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INFINITE TIME OPTIMAL NEURO CONTROL FOR DISTRIBUTED PARAMETER SYSTEMS 

Radhakant Padhi’ and S.N. Balakrishnan’ 

Dept. of Mechanical and Aerospace Engineering. and Engineering Mechanics 

University of Missouri - Rolla, MO 65409, USA 

padhi@umr.edu bala8umr.edu 

Abstract 
The conventional dynamic programming methodology for the 
solution of optimal control, despite having many desirable 
features, is severely restricted by its computational requirements. 
However, in recent times, an alternate formulation, known as the 
adaptive-critic synthesis, has given it a new perspective. In this 
paper, we have attempted to use the philosophy of adaptive-critic 
design to the optimal control of distributedparameter systems. An 
important contribution of this study is the derivation of the 
necessary conditions of optimality for distributed parameter 
systems, described in discrete domain, following the principle of 
approximate dynamic programming. Then the derived necessary 
conditions of optimality are used to synthesize infinite time 
optimal neuro-controllers in the framework of adaptive-critic 
design. A motivating example that follows clearly shows the 
potential of the adaptive critic procedure. 

1. Introduction 

The Distributed Parameter Systems (DPS) are processes, which 
are distributed in space and evolving in time. Unlike the lumped 
parameter systems, the DPS are described by a set of partial 
differential equations (PDEs) in the state-space. Examples of such 
systems include aeroelastic systems, vibration of lightly-damped 
structures, compliant mechanisms, heat transfer processes etc. 

The dynamic programming methodology for the solution of 
optimal control, despite having many desirable features, is often 
overwhelmed by its computational requirements. Besides, it is also 
very involved mathematically. However in recent times, an 
advanced neuro-control methodology called the adaptive-critic 
design has given a new perspective to it. The advantages include 
optimal control of the plant maintaining a feedback structure of 
the controller in real time from any initial state in the domain of 
interest to the desired final state. Besides, it can handle linear and 
nonlinear problems directly, retaining the same structure. As an 
added advantage, the powerful methodology has mathematical and 
computational simplicity, making it easier for its practical 
implementation. This neuro-control methodology has been 
implemented successfully in literature [ 1,2,3,5]. However, the 
methodology has mainly been restricted to lumped parameter 
systems so far. In this paper, we derive the necessary conditions of 
optimality for distributed parameter systems in the discrete 
domain and extend the adaptive-critic methodology for the 
optimal control of such systems. The focus, however, is the 
optimal control synthesis of infinite time problems. We 
demonstrate the use of this approach by solving a nonlinear 
distributed parameter optimal control problem. 
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2. Dynamic Programming of DPS 
2.1. System Dynamics 
We consider a two-dimensional distributed parameter system. Two 
dimension here means two independent variables; one is time and 
the other i s  a spatial variable. The system dynamics we consider 
over here evolves in time and is given by 

X k + l , j  = f k  u x k . j  3 ‘ k , j  [ L 1 1 
where, the subscripts k accounts for evolution with time (time 
step) and j for the spatial distribution (nodal number). 
kf denotes the final node number in the spatial distribution. The 

U X k ,  notation denotes that the function f k  may consist of any 

or all of the variables x ~ , ~  , xk,* , ... , X k , M  . We expect that 

the ideas and formulas developed over here can be generalized to 
systems with higher dimensional distribution in space. 

22. C a s t F u ”  
We consider a general cost function of the following form. 

M 

j=1 

N-1  M ’ = c c y k , j ( x k , j ,  ‘ k , j  
k=l j = l  

where, Nrepresents the number of discrete time steps. In 
agreement with the above definition of the cost function, we 
denote the cost functionfrom time step k as 

(3) 
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Then we can rewrite 

Jk = ‘ k  -k Jk+l (4) 
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where, 

j=l k = k + l  j= l  

represent the utility function at time step k and the cost-to-go 
from time step k + 1 to N respectively. 

We define the Co-state as 

Ak,j = dJk /  dxkVj (6) 

23. Optimal Control Equalion 

For Optimal Control, the necessary condition for optimality is 
given by aJk/ = 0. After some algebra, the optimal 

control equation is given by 

2.4. Co-slateDyMmiCs 

Substituting for Jk  from Eq.(3) and expanding the right-hand side 
partial differentiation, we get 

Thus, we have obtained the state equation, eo-state equation and 
optimal control equation. These equations have to be solved 
simultaneously to obtain the required optimal control. 

25. BoundaryConditions 

We assume that the initial state values at all the node points are 
known, but they can represent any profle. This implies that the 
solution covers all possible initial profiles in the domain of 
interest. Here we consider infinite-time regulator problems. For 
this class of problems, the final boundary condition, as derived 
form the transversality condition, is given by = 0 as 

N + W .  The other boundary and transversality conditions, 
considering the Neumann boundary conditions, are given by 

(9) 

It can be noted that j = 0 and j = M + 1 are not actual node 
points. However, values at these fictitious node points are needed 
to obtain the numerical solution. 

