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Uniform regularized semiclassical propagator for thex22 potential

Robert S. Manning*

Center for Applied Mathematics, Cornell University, Ithaca, New York 14853

Gregory S. Ezra
Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York 14853

~Received 30 August 1995!

We apply recent methods for semiclassical time propagation involving non-Cartesian variables to the repul-
sive one-dimensional potentialV(x)5x22,x>0. In order to properly treat non-Cartesian variables, a quantum
regularization is first performed which leads to a Langer-type potential correction term in the Gutzwiller–Van
Vleck propagator. A nonuniform semiclassical treatment ofV(x)5x22 using this regularization improves
earlier unregularized results, and a uniform regularized propagator is very nearly exact for all times.

PACS number~s!: 03.65.Sq, 03.65.Ge, 32.30.2r

I. REGULARIZED SEMICLASSICAL PROPAGATOR

A central result in semiclassical mechanics is the expres-
sion for the semiclassical approximation to the quantum
propagator,

K~xb ,xa ,t !5^xbue2 iĤ t/\uxa&, ~1!

due to Van Vleck and Gutzwiller@1–3#:

Ksc~xb ,xa ,t !5~2p i\!2n/2(
r
AUdet ]2Rr

]xb]xa
U

3expF iRr~xb ,xa ,t !

\
2
ipm r

2 G . ~2!

Equation~2! expresses the amplitude for getting from initial
configurationxa to final configurationxb in time t under the
action of time-independent HamiltonianĤ as a sum over all
classical trajectoriesr connectingxa to xb in time t. Rr is
Hamilton’s principal function for trajectory r ,
Rr[*dtL(x,ẋ), while the term involvingm r is a correction
due to Gutzwiller that enables the earlier, short-time result of
Van Vleck to be extended past the first conjugate point@2#;
m r is the number of conjugate points encountered along tra-
jectory r , i.e., the cumulative count over time of the number

of zero eigenvalues of the matrix(]xb]xa

]2R )21
.

Several studies have examined the difficulties arising in
the derivation of the Gutzwiller–Van Vleck formula~2!
when non-Cartesian variables are involved@4–6#; for one
thing, the usual stationary phase approximation used in de-
riving the sum-over-trajectories formula@3# can fail when the
variablesx do not range from2` to `.

We have recently given an approach to the semiclassical
propagator for a class of one-dimensional~1D! systems with
non-Cartesian variablesx @5#. For the case wherex is a
single radial coordinate, 0<x<`, we obtain a semiclassical

propagator of a form very similar to~2!. In this approach@5#,
we first perform a quantum regularization developed by
Duru and Kleinert@4,7# which transforms the radial coordi-
natex to a Cartesian-like variablej5 lnx, 2`<j<`, at the
expense of introducing two additional integrations into the
quantum propagator. Performing these integrals by stationary
phase~consistent with the usual semiclassical approach@8#!
and simplifying leads to our result for the regularized semi-
classical propagator:

Ksc~xb ,xa ,t !5~2p i\!2n/2(
r
AUdet ]2Rr8

]xb]xa
U

3expF iRr8~xb ,xa ,t !

\
2
ipm r8

2 G . ~3!

This expression is identical to the Gutzwiller–Van Vleck
propagator~2!, except that the classical quantitiesRr and
m r have been replaced by the analogous quantities for a
modifiedclassical system, in which an additional termDV is
added to the potential energy function.~Full details of the
derivation and the general form of the potential energy cor-
rection can be found in@5#; cf. also@4#.!

An important application of our procedure is to systems
with singular potentialsV(x) of the formC/xa , 0,a,2. In
this case the regularization leads to a potential correction
term

DV5
\2

8mx2
, ~4!

the familiar Langer correction@9#. Langer’s original deriva-
tion and use of this correction was in energy-domain compu-
tations@9#; our regularization procedure introduces the same
correction into the time domain. Time-domain Langer cor-
rections have previously been presented by an asymptotic
analysis of the Bessel function in a partial wave expansion
for the action @10–13#; however, this asymptotic analysis
was later shown to be incorrect@4,14#. Gutzwiller ~@2#, Sec.
13.5! also provides a heuristic argument for using the Langer
correction in the time domain.

