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Observables in Relativistic Quantum Mechanics*

W. C. Davinon
Haverford College, Haverford, Pennsylvania
AND
H. ERsSTEIN

Argonne National Laboratory, Argonne, Illinois
(Received 3 March 1964; final manuscript received 2 July 19864)

The conventional statement of statistical determinism is that *“the expectation values of all (Heisen-
berg) observables are determined by the expectation values of the observables af one time.”” This re-
quires that a full algebra of relf-adjoint operators be in one~to-one correspondence with measurement
procedures performed at one téme. For instance, it requires that if two noncornmuting obgervables p
and g aze defined at £=0, there should exist a measurement procedure at =0 corresponding to p--g.
No such procedure is known. The contrast hetween the positive assertion of the existence of certain
laboratory procedures and the inability to déscribe them comstitutes perhaps the weakest point of
quantum mechanics. However, the conventional statement of statistical causality is shown to be un-
tenable in a relativistic theory. This paper proposes a weaker form of causality which (1) uses meagure-
ments made within a truncated light eone rather than at one time for predictive purposes, and (2)
which involves only strictly localized states, i.e., states which are vacuumlike outside & finite volume.

© Failure of the conventional cavsality statement implies that the set of quasilocal observables is not
necessarily linear, ie., if 4 and B are in a set, A +B is not necessarily in it, This remark may open the
way to a systematic inquiry into the problems of associating laboratory procedures to self-adjoint

operators.

- L INTRODUCTION

UL fact that quantum mechanics is an incom-
plete theory is generally acknowledged and de-
plored by those who are interested in fundamental
problems. Quantum mechanics asserts™” that meas-
urement procedures at one time are in one-to-one
correspondence with an algebra of self-adjoint
operators on Ililbert spaee, but it does not specify
the procedures. As an example, assume that pro-
cedures for measuring the position g and the mo-
mentum p at the time ¢ = 0 are known. Quantum
" mechanics asserts that there exist procedures per-
formed at ¢ = 0 which correspond to » + g¢. The
assertion does not mean only that it is possible to
design a procedure by which the sum of the expecta-
tion values (p)s - (g)¢ is obtained for every state
¥, If this were the whole assertion, the proecedure
could be trivially specified as an arithmetic addition
of numbers obtained from many individual measure-
ments of p and of ¢ on samples of the ensemble ¥.
The assertion is that the same procedure should
also yield the expectation values of (p + ¢)° and
of other real-valued functions of the operator p + ¢.
For this purpose, results of the measurement of
(p -+ @) on individual samples may be squared and
averaged. One could, for instance, measure g and
* This work performed under the auspices of the T. 8.
Atomic Energy Commission.
1 P. A, M. Dirae, The Principles of Quantum Mechanics
{Clarendon Press, Oxford, England 1947), p. 26.

* J. von Neumann, Mathematische Grundilagen der Quanten-
Mechanik (Dover Publications, Ine., New York, 1943), p. 167.

then p in rapid succession and consider the sum of
the observed values as the value of (p + ¢). How- |}
ever, the more accurately ¢ is measured, the wider 9:
the statistical dispersion of subsequent values of p, i
until, in the limit, the measured value of p becomes
entirely independent of the original state. ‘

Also, two measurements of (p -- ¢} performed in f

rapid succession should give the same or almost the ;
same value. These requirements, imposed by the ¥
theory on the apparatus, cannot be met by any |j
known device. On the other hand, the sum of two §
commuting observables 4 and B may be defined
simply as the arithmetic addition operation on the |
two procedures. Operationally, the test for com- i
mutativity is to determine if the expectation value |
{4 4+ B} is independent of the order in which the
measurements are performed.

Why-is- it necessary to maintain the stringent i§
postulate in the face of obvious difficulties? What !