3. Adaptive-Critic Controller Synthesis 
The potential of the adaptive-critic approach lies in its 
architecture. The schematic of critic-controller synthesis procedure 

is outlined in Figures 1, 2 and 3. We propose a cascade of neural 
networks, which solves the rigorous optimal control problem, 
contained in Eq. (I) ,  (7), (8) and (9). More importantly, this set of 
networks will be able to generate optimal control for any arbitrary 
initial profile, in the domain for which the networks are trained. 
The entire synthesis procedure is discussed, in detail, through the 
following motivating example. 

4. AnExample 
This motivating example is taken from Sage and Chaudhuri [4]. 
Though the authors have considered the problem as a finite time 
one, we reconsider the problem of an infinite time controller. One 
of the important motivations for choosing this problem is that the 
problem has already been solved and hence we can at least have a 
qualitative comparison of the results. The other important reason 
is that this problem is nonlinear, which demonstrates that the 
adaptive-critic methodology is not restricted by nonlinear 
dynamics. Moreover, the problem retains all the essential features 
of distributed parameter systems. 

4.1. h b l e m  

The system is described, in continuous time, by 

The known initial and boundary conditions are as follows. 

x(0,y) 
interest 

An envelope of initial profiles within the domain of 

The objective is to find the optimal control U ( t , Y ) ,  which 
minimizes the quadratic cost function 

where, x(t,y) and u(t,y) are state and control variables at 

time t and spatial co-ordinate Y , Q is the weighting factor on 

state, R is the weighting factor on control, to and t f  + 00 are 

initial and final times, yo and yf are initial and final points on 

the spatial co-ordinate axis. 

42. DkreteFortmrlation 
The discretized cost-function, to be minimized, is given by 

where, QD and RD are the weighting factors on state and control 
respectively, in the discrete domain. For this particular problem, 
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Then, by using Eq.(l), (7) and (8) ,  we arrive at the following set 
of equations as the necessary conditions for optimality, which are 
the state, co-state and optimal control equations respectively. 

Together with the necessary conditions of optimality, we have to 
satisfy the following initial, transversality and boundary 
conditions. 

Xo,j = can be any point in the domain of interest 

AN, j  = 0, as N -+ 00 

X k , O  = xk.l 7 X k , M  = X k , M + I  (16) 

' k , O  = 'k.1 9 ' k , M  = ' k , M + 1  

43. - C o n h . o n e r S y n t h e s i s  

The architecture of neural networks in the optimal control problem 
of this motivating example remains the same as that of the general 
architectures, outlined in Figures 1, 2 and 3 .  The synthesis 
procedure of the networks i s  discussed, in detail, in this section. 

From the transversality condition [Eq.(16)], we have 
= 0, N -+ 00. Thus, from Eq.(7), we have 

8yN-l , j /&N-l , j  = 0.  In a regulator case, this leads to 

' N - 1 . j  = 0. However, with = 0,  from Eq.(l5b) we 

notice that we can solve for X N - l , j  explicitly, from Eq.(lSa), 

knowing x ~ * ~  and using the boundary condition (Eq. 16). Hence, 

we synthesize a set of M critic networks, for k = N - 1, with 

input xN- , ,  and output IN-], as per the following steps. 

Assume a set of random values for X N , ] ,  ... , X N , M  with very 

small magnitude, compared to the initial magnitude. Solve the 
system of M coupled equations simultaneously from the state 
Eq.(lSa), with UN- ]  = 0 to get X N - ] , ] ,  ... , X N - I , M .  Use of 

boundary condition [Eq.(16)] makes the system into kf coupled 
equation with M unknowns and hence makes it possible to solve. 
Since the problem is nonlinear and hence, the solution is not 
unique, we find the solution for which XN-,,j + 0, for all 

j = 1, . . ., kf . Obtain aN-l,l , ... , from 

Q, x ~ - ] , ~ .  Initialize a separate neural network for 

node j and train it with input XN-l,j and output One 

can notice that this synthesis procedure does not require the use of 
action networks. 

Then we. focus on action network synthesis. However, since it is a 
dynamic process, to begin with, it is desirable to have 'good' 
initial weights of the neural networks, for faster final convergence. 
For this reason, we pre-train the randomly initialized networks 
first. The essential idea of the pre-training process is to generate 
xkJ close to X k + l , j  and then to use X k J  as if it were Xk+l , j .  

The detailed steps can be outlined as follows. 

Assume random x ~ , ~ ,  close to x k + ] , j .  Assume Xk,jas 

X k + l , j  and input it to the trained set of critic networks at 

(k time step to get Ak+l , j .  Get the optimal control 

from Eq.(lSc). Initialize a separate neural network for each 

node point and train the networks at kth time step with input 

xkJ-], x ~ , ~ ,  x ~ , ~ + ,  and output U k , j  for all the networks 

related to the internal node points. For those intended for the 
boundary node points, we consider either X k , o ,  Xk,] or 

x ~ , ~ - ~ ,  x ~ , ~  as the input. 