*Present address: Institute of Physical Science and Technology,
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II. APPLICATION: V„x…51/x2

We now consider a one-dimensional system with repul-
sive potentialV(x)5 1/x2 , 0<x<`. The propagator for
this potential has previously been studied by Basile and
Gray, who use a discretized WKB approximation to the
semiclassical propagator which does not contain the regular-
ization factor described above. Basile and Gray also develop
a uniform WKB propagator for this potential, to handle tra-
jectories which pass close to a caustic path@15#. The 1/x2

potential also has the advantage that the exact quantum
propagator is known@15#:

K~xb ,xa ,t !5
mAxbxa
i\t

expF im~xb
21xa

2!

2\t G I nSmxbxa
i\t D . ~5!

The regularized semiclassical propagator~3! is expressed in
terms of classical quantities determined for trajectories in the
corrected potential

V~x!5

11
\2

8m

x2
[
C

x2
. ~6!

We will first compare the nonuniform regularized semiclas-
sical propagator to the unregularized results of Basile and
Gray (C51) and to the exact propagator~5!. ~Several ap-
proximations to the short-time propagator for thex22 poten-
tial have been compared by Lolleet al. @16#.!

A. Classical mechanics

1. Time of travel

The classical motion subject to the potentialV(x)5
C

x2
is

exactly soluble, through the basic energy equation

ẋ25
2E

m
2

2C

mx2
. ~7!

Direct solution of this differential equation, for a trajectory
goingdirectly from xa to xb.xa , gives the time of travel:

t5
Am
2E

A2Ex222Cuxa
xb. ~8!

For notational convenience, we define

A~x,E![A2Ex222C. ~9!

Observe thatA50 at the inner turning pointxmin5AC/E.
Now we characterize all trajectories in this system. There

are two trajectories which connectxa to xb at a given energy
E: a direct trajectory, and an indirect trajectory, which
bounces off the potential wall~assuming bothxa andxb are
in the classically allowed regionx.AC/E). We define

ga52~ sign of initial velocity!,

gb5~ sign of final velocity!. ~10!

Using this notation and the basic solution for rightward mo-
tion ~8!, we can write the general time-of-travel formula:

t~xb ,xa ,E!5ga

AmA~xa ,E!

2E
1gb

AmA~xb ,E!

2E

[ga

AmAa
2E

1gb

AmAb
2E

. ~11!

We have introduced the shorthandA*[A(x* ,E).

2. Hamilton’s principal function

A similar direct integration ofR5*Ldt5*(E22V)dt
gives Hamilton’s principal function:

R~xb ,xa ,t !5Et2gaA2CmarccosA C

Exa
2

2gbA2CmarccosA C

Exb
2. ~12!

3. Density of trajectories

Next, we need the mixed second derivative ofR, the den-
sity of trajectories. We use the standard result that
]R/]xbuxb ,xa ,t5pb @2#:

]2R

]xb]xa
U
xb ,xa ,t

5
]pb
]xa

5Amgb

]

]xa
A2E2

2C

xb
2

5
gbAm~]E/]xa!

A2E2
2C

xb
2

5
gbAmxb~]E/]xa!

A~xb ,E!
.

~13!

We compute]E/]xa by implicit differentiation of~11! with
respect toxa , holding xb and t constant; some lengthy but
straightforward computations lead to the result:

]2R

]xb]xa
5

22E2Amgagbxaxb
ga~2C2Exa

2!Ab1gb~2C2Exb
2!Aa

. ~14!

4. Conjugate points

We need to determine where]2R/]xb]xa blows up; we
define a functiong, for which the following is true:

Lemma 1.For xaÞxmin ,
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]2R/]xb]xa blows up ⇔g~xb ,xa ,E![
ga~2C2Exa

2!

Aa
1

gb~2C2Exb
2!

Ab
50.

Proof: Since the denominator of]2R/]xb]xa is AbAag(xb ,xa ,E), g50 clearly implies that]2R/]xa]xb blows up. On the
other hand, if]2R/]xb]xa blows up, can we haveg(xb ,xa ,E)Þ0? This would requireAb50, so thatxb

25C/E and
2C2Exb

2Þ0. Hence, referring to~14!, we would needAa50 in order for]2R/]xb]xa to blow up. This, however, is not
allowed by the hypothesis.

Computation of]g(xb ,xa ,E)/]xb shows thatg always decreases along a trajectory: it starts from 0 at the beginning of the
trajectory, decreases to2` at the turning point if there is one, jumps to1` just past the turning point, and decreases
thereafter. Since conjugate points occur wheng50 ~except at the initial instancet50!, we can conclude that the number of
conjugate points,m,

m5H 1 for indirect trajectories withg~xb ,xa ,E!,0

0 otherwise.
~15!