“would the theory lose in predictive power if the |

postulate were dropped or weakened? Tt is shown
that the usual assumption about the correspondence
between operators and procedures is indispensable ;i
for the commonly accepted form of statistical '
causality (or determinism).’ The assertion of causal- ||
ity is

(A} “The expeciation values of the observables meas-

ured ol one time (on-a spacelike hypersurface) de- '}

& No precise distinction between the two words seems to 1
enjoy universal aceeptance, i |
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lermine the expectation values of all observables at
later times.”

This seems to be a.minimal substitute for classieal

causality, and it is understandable that one goes -

far to save it.

We shall see that in the context of the general
principles of quantum mechanics the causality (A}
requires, in effect, that the observables on one space-
like hypersurface t = 0 form a linear set. In par-
ticular, for a complete set of dynamical variables
p(0), q(O), the linear combination p(0) + ¢(0) must
also be an observable at ¢ = (. The dilemma ap-
parently is this: either we must find procedures
for measuring such guantities as (p + ¢) at ¢ = 0,
or we must abandon what seems to be a reasonably
minimal form of causality. Yet, as we shall show, the
statement (A) conflicts with the combination of (1)
the relativistic prineiple of signal propagation with
a finite velocity and (2) well-established non-
classical effects such as measurability of parity.
Therefore, one must accept a weaker form of sta-
tistical causality which does not refer to such all-
inclusive categories as “observables at time ¢ any-
where in the universe” but, more modestly and
realistically, to quasiloeal observables [See. IV,
Statement (C)].

The weaker form of eausality does not demand
that observables at one time form a linear set, and
hence relieves us of the burden of trying to design
extraordinary experimental procedures to satisfy the
requirements of a theory. This result opens the way
to a systematic investigation of the relation between
laboratory procedures and self-adjoint operators on
Hilbert space.

II. CONSEQUENCES OF CONVENTIONAL CAUSALITY

A measurement procedure in a space—time volume
V or spacelike hyperplane § is a set of instructions
and apparatus for an operation carried out within
'V or S; that is, all interaction between the ap-
paratus and the system takes place within V' or S.

The assumption that such procedures exist clearly
requires some extrapolative idealization. If a meas-
uring instrament begins to interact with the system
at the time ¢ in 8 space volume », the instrument

must have been brought there previously, thus dis-.

turbing the system. To justify this assumption, it
must be asserted that the interaction previous to
t can be minimized to any desired degree.

In Secs. II-1V we are not interesfted in correla-
tion measurements, i.e., subsequent measurements
on the same sample of an ensemble. We may assume
that each sample of the ensemble is destroyed or
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discarded after the measurement. However, we do
not, assume that each measurement is instantaneous,
and we classify observables by the time interval
of measurement, ie., the interval beginning with
the interaction between apparatus and object and
ending at the moment when the necessary informa-
tion ig stored.

Many measurement procedures are equivalent in
that they give identical results for all ensembles.
An equivalence class of measurement procedures in
V (or S) are called an observable in V' (or 8). Dil-
ferent observables may have identical expectation
values for all ensembles, e.g., the momentum of a
free particle, measured at different times. This de-
fines an equivalence class of observables which,
following Dirae, we call a “dypamical variable.”
Self-adjoint operators on Hilbert space may be con-
sidered as images of observables in a many-to-one
mapping, or as images of dynamical variables in a
one-to-one mapping.

We follow the conventional assumption to the
extent that the set E of dynamical variables is
assumed to form a normed linear space so that the
set of all observables is closed under addition. For
example, if p(0) and ¢(0) are observables, then
q(0) - p(0) may not be an observable at { = 0;
but it is an observable, This is a much weaker as-
sumption than isomorphism between dynamical
variables and observables at one time. For instance,
for a free particle [g(f) = ¢(0) + pf], the Heisen-
berg ‘operator ¢ measured at the time ¢ = 1 is equal
to p(0) + ¢{0). In other words, the equivalence
clags of the dynamical variable ¢(0) + p(0} may not
include an observable at ¢t = 0, but it does include
one at { = 1, In the remainder of this section, we
consider only observables at one time (or on a
spacelike hyperplane).

