [ F R —
v ' h i

SaILEUAR UDIEIASD 104 §|0JJU0D IBPI0-PaInpay

5

348 45

25
Tirme (yr)

networks, leads to a locally stabilizing suboptimal controller
[9], [10], [21]. Hence, the pretrained networks also lead to a

suboptimal controller. To demonstrate how the SNAC technique

Lumped parameter control histories for the control deviation.

Fig. 15.
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TABLE 1II
COoST COMPARISON BETWEEN TRAINED AND PRETRAINED NETWORKS

Case Jlramed J/zre trained
1 6.4883 10.4644
2 13.4060 23.4481
3 21.7651 412040
4 31.1715 61.7291
5 42.8081 88.2159

leads to an optimal controller, we have carried out a cost com-
parison study. For this, we took some random initial condi-
tion and simulated the evolution for t; = 5 yr (by that time
the steady-state conditions have already been achieved) by both
using the pretrained networks (by SDRE technique), as well by
the fully-trained networks (by the SNAC technique). Some rep-
resentative results are as in Table II.

From the numbers in Table II, it is quite obvious that in all
cases the pretrained networks lead to cost function values that
are approximately double the values of the cost function, if
the SNAC-trained networks are used. Hence, we conclude that
the pretrained networks are very much “suboptimal,” which
are driven more toward their optimal values by the SNAC
technique.

VI. CONCLUSION

An optimal control theory-based solution has been proposed
as a harvesting strategy of nuisance creating beavers. A dis-
tributed parameter model for beaver population dynamics has
been presented and a proper orthogonal decomposition-based
basis function design followed by their use in a Galerkin projec-
tion has been incorporated in the process as a model reduction
technique. Using the reduced model in a single network adaptive
critic scheme, the optimal control is made available in a feed-
back form.

The optimal harvesting technique presented for managing the
beaver population in a desired territory leads to a desired distri-
bution of the animal density in the long run. It does not lead
to the complete elimination of the species. Besides, the con-
trol computed can be used online by a nonexpert in control
theory since it essentially involves only using the neural net-
works (which are trained offline). Because of these reasons, the
proposed technique can be used as a great tool by a wildlife
manager.

ACKNOWLEDGMENT

The authors would like to thank Dr. M. G. Bhat, Associate
Professor, Department of Environmental Studies, Florida In-
ternational University, Miami, for their helpful and productive
e-mail communications. The authors would also like to thank
the anonymous reviewers for their constructive criticisms and
useful suggestions, which led to a substantial improvement of
this paper.

(1]

(5]

(6]

(71

(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

S. N. Balakrishnan and V. Biega, “Adaptive-critic based neural networks
for aircraft optimal control,” J. Guid. Control Dyn., vol. 19, no. 4, pp.
893-898, Jul./Aug. 1996.

B. Bameih, “The structure of optimal controllers of spatially-invariant
distributed parameter systems,” in Proc. Conf. Dec. Contr., 1997, pp.
1056-1061.

H. T. Banks, R. C. H. Rosario, and R. C. Smith, “Reduced-order model
feedback control design: Numerical implementation in a thin shell
model,” IEEE Trans. Autom. Contr., vol. 45, no. 7, pp. 1312—1324, Jul.
2000.

A. R. Barron, “Universal approximation bounds for superposition of
a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
930-945, May 1993.

M. G. Bhat, “Controlling wildlife damage by diffusing beaver popu-
lation: a bioeconomic application of the distributed parameter control
model,” Ph.D. dissertation, Dept. Agricultural Economics Rural Soc.,
Univ. Tennessee, Knoxville, TN, 1991.

A. E. Bryson and Y. C. Ho, Applied Optimal Control.
Taylor & Francis, 1975.

J. Burns and B. B. King, “A reduced basis approach to the design of
low-order feedback controllers for nonlinear continuous systems,” J. Vi-
bration Contr., vol. 4, pp. 297-323, 1998.

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of
Renewable Resources, 2nd ed. New York: Wiley, 1990.

J. R. Cloutier, “State-dependent Riccati equation techniques: An
overview,” in Proc. Amer. Contr. Conf., 1997, pp. 932-936.

J. R. Cloutier and D. T. Stansbery, “The capabilities and art of state-
dependent Riccati equation-based design,” in Proc. Amer. Contr. Conf.,
2002, pp. 86-91.

R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional
Linear Systems Theory. New York: Springer-Verlag, 1995.

S. K. Gupta, Numerical Methods for Engineers. New York: Wiley,
1995.

S. Harkonen, “Forest damage caused by the Canadian beaver (castor
canadensis) in South Savo, Finland,” Silva Fennica, vol. 33, no. 4, pp.
247-259, 1999.

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent
Structures, Dynamical Systems and Symmetry. Cambridge, UK.:
Cambridge Univ. Press, 1996, pp. 87-154.

