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PHYSICAL REVIEW A VOLUME 53, NUMBER 2 FEBRUARY 1996

Uniform regularized semiclassical propagator for thex ™2 potential

Robert S. Manning
Center for Applied Mathematics, Cornell University, Ithaca, New York 14853

Gregory S. Ezra
Baker Laboratory, Department of Chemistry, Cornell University, Ithaca, New York 14853
(Received 30 August 1995

We apply recent methods for semiclassical time propagation involving non-Cartesian variables to the repul-
sive one-dimensional potentisfx) =x~2,x=0. In order to properly treat non-Cartesian variables, a quantum
regularization is first performed which leads to a Langer-type potential correction term in the Gutzwiller—Van
Vleck propagator. A nonuniform semiclassical treatmentV¢k)=x"2 using this regularization improves
earlier unregularized results, and a uniform regularized propagator is very nearly exact for all times.

PACS numbegs): 03.65.Sq, 03.65.Ge, 32.36x

I. REGULARIZED SEMICLASSICAL PROPAGATOR propagator of a form very similar t@). In this approactp5],
we first perform a quantum regularization developed by
A central result in semiclassical mechanics is the expresburu and Kleinerf4,7] which transforms the radial coordi-
sion for the semiclassical approximation to the quanturmatex to a Cartesian-like variablg=Inx, —co<¢<ow, at the

propagator, expense of introducing two additional integrations into the
A guantum propagator. Performing these integrals by stationary
K(Xp ,Xa,t):<xb|e*th/ﬁ|xa>, 1) phase(consistent with the usual semiclassical approaih
and simplifying leads to our result for the regularized semi-
due to Van Vleck and Gutzwillgil—3]: classical propagator:
Kse(Xp Xa 1) = (2711 %1) ~"2 detﬁ- Ko Xp ,Xq,t) = (27 )~ M2> d t&z—R;_
a7 Tan r &XbaXa SC( b>7a: _( 7 T eﬂxbaxa
iR/ (Xp,Xa,t) i7u iR/ (Xp,Xa,t) i7u,
Xex;{ : z - 2r ) X ex ol ;L A 2'ur )

Equation(2) expresses the amplitude for getting from initial s expression is identical to the Gutzwiller—Van Vieck
configurationx, to final configuratiorx, in time t under the  ronagator(2), except that the classical quantiti®&s and
action of time-independent Hamiltoni&h as a sum over all u, have been replaced by the analogous quantities for a
classicaltrajectoriesr connectingx, to X, in time t. R, is  modifiedclassical system, in which an additional tet is
Hamilton's  principal ~ function for  trajectory r,  added to the potential energy functiaffull details of the
R,=Jd7L(x,x), while the term involvingu, is a correction  derivation and the general form of the potential energy cor-
due to Gutzwiller that enables the earlier, short-time result ofection can be found if5]; cf. also[4].)

Van Vleck to be extended past the first conjugate pit An important application of our procedure is to systems
wr is the number of conjugate points encountered along tragith singular potential®&/(x) of the formC/x*, 0<a<2. In
jectoryr, i.e., the cumulative count over time of the numberthis case the regularization leads to a potential correction

. 7R -1
of zero eigenvalues of the matr(xaxbax ) . term
Several studies have examined the difficulties arising in )
the derivation of the Gutzwiller—Van Vleck formulé2) AV = 4)
when non-Cartesian variables are involMed-6]; for one 8mx*’

thing, the usual stationary phase approximation used in de-
riving the sum-over-trajectories formuld] can fail when the  the familiar Langer correctiof®]. Langer’s original deriva-
variablesx do not range from-oo to . tion and use of this correction was in energy-domain compu-
We have recently given an approach to the semiclassicaations[9]; our regularization procedure introduces the same
propagator for a class of one-dimensiofHD) systems with  correction into the time domain. Time-domain Langer cor-
non-Cartesian variables [5]. For the case wher& is a rections have previously been presented by an asymptotic
single radial coordinate,€9x=<«, we obtain a semiclassical analysis of the Bessel function in a partial wave expansion
for the action[10-13; however, this asymptotic analysis
was later shown to be incorrelgt,14]. Gutzwiller ([2], Sec.
“Present address: Institute of Physical Science and Technolog}3.5 also provides a heuristic argument for using the Langer
University of Maryland, College Park, MD 20742. correction in the time domain.
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IIl. APPLICATION:  V(x)=1/x? ya=—( sign of initial velocity),