ILet @, be the set of dynamical variables ob-
servable at ¢, ie., G, consists of those dynamical
variables whose eguivalence clags includes an ob-
servable at t. To an ensemble p, one associates expec-

* tation values of dynamical variables (4), (4 &€ ).

They form a positive linear functional f,(4) on the
dynamical variables. According to Statement (A),
the expectation values of the particular dynamical
variables B (B & (G,) determine all expectation
values. In other words, if two ensembles have identi-
cal expectation values for all dynamical variables
B & G, then they also have identical expectation

values for all dynamieal variables. That is,
TlB) = (B)  (BEG) @2.1)

implies
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Fia. 1. Wavefunction of = one-dimensional particle with
positive (full line) and negative (dotted line) reflection parity.

f{4) = f(4) (A €B). (2.2)

The vanishing of a linear functional f, — §,. in G,
implies its vanishing on the whole set E; such a
‘subset G, is called total. Note added in proof: It is
assumed that every linear functional can be repre-
sented as the difference between two positive linear
functionals. This assumption is justified only for
certain topologies of the spaee of dynamical varia-
bles.’ ‘

We need two definitions in order to state the
consequences of this postulate.

Definition 1. A subset G is dense in E if, for each
y € E, there exists a Cauchy sequence of elemenis
X, & G sothat X, — y.

Definition 2. A subset G is fundamental if the set
of all linear combinations of elemqnts of ¢ is dense in K.

- The condition for G, being total [i.e., the condition
for the postulate (A)] is then given by the theorem:*

Theorem. A subset G s total if and only if 4t is
fundamental.

For the purpose of designing measurement pro-

cedures, we can go farther. The knowledge of the

expectation values of observables A, is equivalent
to the knowledge of the expectation values of all
linear combinations of the A4,, Also, there is no
physical distinction between a procedure for ob-
taining & mean value and one which allows approxi-
mating it to any desired degree. Hence:

Physically, a fundamental set -of dynamical
variubles s equivalent to the whole set.

To summarize, the postulate (A), together with the
general principles of quantum mechanics, requires
a one-to-one correspondence between the set of
observables at one time and the set of all dynamical
variables,

In an attempt to avoid the unpleasant conse-
quences, one might weaken the statement of causal-
ity in an obvious way by requiring knowledge of
expectation values of observables in a spacelike slab
of finite thickness in the time dimension [State-
ment (B)].° '
wm‘S._JE';;na,ch, Théorie des Opérations Linéaires (Hafner

Publishing Company, New York, 1932), p. 58.
*R. Hang and B. Schroer, J. Math, Phys. 3, 249 (1963).
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While this weakening constitutes a further de-
parture from the idea that the present determines
the future, it does not seem unreasonable as long
as the thickness of the slab is small. This idea will
not be pursued in the present paper since the next
section will show that neither Statement (A) nor
Statement (B) is tenable in a relativistic theory,

IIl. THE FAILURE OF STATISTICAL CAUSALITY
IN RELATIVITY

The finite velocity of signal propagation imposes
severe restrictions on the possibilities of the measur-
ing apparatus. Since the measuring instruments are
macroscopie, it is sufficient to apply the basic
principles of classical relativity to their operation.

Consider a space volume v at a time f, and let
S, be the set of all observables that can be meas-
ured in » at time £ If #' is another nonintersecting
volume, a measurement in v cannot influence one
in ¢ at the time ¢ That is, any instantaneous
measurement by an instrument which occupies both
v and ¢’ supplies no more information than eould
be obtained by simultaneous separate measurements
in v and in #'. The same conclusion obviously holds
if V and V’ are space—time volumes which are space-
like with respect to each other, i.e., if V includes
only points that are separated by spacelike inter-
vals from all points of V.