K. J. Hunt, “Neural networks for control systems—A survey,” Auto-
matica, vol. 28, no. 6, pp. 1083—-1112, Nov. 1992.

I. Lasiecka, “Control of systems governed by partial differential equa-
tions: A historical perspective,” in Proc. 34th Conf. Dec. Contr., 1995,
pp. 2792-2796.

S. M. Lenhart and M. G. Bhat, “Application of distributed parameter
control model in wildlife damage control management,” Math. Models
Methods Appl. Sci., vol. 2, no. 4, pp. 423-439, 1992.

F. Lewis and V. L. Syrmos, Optimal Control,2nded. New York: Wiley,
1995.

M. C. McKinstry and S. H. Anderson, “Attitude of private and public
managers in Wyoming, USA, toward beaver,” Environ. Manage., vol.
23, no. 1, pp. 95-101, 1999.

S. T. McTaggart and T. A. Nelson, “Composition and demographics of
beaver (castor canadensis) colonies in central Illinois,” Amer. Midland
Naturalist, vol. 150, no. 1, pp. 139-150, 2003.

C. P. Mracek and J. R. Cloutier, “Control designs for the nonlinear
benchmark problem via the state-dependent Riccati equation method,”
Int. J. Robust Nonlinear Contr., vol. 8, no. 4-5, pp. 401433, 1998.

S. S. Ravindran, “A reduced-order approach for optimal control of fluids
using proper orthogonal decomposition,” Int. J. Num. Methods Fluids,
vol. 34, no. 5, pp. 425-448, 2000.

S. Sadek and M. A. Bokhari, “Optimal control of a parabolic distributed
parameter system via orthogonal polynomials,” Opt. Contr. Appl.
Methods, vol. 19, no. 3, pp. 205-213, 1998.

S. N. Singh, J. H. Myatt, and G. A. Addington, “Adaptive feedback
linearizing control of proper orthogonal decomposition nonlinear flow
models,” in Proc. Amer. Contr. Conf., 2001, pp. 1533-1538.

J. P. Wright, C. G. Jones, and A. S. Flecker, “An ecosystem engineer,
the beaver, increases species richness at the landscape scale,” Oecologia,
vol. 132, no. 1, pp. 96101, Jun. 2002.

P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control, D. A. White
and D. A. Sofge, Eds: Multiscience Press, 1992.

London, U. K.:



640 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Radhakant Padhi (M’05) received the B.S.Eng. de-
gree in mechanical engineering from the University
College of Engineering-Burla, Orissa, India, in 1994,
the M.S.Eng. degree in aerospace engineering from
the Indian Institute of Science, Bangalore, India, in
1996, and the Ph.D. degree in aerospace engineering
from the University of Missouri-Rolla, Rolla, MO, in
2001.

From April 1996 to July 1997, he worked as a Sci-
entist in the Defense Research and Development Or-
ganization, Hyderabad, India. In 2001, he worked as
a Postdoctoral Fellow at the University of Missouri-Rolla for two years. In Jan-
uary 2004, he began working as an Assistant Professor in the Department of
Aerospace Engineering, Indian Institute of Science. His research interests in-
clude the broad area of systems theory and applications. Specifically, he is in-
terested in nonlinear control design and analysis, optimization and optimal con-
trol, distributed parameter systems, neural networks, control and guidance of
aerospace vehicles, and application of control theory to biomedical systems.

Dr. Padhi was a recipient of the Best Student Paper Award (third place) in the
2001 IEEE Joint Conference on Control Applications and International Sym-
posium on Intelligent Control, Mexico City. He also received the Best Applica-
tion Paper Award in XXIX National Systems Conference, in 2005, IIT-Bombay,
India. His biography is listed in Who’s Who in America, 2004.

S. N. Balakrishnan received the Ph.D. degree in
aerospace engineering from the University of Texas,
Austin, in 1983.

In 1985, he joined the University of Mis-
souri-Rolla, Rolla, MO. He is currently a Professor
in the Department of Mechanical and Aerospace
Engineering. His nonteaching experience includes
work as a Lead Engineer in the Space Shuttle
program, Fellow, Center for Space Research at the
University of Texas at Austin, and Summer faculty
Fellow at the Air Force Research Laboratory, Eglin,
FL. His research interests include the areas of System Theory and Applications.
His current research uses neural networks and classical methods in the identifi-
cation and robust control of missiles, airplanes, rockets, and other “interesting”
systems. He has developed a suboptimal closed form nonlinear control method
called theta-D and used it to solve engineering problems in many disciplines
that includes spacecraft formation control. His work has been sponsored by the
National Science Foundation, the Air Force, the Naval Surface Warfare Center,
the Army Space and Missile Defense Command, and NASA.