We now consider a one-dimensional system with repul-
sive potentialV(x)= 1/x?>, 0<x=<«. The propagator for
this potential has previously been studied by Basile and
Gray, who use a discretized WKB approximation to the
semiclassical propagator which does not contain the regulatsing this notation and the basic solution for rightward mo-
ization factor described above. Basile and Gray also develofion (8), we can write the general time-of-travel formula:

a uniform WKB propagator for this potential, to handle tra-
jectories which pass close to a caustic pgth]. The 1k2

vp= ( sign of final velocity. (10

potential also has the advantage that the exact quantum JMA(X, ,E) JMA(x, ,E)
propagator is knowf15]: txp X, B)=va=——Sg W
. m m
My/XpXa |m(x§+ xg) MXX5 =7y, \/—Aa + Y \/—Ab . (11
K(Xb rxaat): |ﬁt ex Zﬁt v |ﬁt (5) 2E 2E

The regularized semiclassical propaga®yris expressed in We have introduced the shorthaAd =A(X, ,E).
terms of classical quantities determined for trajectories in the

corrected potential 2. Hamilton’s principal function
A similar direct integration ofR=fLdr= [(E—2V)d7
#2 gives Hamilton’s principal function:
1+ ——
8m C
Vi =—o—=1s" (6)
C
R(Xp ,X5,t)=Et—y,y2Cmarcco 5
We will first compare the nonuniform regularized semiclas- Exa
sical propagator to the unregularized results of Basile and C
Gray (C_: 1) and to the exact propagat(s). (ngeral ap- — yp2C marccosy / —. (12
proximations to the short-time propagator for the? poten- Ex,
tial have been compared by Lolé al. [16].)
3. Density of trajectories
A. Classical mechanics Next, we need the mixed second derivativeRpfthe den-
1. Time of travel sity of trajectories. We use the standard result that

IRIIXp|x,, x, +=Pp [2]:
The classical motion subject to the potentiglk) = 2 is

exactly soluble, through the basic energy equation 7R oy I P . 2C
MpdXa . OXg Mo ox. X2
., 2E 2C @ b"ar
Xe=———.
m- mx _ oML axXa) _ yoVmx(GE/x,)
. . . . . . - 2C A(x,E)

Direct solution of this differential equation, for a trajectory 2E— —
going directly from x, to X,>X,, gives the time of travel: Xp

(13

Vm
— / 2 X
t= 2E 2Ex _2C|x§' ®  we computedE/ dx, by implicit differentiation of(11) with
respect tox,, holding x, andt constant; some lengthy but

For notational convenience. we define straightforward computations lead to the result:

A(x,E)=2Ex?—2C. (9) PR — 2E2VMy.yuXaXs
MXpdXa  Ya(2C—EX5)Ap+ yp(2C—ExD)A,

(14
Observe thah=0 at the inner turning point,,;,= vC/E.

Now we characterize all trajectories in this system. There
are two trajectories which connext to x,, at a given energy
E: a direct trajectory, and an indirect trajectory, which We need to determine whe##R/dx,dx, blows up; we
bounces off the potential walbssuming botx, andx, are  define a functiorg, for which the following is true:
in the classically allowed regiox>+/C/E). We define Lemma 1For Xz# Xmin,

4. Conjugate points
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7a(2C—EX3)  7,(2C—EX}) 0
+ =0.
Aa Ab

3°RIdxpdx, blows up ©g(Xp,Xs,E)=

Proof: Since the denominator PR/ dx,dX, is ApA,0(Xp X4, E), g=0 clearly implies that?R/dx,dx, blows up. On the
other hand, if9°R/dx,dx, blows up, can we have(x,,X,,E)#0? This would requireA,=0, so thatxﬁzC/E and
2C—Ext2,9t 0. Hence, referring tq14), we would needA,=0 in order for 9°R/dx,dx, to blow up. This, however, is not
allowed by the hypothesis.