Consider a state that is vaecuumlike everywhere
except in two congruent disjoint volumes v and ¢,
i.e., the expectation values of all quasilocal observa-
bles at ¢ = 0 outside of » and ' are those of the
vacuum state. The remaining information is supplied
by quasilocal observables in the space—time volumes

V and V' which include » and +'. We may assume - |

V and V” to be spacelike, with respect to each other.
As an example, consider a one-dimensional one-
particle system with two states described by the
wavefunetions ¢(z) (Fig. 1):

0 “except for d < |z} < d + =,
¥2lsin (@ —d) for d <z <d-+n,

12 sin (—zx 4 d) for ~d — 7 <z < —d.
i (3.1

Instantaneous observations in the two segments
d < |2| < d -+ = cannot distinguish between the
two signs. By the principle of finite signal propaga-
tion, the tite necessary to obtain additional in-
formation cannot be made arbitrarily small. If a
photon is used for the purpose of comparing the

* physical situations in the two segments, the minimal

time for obtaining information would be 2(d + =) /e.
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On the other hand, we know that the reflection
operator, defined by .

Ry@) = ¥(~2) 32)

corresponds to an observable. The two functions
in Bq. (3.1) are eigenfunctions of R with parity
(eigenvalue) = 1, and there are known methods
for determination of parity.

If, more generally, observations in a finite time
interval are admitted, the same conclusions hold
if the space-time volumes

—d—x << —d,: |t <At~
and

d <z <d+m, [t < Af

are spacelike with respect to each other. For any
finite timelike thickness Af, there are states (charac-
terized by ¢ in our example) whose observable
properties cannot be determined by an observation
in the timelike slice.

" We conclude that the strong causality [Btatement
(A)] as well as the slightly weakened form (B) are
untenable In relativistic quantum mechanies.

IV. WEAK CAUSALITY

A strictly localized ensemble p, has the property

that at t = 0 the expectation values of all observables
are vacuumlike outside the space volume v». More
precisely, if w is a space volume entirely outside 2,
and A, a quasilocal observable at { = 0 in w, then
the expectation value {4.),, is equal to the vacuum
expectation value {(4.,)q of this observable. Aceord-
ing to Sec. ITI, there exist observables whose expecta-
tion' values are not funetions of the instantaneous
expectation values (4),,. Consider, however, a four-
dimensional cone defined as follows. Let B be the
radius of the smallest sphere that contains v. Then
this sphere and the hypersurface consisting of all
light rays from the surface of the sphere to its center
defines a space—time come C(r), shown in Fig. 2,

such that observations in € can ascertain any-

“phase relation” between parts of the physical
system in ». Without contradicting either the rela-
tivistic principle of finite signal velocity or well-
established results of quantum mechanics, we can
state a weaker form of causality:

(C) For a stricily localized ensemble p, in the space
volume v, the expectation values of the observables A
in the corresponding space—time cone C(v) defermine
all expectation values.

It might appear, at first, that Statement (C) is
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Fic. 2. Weak causslity: For a state strictly localized within
a sphere of radius £, a determining set of observations must
include durations of E/e.

too weak to be useful as a substitute for (A) since
the strietly localized ensembles are a very speeial
class of ensembles or states. However, the concept
of a physical system is meaningful only to the ex-
tent that it is not influenced by other parts of the
universe which are left out in considering the system.

Tf, nevertheless, the system is idealized so that it

extends everywhere, then we must make the as-
sumption that nothing else exists, ie., that the
expectation values of quasilocal observables are
vacuamlike at sufficiently large distances. State-

- ment (C) seems to be adequate not because most

ensembles are strietly localized but because the only
way to deal with actual ensembles is to approximate
them by strietly localized omes. In contrast to
Statements (A) and (B), (C) evidently does not re-
quire that the set of observables associated with a
precise instant should be closed under addition, and
thereby relieves the theorist of a heavy burden.
Another consequence of the principle of finite
gignal velocity is that a collection of strictly localized
ensembles {p,} for a fixed volume » is invariant
under operators that are images of the corresponding
set of quasilocal observables {4,}. Indeed, according
to the prineciples of quantum mechanics the vector
A, ¥, /[}A,,}] is the state created immediately after
an instantaneous measurement A,. If this state
differed from the vacuum state outside of », a

~gignal would be transmitted instantaneously from

v to other space points.

