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IDENTIFICATION OF CUTTING FORCE IN END MILLING OPERATIONS USING 
RECURRENT NEURAL NETWORKS 

Q. Xu,' K. Krishnamurthy; B. McMillint and W. Lut 
t Department of Mechanical and Aerospace Engineering and Engineering Mechanics 

+ Department of Computer Science 
University of Miouri-Rolla 

Rolla, MO 65401-0249 

ABSTRACT 

The problem of identifying the cutting force in end 
milling operations is considered in this study. Recur- 
rent neural networb are wed here and are trained 
using a recursive least squares training algorithm. 
'haining results for data obtained from a SAJO 3- 
axis vertical milling machine for steady slot cuts are 
presented. The results show that a recurrent neu- 
ral network can learn the functional relationship be- 
tween the feed rate and steady-state average resultant 
cutting force very well. Furthermore, results for the 
Mackey-Gbs time series prediction problem are pre- 
sented to  illustrate the faster learning capability of 
the neural network scheme presented here. 

1. INTRODUCTION 

End milling operations are widely used to machine 
complex-contoured parts. During these operations, 
it is important to control the cutting force. This will 
prevent premature tool failure or damage the work 
piece, and minimise tool deflection and tool vibra- 
tion. But designing the control system to control the 
cutting force is a difficult task because it is difficult 
to obtain the process parameters. The metal cutting 
process is intermittent, and the mechanism of chip 
formation and cutting mechanics are not fully un- 
derstood. Hence, the process parameters cannot be 
identified with any certainty. Often, the cutting force 
can only be predicted by utilising empirical relation- 
ships and even these are highly nonlinear. 

Several models for the milling process have been 
presented in the past. Based on the chip forming me- 
chanics, Kline et al. [l] have presented a mechanis- 
tic model to obtain both instantaneous and average 
force values as a function of the cut geometry and 
feed rate. This model has been extended to handle 

variable cutting conditions (changes in axial and ra- 
dial depths of cut, feed rate and spindle speed) by 
h e l l  and Srinivasan (21, and Kolarits and DeVries 
[3]. An empirical second-order model for the force 
response to feed rate changes was used by Lauder- 
baugh and Ulsoy [4]. They showed that the model 
parameters vary considerable with the cutting condi- 
tions. In a later study, Lauderbaugh and Ulsoy IS] 
used a least squares algorithm with exponential data 
weighting to estimate the process parameters for de- 
signing a model reference adaptive controller. Olgac 
and Guttermuth [6] and Fassois et al. [7] wed auto- 
regressive moving average models to describe the ma- 
chining process. Although these two studies consid- 
ered turning operation, the same can be applied to 
end milling. 

Considerable attention is now being focused on 
using neural networks for identification and control 
of dynamical systems [8]. Neural networks are at- 
tractive because they can be trained off-line with 
very high accuracy over a large input space without 
a priori knowledge of the system equations, and they 
can continue to learn (training and learning are used 
interchangeably here) during on-line application. In 
particular, recurrent neural networks are being con- 
sidered because they have the potential for better 
approximation ability, shorter training period, and 
wider range of dynamic behavior due to their dynam- 
ical nature. 

Various approaches to train recurrent neural net- 
works have been presented. Pineda 191 has general- 
ized the backpropagation technique to  recurrent neu- 
ral networks. This method requires a second dynam- 
ical system of the same she as the original system to 
implement the backward propagation equation in the 
weight update process. Pearlmutter [lo] has extended 
Pineda's work to include time-dependent trajectories. 
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Karakagoglu e t  al. Ill] have presented simplified 
training rules which do not require the solution of a 
second dynamical system. The three-layer architec- 
ture (one input layer, one hidden layer and one out- 
put layer) resembles that of feedforward neural net- 
works. Pllakorius and Feldkamp 1121 and Ku and Lee 
(131 have used similar feedforward type architectures. 
The dflerence is that the neural network evolves ac- 
cording to a set of dfierence equations rather than 
differential equations. 