Computation ofig(xy, ,X4,E)/dx, shows thag always decreases along a trajectory: it starts from 0 at the beginning of the
trajectory, decreases te at the turning point if there is one, jumps tboe just past the turning point, and decreases
thereafter. Since conjugate points occur wigen0O (except at the initial instance=0), we can conclude that the number of
conjugate pointsy,

1 for indirect trajectories withg(x, ,X,,E)<<0

= 1
#71o otherwise. (9
|
[This determ_lnatlon of conjugaye point count als;_o holds for I(Xp X0 E)  9(Xp ,Xa E)
the casex,=Xmin (excluded in the hypothesis of the = (19

Lemma, as is clear from direct analysis GPR/dx,dx, JE 2\mE?

when Xg= Xmin -
a=Xmin-] We have seen that for direct trajectorigéx, ,X,,E)<0.

Hence, dty;/dE<O. For indirect trajectories,

9(Xp,X5,E)<O if and only if Xx,>Xcp(Xa,E), with
To this point, we have been computing all classical mex.p(X,,E) the conjugate point t, at energyE. We thus

chanical quantities as a function of energy However, to  need to find the relative positioning &f andx.y(x,,E) for

B. Expressing everything in terms oft

compute the regularized semiclassical propagator different energie€. We can determing.,(x,,E) explicitly
N by _sol_ving g(xcp(xa_,E),xa,E)=0 (recall that y,=v,=1
PR’ |2 for indirect trajectories
KedXp 1 Xg,1) = ——
SC( bs”a Zﬂiﬁxa_'xb aXb(gxa \/EX

in fmet ch(xa ,E) = —Za. (19)

iR iM'm VEX;—C

xXex 7— T ) (16

Clearly x.p(X4 ,E) decreases as a function &f and fur-
ther analysis shows that.,>x,, for the lowest allowed en-
ergy andx.,<x, for the highest allowed energy. Thus, there
is some energy, so thatx.,(E)>Xx, for Ey,,<E<E, and
) ) ) Xcp(BE)<x, for E<E. So, g(Xy,Xa,E)>0 for
Equation (11) gives t(xy,X4,E), the time of travel for Emin<E<Ea while g(x,,x4,E)<0 for E<E. Therefore,
trajectories to get fronx, to x, at energyE. To compute JtIJE>O for E... <E<E. while at/dE<0 for E<E
Kse(Xp.Xa,1), we need to find the trajectories which take "\ o kn(;nvv the quéllitative structure QIir(va).(aaE)
time t_ to get_from Xg t0 Xp. Hence, we ne_ed to_ fln.d the andt;4(xp X, ,E) as functions of. At E=E,p;,, when the
gnerguasE W.h'Ch maket(x, ’.Xa’E) equal a given t|me,.that smaller ofx, andx,, is on the potential wall, the direct and
IS, we "?“St mveﬁ the fun.Ct'Ot(Xb’Xa’E)' '.I'hls'results Na indirect paths collapse to the same path, so the functions
guadratic equation i, with the two solutions: tgy andti,g have the same value. We have seen that

always decreases, wherefag; increases untiE=E, then
(17) decreases thereafter. AS—o0, both functions approach 0,

we must express everything in termstof

1. Inverting t(E)

c M(x2+x2) * 2/m?xaxz— 2t>Cm

2t? ' which is clear from(11) sinceA(x,E)zO(\/E). Hence, the
functionsty;, andt;,q are as shown in Fig. 1.
Itis clear that cannot exceet:=X,X,m/2C (the notation For a given value oft less than the critical value
is as in[15]); there.are no trajectories at any energy WhiChtpzxaxb /mi2C (the maximum value of;, 4 in Fig. 1), we
take longer than this to get fromy, to X, . have seen that there are two enerdigfer which trajectories
) o _ ) take timet to get fromx, to x,. From Fig. 1, it is clear that
2. Direct versus indirect trajectories for t<t(X,,Xa,Emin), the largerE value is an indirect tra-

We have just found the energi€k?) of the two trajecto- jectory and the smalleE value is a direct trajectory. Simi-
ries which take time to get fromx, to x,, ; however, we still ~ larly, for t>t(xy,Xa,Enin), both trajectories are indirect.
need to know if these trajectories are direct or indirect. To do NOW, t(Xy,Xa,Emin) is travel time from the turning point
this, we analyze the functionsty; (Xy,X,,E) and X<= min(Xs,Xp) t0 X== max(x,,Xp), which is exactly
tind(Xp .Xa,E). A simple computation shows that what we found in(11) to be ymA(x-. ,E)/2E:



