MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Mechanical and Aerospace Engineering Faculty

Research & Creative Works Mechanical and Aerospace Engineering

01 Jan 1990

Robust Nonlinear Control of Brushless DC Motors in the Presence
of Magnetic Saturation

N. Hemati
J. S. Thorp

Ming-Chuan Leu
Missouri University of Science and Technology, mleu@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork

b Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons

Recommended Citation

N. Hemati et al., "Robust Nonlinear Control of Brushless DC Motors in the Presence of Magnetic
Saturation," Proceedings of the IEEE International Conference on Systems Engineering, 1990, Institute of
Electrical and Electronics Engineers (IEEE), Jan 1990.

The definitive version is available at https://doi.org/10.1109/ICSYSE.1990.203229

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.


http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICSYSE.1990.203229
mailto:scholarsmine@mst.edu

ROBUST NONLINEAR CONTROL OF BRUSHLESS DC MOTORS
IN THE PRESENCE OF MAGNETIC SATURATION

N. Hemati, Assistant Professor, Drexel University
1.S. Thorp, Professor, Cornell University
M.C. Leu, Professor, New Jersey Inst. of Tech.

ABSTRACT

A robust control law is derived and examined for a direct-drive
robot arm driven by a Brushless DC Motor (BLDCM). The
complete dynamics of the motor and its interaction with the robot
arm are accounted for. This is important, since in a direct-drive
servo system the torque generated by the motor is directly
transmitted to the load. Effects of magnetic saturation as well as
reluctance variations are accounted for, in order to ensure
accuracy. The effectiveness of the method is examined through
computer simulations. The computational complexity of the
overall control scheme is such that it can be readily used for real-
time control.

I. INTRODUCTION

In this paper we address the robust control of a direct drive robot
arm which is actuated by a Brushless DC Motor (BLDCM).
BLDCM has been an attractive choice for direct-drive
applications, e.g. [1], mainly because of its large torque
producing capabilities suitable for high acceleration and
deceleration rates. In a direct-drive servo system the load, e.g.
robot arm, is directly coupled to the motor and therefore, the
torque generated by the motor is directly transmitted to the load.
As a result, in order to ensure high performance of the system,
the dynamics of the motor and its interaction with the load must
be taken into account.

BLDCM constitutes a coupled nonlinear dynamic system.
Accordingly, the tracking control associated with it is addressed
here as a nonlinear control problem. The control problem is
formulated in the framework of the transformation of nonlinear
systems[7]. The control law presented in this paper is composed
of a part which guarantees good performance in the absence of
modeling and measurement errors[6]. Additionally, to ensure
good performance in the presence of uncertainties, a saturating
robust control term is derived and included in the overall control
structure. Computer simulations are used to examine the
effectiveness of the control law.

II. MATHEMATICAL MODEL

A one-degree-of-freedom robot arm actuated by a BLDCM is
considered; see figure 1. The motor is to generate a prescribed
torque profile such that the payload and the arm are guided along
a given trajectory specified in terms of the time histories of
position, velocity, and acceleration. For the payload to track the
prescribed trajectory, appropriate control commands (voltages/
currents) must be supplied to the windings of the motor. The
motor used to drive the arm (figure 1) is a BLDCM with eight
Samarium Cobolt permanent magnet poles (i.e. 4 pole pairs), and
3-phase Y-connected stator windings. The BLDCM consists of a
means to provide three-phase signals to the phase windings. The
signals from the signal generator are synchronized with the
output of the position sensor (ususally a resolver) to provide
electronic commutation. The differential equations governing the
dynamic characteristics of the combined BLDCM and robot arm
system can be written as

V()= RI([)+dA A(L,6) ¢))]

do
qa = T-TL (02}
2
TL = Mgl cos(6) + Mz%g ©)
e
a@=® @

where 0 is the position variable,V= [vl,vz,v;;]T and 1=[i1,i2,i3]T
are the phase voltage input and current vectors, respectively. R is
the resistance matrix, and the flux linkage vector is defined by