In this study, a recurrent neural network will be 
used to identify the cutting force in end milling oper- 
ations. Only steady slot cuts will be considered here. 
First, a recursive least squares (RLS) training alge 
rithm used to train the recurrent neural network will 
be presented. Second, results for the Mackey-Glass 
time series prediction problem will be presented to 
illustrate the faster learning capability of the neural 
network scheme presented here. Finally, training re- 
sults for data obtained from a SAJO %axis vertical 
milling machine will be presented. The results show 
that the recurrent neural network can learn the func- 
tional relationship between the feed rate and steady- 
state average resultant cutting force very well. 

2. TRAINING ALGORITHM 

Figure 1 shows a recurrent neural network with an 
arbitrary number of hidden layers. The input layer 
is layer 0 with neurons, layers 1 - L - 1 are hid- 
den layers with n 1  - n ~ - 1  neurons, respectively, and 
the output layer is layer L with nb neurons. The 
hidden layers form a dynamical neural network with 
sigmoidal processing elements. The dynamics of the 
network can be described by 

T ~ X i r = - x l + W r ~  g l ( X l ) + W l  s(q -  1)s (1) 
T k  lik =-Xk + w r k  gk (Xk)+Wk Xk-1, 

k = 2 ,  ..., L-1,  (2) 

Y ( q ) = W L % L - l ,  (3) 

where s(q  - 1) E WnO is the input vector at the 
(q  - 1)th time instant, Xk = [ Zl,k, Za,k, . . ., Znk,k 1' 
E Snk is a vector describing the state of the neu- 
rons in the kth hidden layer, a(.) : 3P"k + Wnk 
is a vector-valued function with sigmoidal elements 
for the kth hidden layer, W r k  = [ Wl,rk, ~ 2 , r k ,  

E Wnk denote the intra-layer connection weights from 
neurons in the kth hidden layer to the i th neuron 
within the kth hidden layer, Wk = [ w I , ~ ,  WZ,k, 

E 8 ° C - 1  denote the connection weights from neurons 

Wnk,rk 1'9 Wi,rk = [ Wi1,rkS wi2,rkr * * - 9  Win),rk 1' 

- . . I  Wnk,k F, Wi,k = [ Wi1.k~ WiZ,k, * * . $  Wink-l,k]'  

Input Layer Hklden Layer t l  Hidden Layer a-1 
(n,neurons) (n, neurons) (nL., neurons) (n,neum) 

Figure 1: Schematic of a Multilayer Recurrent Neural 
Network 

in the (k-1)th layer to the i th neuron in the kth layer, 
T k  = diag[  TI,^, T z , ~ , .  . . , Tnr ,k  ] E Snkxnh is a diage 
nal matrix of time constants for the kth hidden layer, 
jiL-1 denotes the stable equilibrium state of the neu- 
rons in the (L-1)th layer for the input s(q-1) at the 
qth time instant, y = I yl,  a,. . . , ynnc F E 8 ° C  is the 
output vector at the qth time instant, and the over 
dot denotes time derivative. For the input s(q - l), 
it is assumed that the neural network given by Eqs. 
(1) and (2) reaches steady-state before the qth time 
instant and can be obtained as 

2 1  = W r 1  gl(jil)+Wl s, (4) 
& = W r k  a&)+ W k  &-I ,  k = 2,. . . , L - 1,(5) 

Note that a finite amount of time is included for the 
system to reach steady-state. This is to facilitate, 
for example, calculation of the steady-state solution 
in real-time. For convenience, the functional depen- 
dence of ti and y on q will not be written out hence- 
forth. 

The problem is to find the connection weights such 
that the following error function is minimbed. 

d=l n=l 

where P is a weight factor or forgetting factor allow- 
ing a higher weight for the last training pair, & and 
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yn are the desired aud actual outputs of the nth neu- 
ron in the output layer, respectively, and the leading 
superscript denotes the training pair number. The 
connection weights can be obtained in a recursive 
fashion as (see Ref. [ 141 for details) 

Dw = D-lw + q D k D 6 ,  (7) 

where q is a small learning rate, as in gradient de- 
scent, the recursive update rules for the Kalman gain 
Dk and the approximate error covariance matrix DP 
are given by 