664

t(E)=tgt

UEmin) T

E

FIG. 1. Qualitative sketch of the graphs @f,(E) andt;,q(E)

for motion in the potenitaV(x)=C/x?, C>0.
C
Emin:za
VMA(X- ,Epmin) m
t(Xp Xa s Emin) = — 5= = \/ 5% X2 —x2.
2Enmin 2C

(20

¥ 2E23mm?x3x2— 2t°Cm
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3. Ainterms of t

We can also get an expression fAg,Ap in terms of
(Xp:Xa,t), by directly transforming the definition ok into
the variables X, ,x, ,t):

|m>E + m2x3x;— 2t2Cm|
tym

A, = (22)

A sign analysis of the expression inside the absolute value,
including the use of20), leads to the expression

mxé + \mPxaxp— 2t°Cm
Jmt

As=Ya (*=a,b). (22

4. Conjugate points in terms of t

We now expresg in terms of &, ,X,,t), by direct con-
version to the variablesx(,x,,t) and subsequent simplifi-
cation:

= ; (23

9 (Mx2+ \Jm2x2x2 — 2t2Cm) (M3 = mPx2xz — 2t>Cm)
or the more condensed form:

F2E23mAGX;— 2t°Cm T 2y, E2tym?xExg— 2t°Cm (24

g= VeV AAMIA2 = m2A A,
|

For the top choice of signg&@lways indirect traj.ectories',, by PR _oE2 \/E'Yaybxaxb + MPX X,
Sec. Il B 2, g<0 by (23). For the bottom choice of signs, FY AA = = —.
(24) shows thay<<0 for direct trajectories ¢, y,=—1) and a%7b a"vd tVM™XGxp— 2t Cm(26)

g>0 for indirect trajectories ¢,y,=1). Hence, using15),

we get a conjugate point for the top choice of sign, and not

for the bottom. Thus, the index can be expressed as

e_izwzex;{ - %T+IZW) =(i)" l’Z‘ex;< +IZ7T> (25

5. Density in terms of t

We now rewrite the second derivativé®R/dx,oXp
= — 2E2\My.ypXaXs! AxALg in terms of &, ,X,,t), using
the relation (24 that EZy,y,/AALg= Fm>?

2tym?xaxg— 2t2Cm:

6. Hamilton’s principal function in terms of t

Recall from(12) that

C

[ C
R=Et— y,V2Cmarcco = 2Jr«yb\/ZCmarcco ﬁ

=Et—y,V2C (arCCOS\/ arCCOS\/ )

If arccos represents the multivalued inverse cosine function,
then

arccoX=* arcco¥ = arcco§XY= /(1— XZ)(l - Yz)].
(27)
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Analysis of the relative sizes ofX=C/Ex: and XYF(1-X3)(1-Y?)
Y=/C/ExZ, and the sign oK YT (1 X?)(1-Y?) leads

to a similar relation for the single valued arccos functions: = 3 Jm>3Z—2CmE 1 (29)
a MXXp,
arcco¥X + arccod = y,arcco$X Y y1—X2J1-Y?). (28 *

Finally, we can express Hamilton’s principal function in
We directly compute and simplify to find terms of &y ,X,,t):

m(x2+x3) = 2/m?x2x2—2Cm¢ T ow Jm2xaxg—2Cme
= -2 E E Farccos

2t T MXeXp ' (30

C. Assembling the regularized semiclassical propagatdK.

Now we are ready to evaluate the semiclassical propaga6y with the sum involving two trajectories. The amplitude
1/\2mih|9?R' 1 9x49%,| Y2 is the same for the two trajectories taking timeEach termiR’/2— i7M'/2 in the exponent
which does not have & or a = will survive as is, while those which do will become part of a cos term:

2%, M(M2x2x2—2Cme) " [im(x2+x?) iwy2Cm m22xg—2Cme  7y2Cm
K= e ex co 7 -

i 2ht 2k 2h
s \/zcmﬁrcco" m2xax5—2Cm¢e o
ﬁ/ dl S n1anb 4
1 [2m . 2\ 7" [im(x 2+xp) imy2Cm V2 -1 m/zcm \/ZCm 2
“i Va2 YT om on |°° ﬁ 2h arceosy T g
(3D

(for t<tg= \/ﬁxaxb/\/ZC). In Figs. 2 and 3, we plot the tionary points in path spageoalesce at=tg. The uniform
unregularized C=1) and regularized@=1+ #2/8 ,i=1) semiclassical computation in the next section will remove

semiclassical propagators together with the exact propagattiis difficulty. For now, however, we note fart, when
(5). we expect the primitive semiclassical approximation to ap-

Not surprisingly, the semiclassical expressions fail neaply, the regularized computation provides a small but clear
the caustic tima=tg, since the two time-trajectories(sta-  improvement to the unregularized approach.