AIS) = 1(6) I+ Ap(6) ®

where the inductance matrix, L(0), is a 3 by 3 symmetric,
positive definite matrix whose diagonal elements are the self
inductances and the off-diagonal elements are the mutual

inductances of the windings. The vector A;,(0) defines the flux
linkages associated with the permanent magnet rotor. The torque

generated by the motor, T=T(1,0), is a function of the phase
currents as well as rotor displacement. For brevity purposes, the
lengthy equation associated with the torque funtion is not given
here, and the interested reader should refer to [5] and [6]. The
dynamics associated with the arm and the payload are modelled
as given in equation (3). Equations (1)-(4) represent a set of
differential equations with time varying coefficients, and are quite
complex for analytical and control design purposes. However, it
is well known [2][9][11] that for the type of BLDCM under
study, a Floquet type transformation (commonly refered to as

Park's transformation), K(6), exists which transforms equation

(1) to a set of nonlinear differential equations with constant
coefficients. The transformed governing equations are as follows:

de d?x
q(t) R1 + n?»d(t)a (t) (6)
dx
V(0 = Rig - ihg(0a? 4 226 d(t) @
where
Aq() =Lqig ®)
Aq(t) = Lgig + Ke 9

3 3
Lq = (f) (Ly- Lg), andLg= (f) Ly + Lg), where L, and Lg are
inductance parameters.The number of permanent magnet pole

pairs is denoted by n. The torque expression in terms of the new
variables is
T(iq,id) = (37n) {Keiq +(Lg- Lq) iqid) (10)

Equation (2) remains unchanged, except that now the torque
generated by the motor is no longer an explicit function of the
position variable, 6. In our case, this has very important
implications, since it is now possible to address the control
problem independently of the commutation function involved.
Furthermore, the transformed model (i.e. equations (2), (6), (7),
and (10)) is much more attractive for computational, and as a
result, for real-time control purposes.
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So far, in the development of the model the assumption has been
made that the torques generated by the motor lie within the range
where the magnetic structure of the motor retains its linearity. It
turns out that for applications, such as direct-drive robotics,
where large torques are needed, this becomes an unrealistic
assumption. A motor from the class of motors under
investigation has been experimentally tested and it has been found
that magnetic saturation plays an important role; see [S]. To
account for the presence of magnetic saturation, the nonlinear
characteristics associated with the motor have been modelled by a
set of multi-dimensional surfaces which accurately describe the
flux linkages and the torque function associated with the saturated
motor. However, the application of Floquet transformation to the
original equation, i.e. eqn. (1), would result in a more simplified
representation only if the flux linkage vector, equation (5), is a
linear function of the current vector. To alleviate this problem,
the nonlinear functions representing the flux linkages are divided
into intervals within each of which they are closely approximated
by linear functions. This approach, in turn, allows us to retain
the general formulation obtained in equations (6)-(10), with the
exception that now the parameters Ly, Lg, and K are piecewise
constant functions of the phase currents. It is important to note
that the interval widths within which linearity is assumed can be
made arbitrarily small for better accuracy.

III. NONLINEAR CONTROL OF BLDCM

The mathematical model, equations (2), and (6)-(7), represents a
coupled nonlinear system. The tracking control of the system is
approached by considering the full combined dynamics of the
system. In this section, a nonlinear control law is presented to
compensate for the nonlinearities in the system and to give good
tracking performance. The goodness of the control law,
however, will be based on the assumption that an accurate
description of the system and that accurate measurements are
available. In section IV, this assumption will be relaxed by
supplementing a robust contoller to the control law of this
section.

To proceed, it is appropriate to rewrite the governing equations of
motion in the following form:

& - 10 + 6@ (11
e(t) = 64-0 (12)
where
fo dt X
0 X3
x(1) = [ s H(x) = kx4+kox4xs
iq kqx3-k3x4-ksx3xs
i kexs+kyxaxg
0 0 0 g O vq
G(x) =[ ]T pout)y= [ ]
0 0 0 o Q vq

where k1=3nKe/2J, ko=3n(Lg-Lg)/2J, k3=-R/Lg, kg=-Ke/Lg,
ks=-Ld/Lq, kg=-R/Lg, k7=Lg/Lg, q1=1/Lq, qz=(11/L

‘We will be looking for a control law
u(t) = B~1(x) () - o(x) ) (3

which will transform the nonlinear system, (11)-(12), through
the transformation

y(t) = T(x) (14)

to the following linear canonical form
& Ay +B () (15)
e(t) =64-0 (16)
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where

T
y(® =[ j(ed-e) dt  64-6 wgo og-a ig ]
and the pair (A,B) is in the Brunovsky canonical form with

Kronecker indices 4 and 1. 84, 04, and oq are the desired
position, velocity, and acceleration, respectively.