Dr. Balakrishnan is a member of Sigma Gamma Tau and an Associate Fellow
of the American Institute of Aeronautics and Astronautics.



	Optimal Management of Beaver Population using a Reduced-Order Distributed Parameter Model and Single Network Adaptive Critics
	Recommended Citation

	toc
	Optimal Management of Beaver Population Using a Reduced-Order Di
	Radhakant Padhi, Member, IEEE, and S. N. Balakrishnan
	I. I NTRODUCTION
	II. B EAVER P OPULATION M ODEL AND C ONTROLLER O BJECTIVE
	A. Beaver Population Model
	B. Controller Objective


	TABLE€I P ARAMETERS OF THE B EAVER P OPULATION M ODEL
	1) Choice of the Desired Distribution: The territory considered 
	2) Feedforward Controller: Let $P^{\ast}$ be the associated cont
	3) Deviation Dynamics and Cost Function Selection: With the avai
	III. R EDUCED -O RDER M ODEL D EVELOPMENT
	A. Basis Function Design Based on Proper Orthogonal Decompositio
	B. Reduced Order Model: Use of Galerkin Projection
	C. Domain of Interest and Selection of Initial Conditions
	D. Snapshot Solution Generation

	IV. S INGLE N ETWORK A DAPTIVE C RITICS (SNAC)
	A. Optimality Conditions
	B. Neural Network Synthesis Process
	1) State Generation for Training: In the controller synthesis pr
	2) Training Procedure: Since neural networks are capable of doin



	Fig.€1. Schematic of simplified adaptive critic neural-network s
	3) Convergence Condition: At each $c_{i}$ it should be assured t
	4) Neural Network Structure and Initialization: Since $\mathtild

	Fig.€2. Required steady-state population density distribution.
	Fig.€3. Required steady-state trapping rate for population densi
	V. N UMERICAL R ESULTS
	A. Selection of Numerical Values
	B. Analysis of Results


	Fig.€4. Initial condition for the population density distributio
	Fig.€5. Trapping rate (control) distribution for the initial con
	Fig.€6. Population density distribution at $t=6$ mo.
	Fig.€7. Trapping rate distribution at $t=6$ mo.
	Fig.€8. Population density distribution at $t=1$ yr.
	Fig.€9. Trapping rate distribution at $t=1$ yr.
	Fig.€10. Population density distribution at $t=5$ yr.
	Fig.€11. Trapping rate distribution at $t=5$ yr.
	Fig.€12. Error between actual population density distribution an
	Fig.€13. Error between actual trapping rate distribution and des
	Fig.€14. Lumped parameter state histories for the state deviatio
	Fig.€15. Lumped parameter control histories for the control devi
	Fig.€16. Population density evolution at node-2,2.
	Fig.€17. Trapping rate evolution at node-2,2.
	TABLE€II C OST C OMPARISON B ETWEEN T RAINED AND P RE TRAINED N
	VI. C ONCLUSION
	S. N. Balakrishnan and V. Biega, Adaptive-critic based neural ne
	B. Bameih, The structure of optimal controllers of spatially-inv
	H. T. Banks, R. C. H. Rosario, and R. C. Smith, Reduced-order mo
	A. R. Barron, Universal approximation bounds for superposition o
	M. G. Bhat, Controlling wildlife damage by diffusing beaver popu
	A. E. Bryson and Y. C. Ho, Applied Optimal Control . London, U. 
	J. Burns and B. B. King, A reduced basis approach to the design 
	C. W. Clark, Mathematical Bioeconomics: The Optimal Management o
	J. R. Cloutier, State-dependent Riccati equation techniques: An 
	J. R. Cloutier and D. T. Stansbery, The capabilities and art of 
	R. F. Curtain and H. J. Zwart, An Introduction to Infinite Dimen
	S. K. Gupta, Numerical Methods for Engineers . New York: Wiley, 
	S. Harkonen, Forest damage caused by the Canadian beaver (castor
	P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent St
	K. J. Hunt, Neural networks for control systems A survey, Automa
	I. Lasiecka, Control of systems governed by partial differential
	S. M. Lenhart and M. G. Bhat, Application of distributed paramet
	F. Lewis and V. L. Syrmos, Optimal Control, 2nd ed. New York: Wi
	M. C. McKinstry and S. H. Anderson, Attitude of private and publ
	S. T. McTaggart and T. A. Nelson, Composition and demographics o
	C. P. Mracek and J. R. Cloutier, Control designs for the nonline
	S. S. Ravindran, A reduced-order approach for optimal control of
	S. Sadek and M. A. Bokhari, Optimal control of a parabolic distr
	S. N. Singh, J. H. Myatt, and G. A. Addington, Adaptive feedback
	J. P. Wright, C. G. Jones, and A. S. Flecker, An ecosystem engin
	P. J. Werbos, Approximate dynamic programming for real-time cont