This remark can serve to eonfirm the impossibility
of determining the phase § in a state of the type’
considered in Sec. ITI, viz.

& = v, + &',

by instantaneous measurements if » and o’ are dis-

“joint simultaneous space volumes. Clearly,

(\I’v’ ,\];r”) = 01
and according to our previous remark

(‘I’,,r,. A.‘I’.,,_-) =0
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whether 4 isin {4,} or {4,.}. Hence, for any ob-
-servable A, ' '

(CP, ACI)) = (‘\I]w: A"I’.'v) + (\I'm’:. A‘I,n’)

and the cross term always vanishes, so that no in-
stantaneous information about the phase is available.

V. THE PROJECTION AXIOM

The wealkening of classical determinism in quan—
tum mechanies is of two kinds: either the statements
refer to all observables and all states but to the
ensemble rather than the individual sample, or they
refer to some observations on some states and suc-
cessive observations on one sample. The latter cades
are realized by a special kind of measurement pro-
cedure called a “procedure of the first kind,”® which
is aptly described as fillering. A filter selects a sub-
-set of an original ensemble, and some unambiguous
predictions can be made with respect to each sample

‘of such a subset. Let us consider the restrictions
that relativity imposes on these predictions.

One of von Neumann’s postulates is the pro-
jection axiom (M)": “If the observable E is measured
on & gystem twice in succession, both observations
vield the same value.” Clearly, this form of the
statement must be taken with a grain of salt.

- Margenau® has pointed out that in the overwhelm-
ihg majority of measurements the system under ob-
servation is destroyed; it or its parts become perma-
nently attached to the measuring apparatus. In the
gpirit of Pauli,’ a more literal version would preface
the sentence by “In every equivalence class of pro-
cedures belonging to the observable R, there exists
one such that .. ..”

Is Axiom M necessary at all? It is argued here
that at least in some meodified form “Axiom M?”
is both physically desirable and indispensable. In
classical physics the immediate repetition of an
observation confirms the first -result. This fact is
tacitly accepted as the basis of any selence. If it
were not so, could one speak of objectively true
events at all? Since quantum mechanies must agree
with classical physics in some lmit, quantum me-
chanics must surely include some statement with
predictive claim on suecessive measurements of
individual samples. What could the statement be?

Von Neumann points out that there are, a priort,
three possible forms of causality or acausality in
relation to the repetition test., (The words ‘‘eon-

¢ 'W. Pauli, H andbuch der Physik (Springer-Verlag, Berlin,
1633), p. 152,

7 Refereuce 2, p. 177.

? H. Margenau, Phys. Rev. 49, 240 (1936).

W. C. DAVIDON AND H. EKSTEIN

firmability’ or “objectivity” would perhaps be more
felieitous than “‘causality.”’) Given a repetition, (1)
the first and second results could be statistically
independent, (2) the first result eould have a sta-
tistical dispersal, but the second be each time
identical with the first, or (3) both results could be
uniquely determined by the initial state.

The third case is that of classical mechanics; the
first would come close to denying the existence of
any objective observation, and hence of natural
science. There remains the second case which is
embodied in Axiom M-—and perhaps a fourth pos-
sibility, namely that the results of the second meas-
urement could be statistically correlated to the first.
The principle of simplicity impels us to choose the
second rather than the fourth possibility unless
there is definite evidence against the former:

The point in which von Neumann’s axiom needs
revision (in addition to the minor restrietion made
above) is the time after which a confirmatory repeti-
tion can be made. As we have seen, in relativistic
quantum mechanics some observables that are in-
dispensable for prediction cannot be measured in-
stantly, i.e., there is an inevitable delay between the
beginning of the interaction and the recording of the
information. It is now shown that there is equally
an inevitable delay before the second measurement
ean confirm the first result.