We will now use the results which have previously appeared in
the literature and in particular in [7] to derive conditions under
which such a transformation is possible. Note that if it is
possible to obtain a control law to transform the governing
equations to the linear system equivalent, equations (15)-(16),
then to achieve the desired dynamic performance one may simply
use an eigen-value assignment/pole placement technique. The
necessary and sufficient conditions for the existance of T(x) in
our case are as follows: i) The set C = {G1, [f,G1], (adzf,Gl),
(ad3£,G1), G3)! must span a five-dimensional space, where G1
and Gy are columns of matrix G; ii) The set C1= {G1, [f,G1],
(ad?£,G1), (ad3£,G1)) and C must be involutive; iii) The span
of C1 must be equal to the span of the intersection of C1andC.
For space limitations, the derivation of the Lie barackets is not
presented and only the main result is given here. Conditions (i)-
(iii) are satisfied if
k1 +kpx5#0 a7

Consequently, the transformation 7(x) exists, provided that the
condition in (17) is satisfied. The implications associated with
this result are discussed later. For now, suffice it to say that the
control law will be designed to ensure the satisfaction of this
condition.

A control law of the form given in equation (13) that results in the

transformation to the linear canonical form in equations (15)-(16)
is given by
. ]

(k1+k2x5)(k3x4+k4x3+k5x3x4)-k2x4(k6x5+k7x3x4)

a2kox4
B = (18)

o(x) = |: :| (19)
kgxs+kyx3xg

The existence of T(x), as seen in (18), is equivalent to requiring
B(x) to be invertible. By substituting for the parameters kiand
ko, condition (17) becomes

Ke+ (Lg-Lg)ig#0 (20)
This condition is cI‘ikely to always hold, since in general K¢ >>
(Lg - Lq)‘ However, for further assurance, a stabilizing
controller is chosen to drive ij to zero. To achieve the desirable

dynamic response for the overall system, the state feedback
control

[ (k1+kox5)q1

v =Hy® (21)
is considered, where
hy hp hy hy 0
{ ] 22)
0 0 0 0 hs

and its elements are appropriately chosen based on a desirable
reference model. The characteristic equation of the reference
model, for example, may be specified by

F(\) = (Aths)(A2428m1 +001 )(A24+2E00+m02) (23)

Once the feedback control law for the linear system has been
specified, the nonlinear control can be computed by

u@® = B~ (HT) - 0(x) ) (24

1 [£,G1l, (adzf,Gl), and (ad3f,G1) denote the Lie brackets of vector fields and
are defined as follows:

oG
[£,G1] = (ad!f,Gy) =a—xlf - %Gl and  (adXiGy) = [f, (@ 15,G)]



As illustrated in the simulation results in section V, the proposed
control law of this section behaves well even if the system is
subject to significant payload uncertainties and modeling errors,
provided that accurate measurements of acceleration are available.
If, however, estimated acceleration information are used, which
is the case in most practical situations, the performance of the
system may be drastically degraded. To account for modeling,
payload, and measurement errors, a robust control law will be
presented in the following section.

IV. ROBUST CONTROL

Ine this section a nonlinear robust controller is designed and
appended to the control law of the previous section. The overall
controller shall be used for position tracking control of the direct-
drive arm actuated by a BLDCM. The formulation of the robust
controller follows the results of the work pioneered by
Gutman[3] and Leitman[10] and later extended by Ha and
Gilbert[4]. It will be assumed that the uncertainties in the system
are deterministic and bounded.

The overall controller is specified to be
u(t) = up(t) + Au(t) (25)
where up(t) corresponds to the control law of section III and

Au(t) represents the correction term which will make the system
robust. In the absence of system uncertainties, the control up(t)

will provide good dynamic response. Au(t), a saturating
function, will guarantee robustness in the presence of
uncertainties. Assuming that there are uncertainties in the
mathematical model of the system, to distinguish between the
actual system and the system model in our previous derivations,
the system model is represented by f*(x) and G*(x), and the
following are defined

Af=f-f* (26)