2
K(3,4,t)
[K(3,4,t) | [ I
0.8
0.8¢
0.41 X
0.4¢1 Ksc,unreg 8c,reg
Rexact n
4 ’ 8 t;. t 4 f t
tr

FIG. 2. Comparison of the unregularized semiclassical propaga- FIG. 3. Comparison of the regularized semiclassical propagator
tor K(3,4t) to the exact propagator f&f(x) = 1/x2. K(3,4t) to the exact propagator fof(x)= 1/x2.
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11l. UNIFORM SEMICLASSICAL APPROXIMATION The function Ai is the Airy function. The trajectory labeled
In this section we extend our regularized semiclassicaPy (1) is the one Wlt.h the sm_allerva_lue f[15]. Hence, we

. must determine which classical trajectory gives the smaller
treatment to a uniform approach able to treat the whole range. e of R
of propagation timest<<tg, t=tg, andt>t.. The underly- :

. ; F It will be convenient to rewriteR by noting that
ing classical mechanics is, of course, the same, as expressed

in Egs.(25), (26), and(30). M52 —2Cme JmBEZ—2CmE
Uniform approximations were developed to handle coa- I—arccos M?xaXs—2Cme — arctan M?xaxs— 2Cme

lescence of stationary points in the stationary phase approxi- 2 MXaXp ty2Cm

mation[17], and have thus played an important role in the (35

development of semiclassical methods, since the stationary . _ _ _ _
paths in the Gutzwiller—VanVleck sum will coalesce for cer-as a simple triangle diagram will demonstrate. If we define
tain travel timeg3,18,19. Important recent studies of uni-

form time-domain propagators have been made by Basile B \/mZXa?XE—ZCmt2

and Gray[15] and Campolieti and Brume20]. We now X= J2em (36)
apply these results to the regularizedxd potential under

study.

thenR is given by
m(x2+x2)
R= — 2 "0

. . 2t
In the classically allowed region, there are exactly two
real trajectories connecting two points in a given travel time m(x§+ xﬁ)
t<tg; these coalesce to a single trajectontat: and then = ot
disappear, the standard and simplest setting for a uniform
treatment. The nonuniform stationary phase treatment uses g
guadratic approximation to Hamilton’s principal functiéh
at each stationary patlelassical trajectory here we instead
consider both stationary points at once by mappggnto a
cubic polynomialR= 1/3u®—yu+A [17,18. The param-
|

A. Classically allowed region

*+2CmX—+2C m(% *arctarX

- 2Cmgi J2Cm(X—arctarX).  (37)

is easily shown thatf(X)=X-—arctarxX>0 for X>0;
hence, the top choice of signs has the larger valug.of
Furthermore, from this computation, we can writeas

3\2Cm(X—arctarX) | #*

etersy and A change with the time of travel so that the 7

stationary points coalesce &ttr as required. Asymptotic

evaluation of the discretized path integral under this cubic e 302 . . .
mapping provides the uniform semiclassical propagéter  11Us. the term expr2/3iy*?] in the functionsBi equals:

[18,20): F{_i\/ZCm(X—arctarX)
=exp + 7

(39

R (39)

&Xaaxb

2
12 ex;{ 73 ¥3?

K(xb,xa,t)=(27-rih)1’2[

o and cancels thet term in exiRO/][cf. (37)]. In addition,

Bi(-) iRy 17M(y, the term expxiz/4] in the functionsBi cancels the term
XBI i (—y)exp—= - — exfd — imu12], except for the leading term )~ Y4 cf. (25)].
We can now write a compact expression for the uniform

PR |1? semiclassical propagat82), pulling out of the braces the
+ IXGdXp absolute value of the second derivative and the tfiopart
@ of R, which are the same for the two trajectories:
iR iT™M
. (2) 2) .
XBitH(— y)exg —2 — —2L (39 11 [imeEHxd)  iV2Cma
h 2 K —(2ih) " 2(i)" 2 >
U(Xb 1Xa!t) ( | ) 2(') 2ex th Zh
1
where PR |2 1 S
X oxadxe {[y3AiI(—y) =iy  3AI' (= )]