@This determination of conjugate point count also holds for
the case xa5xmin ~excluded in the hypothesis of the
Lemma!, as is clear from direct analysis of]2R/]xb]xa
whenxa5xmin .#

B. Expressing everything in terms oft

To this point, we have been computing all classical me-
chanical quantities as a function of energyE. However, to
compute the regularized semiclassical propagator

Ksc~xb ,xa ,t !5
1

A2p i\
(

xa→xb
in timet

U ]2R8

]xb]xa
U
1
2

3expS iR8

\
2
iM 8p

2 D , ~16!

we must express everything in terms oft.

1. Inverting t„E…

Equation ~11! gives t(xb ,xa ,E), the time of travel for
trajectories to get fromxa to xb at energyE. To compute
Ksc(xb ,xa ,t), we need to find the trajectories which take
time t to get from xa to xb . Hence, we need to find the
energiesE which maket(xb ,xa ,E) equal a given time; that
is, we must invert the functiont(xb ,xa ,E). This results in a
quadratic equation inE, with the two solutions:

E5
m~xa

21xb
2!62Am2xa

2xb
222t2Cm

2t2
. ~17!

It is clear thatt cannot exceedtF[xaxbAm/2C ~the notation
is as in@15#!; there are no trajectories at any energy which
take longer than this to get fromxa to xb .

2. Direct versus indirect trajectories

We have just found the energies~17! of the two trajecto-
ries which take timet to get fromxa to xb ; however, we still
need to know if these trajectories are direct or indirect. To do
this, we analyze the functionstdir(xb ,xa ,E) and
t ind(xb ,xa ,E). A simple computation shows that

]t~xb ,xa ,E!

]E
5
g~xb ,xa ,E!

2AmE2
. ~18!

We have seen that for direct trajectoriesg(xb ,xa ,E),0.
Hence, ]tdir /]E,0. For indirect trajectories,
g(xb ,xa ,E),0 if and only if xb.xcp(xa ,E), with
xcp(xa ,E) the conjugate point toxa at energyE. We thus
need to find the relative positioning ofxb andxcp(xa ,E) for
different energiesE. We can determinexcp(xa ,E) explicitly
by solving g„xcp(xa ,E),xa ,E…50 ~recall that ga5gb51
for indirect trajectories!:

xcp~xa ,E!5
ACxa

AExa22C
. ~19!

Clearly xcp(xa ,E) decreases as a function ofE, and fur-
ther analysis shows thatxcp.xb for the lowest allowed en-
ergy andxcp,xb for the highest allowed energy. Thus, there
is some energyẼ, so thatxcp(E).xb for Emin,E,Ẽ, and
xcp(E),xb for Ẽ,E. So, g(xb ,xa ,E).0 for
Emin,E,Ẽ, while g(xb ,xa ,E),0 for Ẽ,E. Therefore,
]t/]E.0 for Emin,E,Ẽ, while ]t/]E,0 for Ẽ,E.

We now know the qualitative structure oftdir(xb ,xa ,E)
andt ind(xb ,xa ,E) as functions ofE. At E5Emin , when the
smaller ofxa andxb is on the potential wall, the direct and
indirect paths collapse to the same path, so the functions
tdir and t ind have the same value. We have seen thattdir
always decreases, whereast ind increases untilE5Ẽ, then
decreases thereafter. AsE→`, both functions approach 0,
which is clear from~11! sinceA(x,E)5O(AE). Hence, the
functionstdir and t ind are as shown in Fig. 1.

For a given value oft less than the critical value
tF5xaxbAm/2C ~the maximum value oft ind in Fig. 1!, we
have seen that there are two energiesE for which trajectories
take timet to get fromxa to xb . From Fig. 1, it is clear that
for t,t(xb ,xa ,Emin), the largerE value is an indirect tra-
jectory and the smallerE value is a direct trajectory. Simi-
larly, for t.t(xb ,xa ,Emin), both trajectories are indirect.

Now, t(xb ,xa ,Emin) is travel time from the turning point
x,[ min(xa ,xb) to x.[ max(xa ,xb), which is exactly
what we found in~11! to beAmA(x. ,E)/2E:
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Emin5
C

x,
2 ,

t~xb ,xa ,Emin!5
AmA~x. ,Emin!

2Emin
5A m

2C
x,Ax.

2 2x,
2 .

~20!

3. A in terms of t

We can also get an expression forAa ,Ab in terms of
(xb ,xa ,t), by directly transforming the definition ofA into
the variables (xb ,xa ,t):

A*5
umx

*
2 6Am2xa

2xb
222t2Cmu

tAm
. ~21!