AG =G - G* 27
The derivation of the robust controller proceeds as follows. One
of the basic assumptions needed is what is usually known as the
matching condition(s). The assumption is that the dynamics of
the system are affected by the control input in the same manner as
the uncertainties are affected. To enforce this assumption, we
will introduce Af* and AG* which satisfy the following
conditions

Af*
g—:Af=BAf*=B|: ] 28)
Afy*
P AG]*  AGp*
£AG=BAG*B=B B (29)
ox
AG3"' AG4*

Through the application of the transformation T(x), conditions
(28) and (29) become

(A-AMT(x) = AAT(x) = B [ Af* - AG*a ] 30)

(B-B#*) = AB = BAG* 31
By imposing the matching conditions, (30)-(31), two things have
been achieved. First, the system uncertainties have now been
imbedded in Af* and AG* and second, it is shown that the
uncertainties are affected by the matrix B the same way as the
input to the system. Applying conditions (30) and (31) to the
system under consideration, we get

dAy

at 32)
Having assumed bounded uncertainties, we can define ¢ such
that

¢ 211 AG* B up + Af* I (33)
to provide a measure for the bound on uncertainties. Assuming
that accurate measurements for y1, y2, and y3 are available, a
realistic assumption, then

B (AG* B up + Af*)
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Af1* = (k1 + koxs5) Afg - koxg Afs 34)
Afy* = Afy (35)
AG1* =8q1 (36)
AGa* = kox4(8q1 - 82) 1))
AG3*=0 (38)
AGy4* = 8q) (39)

where 8q1 = Aq1/q1 and 8q = Aqp/qp.

At this point we have developed a set of explicit formulae for the
bounds imposed on modeling errors, which can be estimated in

quantitative terms. For example, 8q; and 3q7 express bounds
for the percentage errors in inductance values. The correction
term, Au, in the control law which should provide robustness

will be defined in terms of the uncertainty bound, ¢, and a
saturating function as follows.

Au=-¢ B~ () (“0)
where
Cifigns1
o= { LN i€ WEN>1 } “n
Furthermore,
¢{=n¢BTPTp-ly @

where P is the matrix whose columns are the eigen-vectors of the

matrix (A+BH), and & is a parameter which can be chosen to
alter the bound on the tracking error. As will be shown in section
V, the controller presented above will provide bounded tracking
errors in the presence of uncertainties.

V. SIMULATION RESULTS
In this section the proposed control schemes of sections III and
IV are examined through computer simulations. We will start
with the assumption that accurate measurements of states,
including acceleration measurements, are available. However, it
is expected that there will exist payload and modeling
uncertainties which the controller has to overcome. Figure 2
shows the time history of position error when the payload is to
travel along a cubic trajectory, and when the nonlinear control of
section IIT is used, i.e. the control law does not include any
“"robust" term. The payload inertia has been considered to have
been either underestimated or overestimated. Figure 3 illustrates
the performance of the system subject to uncertainties in payload
and motor models, when the acceleration information has been
estimated based on the approximate system model. Obviously,
the performance of the control law has deteriorated since
inaccurate acceleration measurements have been used. To
alleviate the problem associated with inexact acceleration
measurements, the robust control term, derived in section IV, is
appended to the control law used in the simulations above.
Figure 4 depicts the performance of the robust controller, when

Afq = Afy = 105, 8q1=8q2=0.35, and & = 1010, It is evident
from the figure that the tracking error profile has been improved
and the error envelope has been significantly reduced.

VI. CONCLUSIONS
We have studied a direct-drive robotic arm system directly
coulped to a BLDCM which is capable of producing large torques
for high acceleration and deceleration rates. The complete
dynamics of the motor and the arm have been combined in
investigating the tracking control problem associated with the
system. A nonlinear control law was derived which behaves well
even when there are significant modeling and payload inertia
uncertainties. The behavior of this control law, however, was
shown to deteriorate when accurate measurements were not
available. To alleviate this problem a correction term was



appended to the nonlinear controller to ensure the robustness of
the system. It was demonstrated that by appropriately choosing
maximum bounds on the uncertainties in the system, favorable
results are accomplished. Further investigation through
simulation results has indicated that it is possible to create
undesirable oscillations in the system if the control law is not
properly defined.
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Figure 1: Direct-drive arm actuated by BLDCM,
I=1.0m,M=2.0Kg.
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Figure 2: Time history of position error in the presence of
payload uncertainties, using accurate acceleration measurements.
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error in resistance.
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