0]

Bit*)(—y)=\a[y¥Ai(—y) =iy YAi" (- y)] 1 N
+[y3AI(—y)+iy 3AI"(— )]},

(2 g T
37 4 — 243Ai (— 7) ——exg ——o
i2h 2ht
1
and iV2Cmr]|| R |2 10
-2k axa&xb\()' (40

3(R(2)_ R(l)) 2/3
e

v We now insert the fact that
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2
|K(3,4,t)1? IR(3,4,t) |
0.6 0.6
0.3 0.3
Kexact: Ksc,unif,reg Kexactr Ksc,unif,unreg
4 8 t 4 8 t

FIG. 4. Comparison of the regularized uniform propagator FIG. 5. Comparison of the unregularized uniform propagator
K(3,4}) to the exact propagator faf(x) = 1/x2. K(3,4) to the exact propagator faf(x)=1/x2.

My2xaXp| ¥1*Ai (— )

IR ‘ ”FXaXb K (X Xg,t)=
— u b:ras . 1/4
XpdXa|(, Xt2\2Cm itV |X|2Cm)
im(x3+x2) iy2Cmmr 4
X 2 | P

to find that

The comparison between this regularized uniform ap-
proximation C=1+ #2/8,A=1) and the exact result is

K _ MV2XaXp Vap; very good for this system; as Fig. 4 shows, the propagators
u(Xp X, 1) = - Y A=) are indistinguishable to the naked eye. Basile and Gtay
itVXAa(2Cm) X ,
compared the unregularized uniform propagator to the exact
im(x§+x§) iv2Cmar propagator for this system; this comparison is recreated in
X ex st 27 |- 4D Fig. 5 by insertingC=1 into K. Figure 6 shows that the

regularized uniform approximation is not in fact exact for
this system, with an error of about 0.5%.

B. Classically disallowed region
IV. CONCLUSION

We now analytically continue this expression into the re-
gion where there are no real classical trajectories, and fin
that everything carries through without difficulty. We con- Cartesian coordinatg=0; this regularization introduces a
sider two disallowed trajectories which are the analytic Con'l_anger-type correction térm to the potential, which can then
tinuation of the two trajectories from the allowed region; we g treated with standard semiclassical methods. In the case
thus use the same classical mechanical form(®2a5 (26),  stydied here of a repulsive potential, classical trajectories in
and (30 the unregularized system do not reach the problematic edge

Now the quantityX switches from being real and positive of the variable definition X=0), so that one might think
to being pure imaginargwe will take it with positive imagi-
nary parf. In addition, arctak will also be pure imaginary
(tarz= e?—e"?/i(e?+e"?) is pure imaginary whem is |K(3,4,t) |
pure imaginary. Hence, the expression foris a pure imagi- 0.17
nary number to the 2/3 power, which will be real and nega-
tive [15].

The remaining derivation of the uniform semiclassical
propagator goes through as before, giving the same result.
We must take care to treat the terniX and y* correctly, 0.15
taking the principal value in each. Sin¥eis pure imaginary
with positive imaginary part ang is real and negative, each
of these expressions will have argumeritt, and hence the
arguments will cancel in the uniform propagator. Hence,
without loss of generality, we may writX| and|y| in the
formu!a forKk, and_unamb'gl"OUS|y cover both the allowed FIG. 6. Closer look at the comparison of the regularized uniform
and disallowed regiongcf. [15]): propagatoriK (3,4,t) to the exact propagator faf(x) = 1/x?.

We have applied a semiclassical regularization to evaluate
e propagator for the potential(x)=1/x?, with non-

0.16
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regularization to be unnecessary. However, we have demoieed system and thus plays a more important role in the
strated that, for the %# system, regularization results in a computation of the semiclassical propagatci [5]). Thus,
small but clear improvement to the accuracy of the semiclasin studying systems with non-Cartesian coordinates or singu-
sical propagator. In fact, when a uniform treatment is comdar potentials semiclassically, the regularization procedure
bined with this regularization technique, the semiclassicabpplied here should be invoked.

propagator fol(x) = 1/x? is very nearly exact. We note that,

in the case of an _ atFractlve potential _ su_ch as ACKNOWLEDGMENT
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