D P = - p -  1 D 1 2 D k  DaT]  D - l p ,  

and expressions for D 6 ,  Oa and 
layers are as follows: 

for the various 

nr. 

n=l 

nr 
D12 = Dh2 

ni,rk 
n=l 

Here df&k (k = 1,. . . , L - 1) are the sttady-state 
solution of 

n k  

d k i . r k  =- d hni.rk +& %,rk dhnl,rk +ck, (10) 
k 1  

where Ck = c ~ ~ ~ ’  wli,k+l d hn(.r(k+l), for 
k = 1 ,  . . a ,  L-2,  ck = Wni,L, for k Z L - 1 ,  and 
4 . k  = (a%,k(”%,k)/a d%,k)ld=.q&i,b* Kwaltapoltln 
et 41. [ll] exploited the fact it IS possible to tailor 
the sigmoidal function such that k in Eq. (10) is 
small. Under this condition, Eq. (10) simplifies to 
‘ k i , r k  = a, and thw precludes the need for inte- 
grating Eq, (lo), for example, to obtain the steady- 
state solution. 

“kaining using the RLS algorithm is begun by iui- 
tialising the P-matrices to be equd to the identity 
matrix multiplied by a large constant. Then, for 
each training pair, Eqrm. (1) and (2) are integrated 
to obtain the stable equilibrium state of the network. 
Following this, Eq. (10) is integrated to obtain the 
steady-state dj;ni,rk (k = 1,. . . , L-1) values. Finally, 
the k-vector, P-matrix and weights for each neuron 
are updated. After one pass through the training 
set, another pass is begun. This is repeated until the 
emor at the output is within desirable bounds. Al- 
though training the recurrent neural network is com- 
putationally more intensive than a feedforward neu- 
ral network, one can argue that the recurrent neural 
network will generally need to be presented with the 
training set fewer times. Thus the overall computing 
time will be less, resulting in faster learning. This can 
be further improved upon by solving the network dif- 
ferential equations and implementing the RLS train- 
ing algorithm on a parallel computer. In fact, Steck 
e t  al. (151 have shown that the computation time 
of the RLS algorithm for a feedforward neural net- 
work approaches that of standard backpropagation, 
the latter not being parallelisable, as more processors 
are applied to the matrix calculations in a multiple 
processor machine, such as the Intel iPSC/2 multi- 
computer. 

3. RESULTS 

3.1 Mackey-Glass Time Series Prediction 
Problem 

The effectiveness of the present neural network 
scheme will be shown by predicting the values pro- 
duced by the Mackey-Glass equation (101 

0.2 z(t - 7) 

1 + @ ( t -  7) 
i ( t )  = - 0.1 z(t). (11) 

n=l 
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Figure 2: Training Result for the Mackey-Glass Time 
Series Prediction Problem 

Specifically, a recurrent neural network will be 
trained to  predict z(t + 6)  using z(t - em), m = 
0, .  . . , 5  as inputs. The Mackey-Glass time series pre- 
diction problem has been recognised as a difficult 
problem because Eq. (11) results in a chaotic time 
series. 

In this study, r was chosen to be 30 and the time se- 
ries values were obtained using the 4th-order Runge- 
Kutta equation with the initial condition z=0.8. 
'haining was started with random values between 
f 1 for the connection weights, q=0.25, /3=0.96, and 
O P = l @  I. The forward and backward propagation 
equations were numerically integrated using the 4th- 
order Runge-Kutta equation with sero initial values. 
The diagonal elements of TI and T2 were chosen to 
be 0.002. The input layer included one bias neuron 
with its value set equal to 1 and two hidden layers 
with 5 neurons each were chosen. The sigmoidal func- 
tion chosen was g(z) = -1 +2/(1 + e-=). Figure 2 
shows the desired and neural network outputs after 
5 cyclea with 800 data points each. As can be seen, 
the two curves are almost identical showing that the 
recurrent neural network has been trained to iden- 
tify the nonlinear system dynamics. The sum of the 
squared error (squared error for short) in this case 
was calculated to be 2.7 x 

To evaluate the performance of the recurrent neu- 
ral network, the prediction problem was solved by 
training a 4-layer feedforward neural network with 

Number of Training Cycles 

Figure 3: Learning Curves for the Mackey-Glass 
Time Series Prediction Problem 

the same number of connection weights using the 
standard backpropagation algorithm. The same pa- 
rameters (random values between f l for the initial 
connection weights, bias value, sigmoidal function, 
training set and learning rate) as in the recurrent 
neural network case were chosen. Figure 3 shows the 
training results. It is clear that a very large num- 
ber of training cycles (in excem of 2000) are required 
to reduce the squared error to the level achieved by 
the recurrent neural network in a small number of 
training cycles. 