In discussing the time sequence of measurements,
it is convenient to think of a retrospective analysis
of measurements completed in the distant past,
rather than of a theory to be applied to experiments
In actual progress. The first advantage of this view
is that the use of probability in the sense of a ra-
tional - judgment on the basis of existing and,
ordinarily, incomplete evidence never arises; the
only kind of probability invelved is the relative
frequency of past events. The second advantage of
the retrospective view is that the question of signal
velocity between recording -devices never arises. It
must be remembered that, literally speaking, a
prediction is not possible even in classical relativistic
physics, since the time necessary to communicate
information from local observing devices to a central
predictor would be precisely as long as the time for
which the - theoretieal predictive ability claims
validity, viz. { = A/e, where A is the distance
between the most distant of the simultaneous re-
cording devices. Instead, by prediction we mean the
establishment of a functional relation between ob-
servations recorded at-different times, all of them
in the distant past with respect to the time at
which the verification is made.
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We consider the procedures of the first kind which
measure the parity of a sample at two different
times in such a way that the first and second meas-
urements have identical results. _

Resonance seattering of light provides such a

procedure for some systems. Let there be two energy '

“eround” eigenstates with opposite parity, and let
the state be a coherent superposition of the two
(which are assumed to be nearly degenerate). If
there is an excited energy eigenstate of known parity
(say +1), then resonance scattering for sufficiently
long wavelength is possible only with parity change
of the system. If the energy spread of the photon
covers the energy difference between the two ground
states and the excited states then the system is
certain to be in the state with parity —1 after
resonance of the photon has been obsgerved. The
question is now: What is the smallest time between
the beginning of the interactlon between system
and photon and its cessation? To simplify the
question, think of a system which is initially in the
negative-parity state, and ask for the time at which
the wavefunction of the combination {(system and
photon) becomes a produet function with the
negative-parity eigenfunction as one factor.

Consider an electrodynamic system (such as a
positronium) consisiing of two particles localized
approximately in small volumes » and »* with a large
distance between them. Intuitively, the answer to
our question is then the following. In order to be
sensitive to the parity of the state, the photon has
to be scattered by one particle (say, in v} and run
to ¢ to be rescattered—or vice versa. The smallest
time for such a process is evidently d/e.

A more quantitative estimate may be derived by
elementary perturbation theory. Dyson’s operator®
U(t, to) for finite times can be expanded and the
terms transiormed -in the usual manner. The result
of the contractions can be represented by the usual
diagrams, The relevant fourth-order diagrams are

" ghown in Tig. 3; it is the interference of these two

terms that is sensitive to parity. The rules for the
evaluation of the diagrams differ from the usual
ones only in that the integration over the eoordinates
of points 1 and 4 is omitted. The result is the prob-
ability amplitude for a process in which a photon
reaches the system at f, and leaves it at ¢,. In order
to obtain the probability for a resonance scattering
from a ground state, the resulting matrix element
would have to be integrated with respect to the

¢ See, for example, S. 8. Schweber, H. A. Bethe, and
F. De Hoffmann, Mesons and Fields (Row, Peterson and
Co., Evanston, Illineis, 1956), Vol. L.
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{a) %f}/% f-t.

2
WP 1,
o d
PARTICLE No.1 PARTICLE No.2
%, J,/
% *4

PARTICLE No.!

Y

PARTICLE No. 2

Fic. 3. Feynman diagrams for resonance scattering. The
photon is absorbed and re-emitted by one particle, then
absorbed and re-emitted by the other particle.

initial and final coordinates of the particles. Simi-
larly, an integration over some localized wave
packet of photons would have to be performed on
the final and initial coordinates of the photon.

The usual evaluation of the diagrams exhibits
the function Dp(z; — ), where the time coordi-
nates of x; and x, cannot differ by more than §, — #,
while the space coordinates differ approximately
by d. Since the function Dy decreases rapidly outside
the light coné, the matrix element is negligible
unless the time £, — ¢, is larger than d/ec. The meas-
urement begins when the photon interacts with
particle No. 1 (or 2) and is repeatable after it has
interacted with particle 2 (or 1) in diagram (a)
[or (b)]. In the intermediate period, one of the
particles is in an excited state and the total system
is clearly not in the ground state, so that an ad-
ditional photon would not be seattered in the same
manner.