A sign analysis of the expression inside the absolute value,
including the use of~20!, leads to the expression

A*5g*
mx

*
2 6Am2xa

2xb
222t2Cm

Amt
~*5a,b!. ~22!

4. Conjugate points in terms of t

We now expressg in terms of (xb ,xa ,t), by direct con-
version to the variables (xb ,xa ,t) and subsequent simplifi-
cation:

g5
72E2t3AmAm2xa

2xb
222t2Cm

~mxa
26Am2xa

2xb
222t2Cm!~mxb

26Am2xa
2xb

222t2Cm!
, ~23!

or the more condensed form:

g5
72E2t3Am2xa

2xb
222t2Cm

gagbAaAbm
3/2t2

5
72gagbE

2tAm2xa
2xb

222t2Cm

m3/2AaAb
. ~24!

For the top choice of signs~always indirect trajectories, by
Sec. II B 2!, g,0 by ~23!. For the bottom choice of signs,
~24! shows thatg,0 for direct trajectories (gagb521) and
g.0 for indirect trajectories (gagb51). Hence, using~15!,
we get a conjugate point for the top choice of sign, and not
for the bottom. Thus, the index can be expressed as

e
2 ipm
2 5expS 2

ip

4
7
ip

4 D5~ i !21/2expS 7
ip

4 D . ~25!

5. Density in terms of t

We now rewrite the second derivative]2R/]xa]xb
5 22E2Amgagbxaxb/AaAbg in terms of (xb ,xa ,t), using
the relation ~24! that E2gagb/AaAbg5 7m3/2/
2tAm2xa

2xb
222t2Cm:

]2R

]xa]xb
5

22E2Amgagbxaxb
AaAbg

5
6m2xaxb

tAm2xa
2xb

222t2Cm
.

~26!

6. Hamilton’s principal function in terms of t

Recall from~12! that

R5Et2gaA2CmarccosA C

Exa
21gbA2CmarccosA C

Exb
2

5Et2gaA2CmS arccosA C

Exa
21

gb

ga
arccosA C

Exb
2D .

If arccos represents the multivalued inverse cosine function,
then

arccosX6 arccosY5 arccos@XY7A~12X2!~12Y2!#.
~27!

FIG. 1. Qualitative sketch of the graphs oftdir(E) and t ind(E)
for motion in the potenitalV(x)5C/x2 , C.0.
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Analysis of the relative sizes ofX5AC/Exa2 and
Y5AC/Exb2, and the sign ofXY7A(12X2)(12Y2) leads
to a similar relation for the single valued arccos functions:

arccosX6arccosY5gaarccos~XY7A12X2A12Y2!. ~28!

We directly compute and simplify to find

XY7A~12X2!~12Y2!

57Am2xa
2xb

222Cmt2
1

mxaxb
. ~29!

Finally, we can express Hamilton’s principal function in
terms of (xb ,xa ,t):

R5
m~xa

21xb
2!62Am2xa

2xb
222Cmt2

2t
2A2CmS p

2
6

p

2
7arccos

Am2xa
2xb

222Cmt2

mxaxb
D . ~30!

C. Assembling the regularized semiclassical propagatorKsc

Now we are ready to evaluate the semiclassical propagator~16!, with the sum involving two trajectories. The amplitude
1/A2p i\u]2R8/]xa]xbu1/2 is the same for the two trajectories taking timet. Each termiR8/\2 ipM 8/2 in the exponent
which does not have a6 or a7 will survive as is, while those which do will become part of a cos term:

K5A2xaxb
p\t

m~m2xa
2xb

222Cmt2!21/4

i
expF im~xa

21xb
2!

2\t
2
ipA2Cm

2\
GcosFAm2xa

2xb
222Cmt2

\t
2

pA2Cm
2\

1
A2Cm

\
arccos

Am2xa
2xb

222Cmt2

mxaxb
2

p

4 G
5
1

i
A 2m

p\t
S 12

t2

tF
2 D 21/4

expF im~xa
21xb

2!

2\t
2
ipA2Cm

2\
GcosF A2CmAtF

2

t2
21

\
2

pA2Cm
2\

1
A2Cm

\
arccosA12

t2

tF
22

p

4
G .
~31!

~for t,tF5 Amxaxb/A2C). In Figs. 2 and 3, we plot the
unregularized (C51) and regularized (C511 \2/8 ,\51)
semiclassical propagators together with the exact propagator
~5!.