Once the pre-training is over, actual training process is carried out 
in the following steps (see Figure 2).  

Assume random X k , j ,  within the relevant range, and input it to 

the pre-trained action networks, to get U k , j  . Use state equation 

(15a) and the boundary condition [Eq.(l6)] to get xk+],j uniquely. 

Input X k + l , j  to the trained set of critic networks to get ' k + ] , j .  

Get the optimal control u ~ , ~  from Eq.(lSc). Train the networks at 

kth time step with input x, ,~-~ , x,,~ , xkJ+]  and output 

= 

* 

* 

U ; , j  for all the networks related to the internal node points. For 

those intended for the boundary node points, we consider either 

Xk.0 xk,] or X k , M - ]  Xk,M as the input. 

Once this process is over and proper convergence of all the 
networks is realized, we go back to the critic training. However, 
from this time onwards action networks are also used in the 
synthesis process of critic networks and vice versa. Each time we 
revert to critic training, we also increase the boundary of the state 
values X k ,  (typically by 5%) and train the networks for random 

initial profiles within the new increased boundary. The detail 
process of critic training can be outlined as follows (see Figure 3). 
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Assume random Xk,  . Get U k ,  from the trained action networks. 

Get Xk+l,j  from the state equation (15a). Input Xk+l , j  to the 

trained set of critic networks at (k + 1)'' time step, to get 

ak+l,j .  Now, with the availability of xkJ and ak+l,j,  calculate 

ak,j from the co-state equation (15b). Use of transversality 

condition [Eq.( 16)] makes it possible to calculate ak, uniquely. 

Train the set of critic networks with input 

x ~ , ~ - ~  , x , , ~  , x ~ , ~ + ,  and output $ , j  for all the networks 

related to the internal node points. For those intended for the 
boundary node points, we consider either Xk,o , Xk,l or 

Xk,M-l > Xk,M as input' 

Once this process of critic synthesis is over, we revert back to 
action synthesis again. The process outlined is repeated iteratively 
till we sufficiently increase the boundary for the input state values 
in both the action and critic networks to a level within which the 
initial profiles are supposed to lie. It can be noted that when the 
final boundary is reached, the alternate critic and action network 
training process is continued till no noticeable change in the 
output is observed in the outputs in the successive training. Then 
the networks are supposed to converge to give the true optimal 
relationships between their input and output. 

5. Numerid Results 
In our numerical experiments, we set the numerical values as 
Q = 1 ,  R = l ,  to = O ,  yo = O ,  yf = 4  (same as 

Ref..[4]). For discretization, we used At = 0.02 , AY = 1. 
Consequently, we realize five node points, which are numbered as 
1, ..., 5 in Figure 4 through Figure 7. We have assumed that the 
initial profiles lie within k 0.25 and hence, stopped the synthesis 
process when we finished training at this level, for the states at the 
node points, upon successive increase of the magnitude boundary 
for the initial profiles. 

In Figures 6 and 7 the state trajectories and the associated optimal 
control histories of the system for an initial arbritary random 
profile are shown. It should be noted that the simulation time has 
been arbitrarily fixed at 8 sec. though it can be continued till any 
time. If done so, the states and control histories all remain very 
close to zero values. As a comment, we also observe from 
Eq.(lSc), that AN 3 0 as N -+ CO, since U,,, -+ 0 as 

N + 00. This way the synthesis process is also seen to satisfy 
the necessary transversality condition for optimality given in 
Eq.(16). We have also plotted the state trajectories and optimal 
control histories for all the node points for a sinusoidal initial 
profile. These also give a clear picture so as how the states and 
control are driven towards zero together, at all the nodes. 

It can be noted that after synthesizing the series of action 
networks, the controller can be implemented on-line, since the 
computations involve only using the trained neural networks. 
Moreover, since the current states essentially determine the 
control required, the control law takes a feedback structure. This is 
an added advantage. 

6. Conclusion 
The necessary conditions of optimality for distributed parameter 
systems, described in discrete domain, have been derived 
following the principle of approximate dynamic programming. 
The adaptive-critic optimal neuro-control is used to obtain the 
optimal control of distributed parameter systems. The 
methodology retains all the beneficial features of dynamic 
programming. It is possible to have optimal control solutions for a 
countably infinite number of initial profiles, and in real-time. 
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Figures 

Derivatives of cost t 

PLANT -_'t 4 r r  

Figure 1 : Successive training of Critic and Action Networks 
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Figure 2: Schematic of Action Synthesis Procedure 
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1- 

Figure 4: State Trajectories from a Random Initial Profile 

Figure 5: Control Histories for the Random Initial Profile 

Figure 6: State Trajectories from a Sinusoidal Initial Profile 

Figure 3: Schematic of Critic Synthesis Procedure 

I". 

Figure 7: Control Histories for the Sinusoidal Initial Profile 

3782 


	Infinite Time Optimal Neuro Control for Distributed Parameter Systems
	Recommended Citation

	Infinite time optimal neuro control for distributed parameter systems