Only a particular class of fourth-order diagrams
has been considered, and one may ask why others
should not eontribute to the measurement. Physi-
cally, the reason is that the photon energy has been
chosen for resonance (1.e., so that Thompson seatter-
ing, Compton scattering, ete., are negligible), but
mathematically this cannot be shown from perturba-
tion since the excited intermediate state is not ob-
tainable by perturbation.

It has thus been shown that relativity imposes a
time delay between a measurement of the first kind

-and the subsequent confirmatory observation. There-
fore, the term “immediate repetition” in Axiom M

must be replaced by the phrase “repetition after
the #ime At that characterizes the space-time
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volume V assigned to the observables.” This leads
to the modified axiom:

(M) In évery equivalence class of procedures be-
longing to an observable Ay there exists a procedure

~ such that for all systems whose Hamiltonian commutes

with Ay, its repetition after the fime At gives the same

result as the first measurement, where the interval At
is the largest timelike interval in V.

ACENOWLEDGMENTS

The authors gratefully acknowledge helpful dis-
cussiong with H. Aralki, J. M. Cook, and R. Haag.

-JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 5§, NUMBER 11

NOVEMEBER 1964

Relativistic Coulomb Scattering of Electrons*

R. L. CGILUCKSTERN] AND SHIN-R Lint

Physics Department, Yale Universily, New Haven, Conneclicut
{Received 28 May 1964)

A simple and useful relation between the Coulomb amplitudes F and @ (in Moit’s notation) is
derived and F and G are evaluated analytieally up to of terms for arbitrary ¢ = «/8. These results
are valid for all angles, but are particularly useful at small angles. The general analytie behavior of F
and @ in the variable x = gin 16 is discussed. The method is applicable to higher-order terms (o and
up). A double integral representation of F is also derived by using the Sommerfeld-Watson trans-
formation. This integral representation exhibits the dependence on «, ¢, and # separately.

1. INTRODUCTION

HE solutions for the relativistic scattering of

electrons in a Coulomb field were first obtained
by Mott' in the form of partial wave amplitudes.
These amplitudes were expressed as functions of
the two parameters « and ¢, where « = Z/137,
g = a/B, and 8 = v/c. Attempts to sum the partial
wave series .analytically were successful only in
powers of o (with 8 considered to be of order 1).>*
The most recent of these attempts® led to expressions

for the Coulomb amplitudes # and @ (in Mott’s

notation) accurate to order «* and o respectively,
with extremely complicated coefficients which were
functions of 8 and z = sin 8, _

We have obtained a simple and useful relation
between the Coulomb amplitudes F and G, and have
succeeded in summing the partial wave series in
powers of &” for arbitrary ¢, up to and including
the terms in . This organization of the expansion
appears to be simpler and more natural than that
in simultaneous power of « and ¢°%, since the major
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complexity of the Iatter comes from expansion of
the Coulomb phase factor, exp (2ig In z), in powers
of g. In our expansion the result is separated into
two terms, one of which contains the phase factor
exp (2ig In z), the other of which does not. These
results are then analytic in the variable z, apart
from the Coulomb phase factor. This separation is
similar to that given by Drell and Pratt* for 8 = 1.
Our results are related to those of Rosen,® and
of Fradkin, Weber, and Hammer.® Rosen derived
a double-integral representation of the coefficients
of powers of &’. Fradkin ef ol. derived a similar
expangion in ferms of a two-parameter function
76, ¢) up to a®’. We have evaluated these coeffi-
cients as convergent expansions in powers of z,
which are most useful in the small-angle region
{near z "= 0). In addition, the method is applicable
for the o and higher terms, although the algebra
is tedious and has not been carried out.
For completeness we have also obtained a double-
integral representation of the Coulomb amplitudes, '
in which the dependence on «, g, and 8 is exhibited °
in separate factors. . i
Applications of the considerations in the present .
paper to physical problems have been: considered ||
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