Not surprisingly, the semiclassical expressions fail near
the caustic timet5tF , since the two time-t trajectories~sta-

tionary points in path space! coalesce att5tF . The uniform
semiclassical computation in the next section will remove
this difficulty. For now, however, we note fort!tF , when
we expect the primitive semiclassical approximation to ap-
ply, the regularized computation provides a small but clear
improvement to the unregularized approach.

FIG. 2. Comparison of the unregularized semiclassical propaga-
tor K(3,4,t) to the exact propagator forV(x)51/x2.

FIG. 3. Comparison of the regularized semiclassical propagator
K(3,4,t) to the exact propagator forV(x)51/x2.
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III. UNIFORM SEMICLASSICAL APPROXIMATION

In this section we extend our regularized semiclassical
treatment to a uniform approach able to treat the whole range
of propagation times:t,tF , t.tF , andt.tF . The underly-
ing classical mechanics is, of course, the same, as expressed
in Eqs.~25!, ~26!, and~30!.

Uniform approximations were developed to handle coa-
lescence of stationary points in the stationary phase approxi-
mation @17#, and have thus played an important role in the
development of semiclassical methods, since the stationary
paths in the Gutzwiller–VanVleck sum will coalesce for cer-
tain travel times@3,18,19#. Important recent studies of uni-
form time-domain propagators have been made by Basile
and Gray@15# and Campolieti and Brumer@20#. We now
apply these results to the regularized 1/x2 potential under
study.

A. Classically allowed region

In the classically allowed region, there are exactly two
real trajectories connecting two points in a given travel time
t,tF ; these coalesce to a single trajectory att5tF and then
disappear, the standard and simplest setting for a uniform
treatment. The nonuniform stationary phase treatment uses a
quadratic approximation to Hamilton’s principal functionR
at each stationary path~classical trajectory!; here we instead
consider both stationary points at once by mappingR onto a
cubic polynomialR5 1/3u32gu1A @17,18#. The param-
etersg and A change with the time of travel so that the
stationary points coalesce att5tF as required. Asymptotic
evaluation of the discretized path integral under this cubic
mapping provides the uniform semiclassical propagator~cf.
@18,20#!:

K~xb ,xa ,t !5~2p i\!21/2H U ]2R

]xa]xb
U

~1!

1/2

3Bi ~2 !~2g!expF iR~1!

\
2
ipM ~1!

2 G
1U ]2R

]xa]xb
U

~2!

1/2

3Bi ~1 !~2g!expF iR~2!

\
2
ipM ~2!

2 G J , ~32!

where

Bi ~6 !~2g![Ap@g1/4Ai ~2g!6 ig21/4Ai 8~2g!#

3expF7 i S 23 g3/22
p

4 D G ~33!

and

g[S 3~R~2!2R~1!!

4\ D 2/3. ~34!

The function Ai is the Airy function. The trajectory labeled
by (1) is the one with the smaller value ofR @15#. Hence, we
must determine which classical trajectory gives the smaller
value ofR.

It will be convenient to rewriteR by noting that

p

2
2arccos

Am2xa
2xb

222Cmt2

mxaxb
5arctan

Am2xa
2xb

222Cmt2

tA2Cm
~35!

as a simple triangle diagram will demonstrate. If we define

X[
Am2xa

2xb
222Cmt2

tA2Cm
~36!

thenR is given by

R5
m~xa

21xb
2!

2t
6A2CmX2A2CmS p

2
6arctanXD

5
m~xa

21xb
2!

2t
2A2Cm

p

2
6A2Cm~X2arctanX!. ~37!

It is easily shown thatf (X)[X2arctanX.0 for X.0;
hence, the top choice of signs has the larger value ofR.

Furthermore, from this computation, we can writeg as

g5S 3A2Cm~X2arctanX!

2\ D 2/3. ~38!

Thus, the term exp@72/3ig3/2# in the functionsBi equals:

expF7
2

3
ig3/2G5expF7

iA2Cm~X2arctanX!

\ G ~39!

and cancels the6 term in exp@iR( )/\#@cf. ~37!#. In addition,
the term exp@6ip/4# in the functionsBi cancels the term
exp@2 ipm( )/2#, except for the leading term (i )21/2@cf. ~25!#.

We can now write a compact expression for the uniform
semiclassical propagator~32!, pulling out of the braces the
absolute value of the second derivative and the non-6 part
of R, which are the same for the two trajectories:

Ku~xb ,xa ,t !5~2i\!2
1
2~ i !2

1
2expF im~xa

21xb
2!

2\t
2
iA2Cmp

2\ GU
3

]2R

]xa]xb
U

~ !

1
2
$@g

1
4Ai ~2g!2 ig2

1
4Ai 8~2g!#

1@g
1
4Ai ~2g!1 ig2

1
4Ai 8~2g!#%,

52g
1
4Ai ~2g!

1

iA2\
expF im~xa

21xb
2!

2\t

2
iA2Cmp

2\ GU ]2R

]xa]xb
U

~ !

1
2
. ~40!

We now insert the fact that
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U ]2R

]xb]xa
U

~ !

5
m2xaxb

Xt2A2Cm

to find that

Ku~xb ,xa ,t !5
mA2xaxb

itAX\~2Cm!1/4
g1/4Ai ~2g!

3expF im~xa
21xb

2!

2\t
2
iA2Cmp

2\ G . ~41!

B. Classically disallowed region

We now analytically continue this expression into the re-
gion where there are no real classical trajectories, and find
that everything carries through without difficulty. We con-
sider two disallowed trajectories which are the analytic con-
tinuation of the two trajectories from the allowed region; we
thus use the same classical mechanical formulas~25!, ~26!,
and ~30!.

Now the quantityX switches from being real and positive
to being pure imaginary~we will take it with positive imagi-
nary part!. In addition, arctanX will also be pure imaginary
(tanz5 eiz2e2 iz/ i (eiz1e2 iz) is pure imaginary whenz is
pure imaginary!. Hence, the expression forg is a pure imagi-
nary number to the 2/3 power, which will be real and nega-
tive @15#.

The remaining derivation of the uniform semiclassical
propagator goes through as before, giving the same result.
We must take care to treat the termsAX andg1/4 correctly,
taking the principal value in each. SinceX is pure imaginary
with positive imaginary part andg is real and negative, each
of these expressions will have argumentp/4, and hence the
arguments will cancel in the uniform propagator. Hence,
without loss of generality, we may writeuXu and ugu in the
formula for Ku and unambiguously cover both the allowed
and disallowed regions~cf. @15#!:

Ku~xb ,xa ,t !5
mA2xaxbugu1/4Ai ~2g!

i tA\uXu~2Cm!1/4

3expF im~xa
21xb

2!

2\t
2
iA2Cmp

2\ G . ~42!

The comparison between this regularized uniform ap-
proximation (C511 \2/8 ,\51) and the exact result is
very good for this system; as Fig. 4 shows, the propagators
are indistinguishable to the naked eye. Basile and Gray@15#
compared the unregularized uniform propagator to the exact
propagator for this system; this comparison is recreated in
Fig. 5 by insertingC51 into Ku . Figure 6 shows that the
regularized uniform approximation is not in fact exact for
this system, with an error of about 0.5%.

IV. CONCLUSION

We have applied a semiclassical regularization to evaluate
the propagator for the potentialV(x)51/x2, with non-
Cartesian coordinatex>0; this regularization introduces a
Langer-type correction term to the potential, which can then
be treated with standard semiclassical methods. In the case
studied here of a repulsive potential, classical trajectories in
the unregularized system do not reach the problematic edge
of the variable definition (x50), so that one might think

FIG. 4. Comparison of the regularized uniform propagator
K(3,4,t) to the exact propagator forV(x)51/x2.

FIG. 5. Comparison of the unregularized uniform propagator
K(3,4,t) to the exact propagator forV(x)51/x2.

FIG. 6. Closer look at the comparison of the regularized uniform
propagatorK(3,4,t) to the exact propagator forV(x)51/x2.

53 667UNIFORM REGULARIZED SEMICLASSICAL PROPAGATOR FOR . . .



regularization to be unnecessary. However, we have demon-
strated that, for the 1/x2 system, regularization results in a
small but clear improvement to the accuracy of the semiclas-
sical propagator. In fact, when a uniform treatment is com-
bined with this regularization technique, the semiclassical
propagator forV(x)51/x2 is very nearly exact. We note that,
in the case of an attractive potential such as
V(x)521/x,x>0, regularization affects the qualitative na-
ture of the classical trajectories~keeping them away from the
singularity atx50 with which they collide in the unregular-

ized system!, and thus plays a more important role in the
computation of the semiclassical propagator~cf. @5#!. Thus,
in studying systems with non-Cartesian coordinates or singu-
lar potentials semiclassically, the regularization procedure
applied here should be invoked.
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