3.2 End Milling Problem 

A recurrent neural network will be trained to learn 
the functional relationship between the feed rate and 
steady-state average resultant cutting force. Only 
steady slot cuts are considered in this study. A 
SAJO Model VF54 3-axis vertical milling machine 
with a 7.5 HP spindle drive was used to obtain 
the training data. The milling machine has been 
retrofitted such that it can be controlled by a 48866 
computer. A Data Translation DT2839 high chan- 
nel count, high speed board was used to sample 
the analog cutting force signals and to generate the 
pulse train for driving the x-y table stepper motors. 
The cutting force components were measured by a 
Kistler Model 9257B %component dynamometer to- 
gether with Kistler Model 5004 charge amplifiers. 
Slot milling was carried out with a 0.5 in diame- 
ter high speed steel 4flute cutter on 6061 aluminum 
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Figure 4: Desired and Neural Network Outputs - 
Training Result 

blocks. 

lkainiig data was obtained by measuring the cut- 
ting force in the x and y directions for various feed 
rates between 0.006 in/s and 0.08 in/s. The axial 
depth of cut was set at 0.1 in and the force signals 
were sampled at loo0 samples/s. As the focus of at- 
tention here is on steady slot cuts, the force signals 
were measured under steady cutting conditions. Be 
cause of the mechanics of the cutting process, the 
sampled force signals vary a8 the cutter rotates. To 
solve the fluctuating force problem, past studies have 
used either the peak forces or forces averaged Over 
one spindle revolution. As the tool deflection is of 
concern, the average resultant cutting force was used 
in this study. This was calculated as 

Fr = + e, 
where F, and Fy are the sampled force signals aver- 
aged over one spindle revolution in the x and y direc- 
tions, respectively. Note that the cutting force in the 
I direction was not considered because it was small 
and the slots were cut in the x direction. Thus the 
training set consists of the feed rates and correspond- 
ing steady-state average resultant forces. A total of 
75 feed rate-resultant force training pairs were ob- 
tained. 

The recurrent neural network was trained using the 
leaving-one-out strategy with one exception; twenty 

1 5  10 15 20 25 
Training Pair Number 

Figure 5: Desired and Neural Network Outputs - 
Generalisation Test 

five training pairs were left out each time. After 3 
times, the cycle was repeated. The inputs to the 
recurrent neural network were the current and past 
two samples of the feed rate, and past two samples 
of the steady-state average resultant cutting force. 
The output of the recurrent neural network is the 
current steady-state average resultant cutting force. 
Training was started with random values between 
f 1 for the connection weights, q=0.35, /3=0.90, and 
OP=l@ I. The forward and backward propagation 
equations were numerically integrated using the 4th- 
order Runge-Kutta equation with rero initial values. 
The diagonal elements of TI and T2 were chosen to 
be 0.002. The input layer included one bias neuron 
with its value set equal to  1 and two hidden layera 
with 3 neurons each were chosen. The sigmoidal func- 
tion chosen was g(z) = -1 + 2/(1 + e-22). Figure 
4 shows the training result after only three cycles. 
&om the figure it is clear that the recurrent neural 
network can predict the steady-state average resul- 
tant cutting force very accurately. To check the gen- 
eralisation capability, the recurrent neural network 
was tested with the twenty five training pairs left out 
in the last training set. n o m  Fig. 5 it is clear that 
the recurrent neural network can generalise well. 

4. CONCLUDING REMARKS 

A recurrent neural network was successfully 
trained to learn the functional relationship between 
the feed rate and steady-state average resultant 



cutting force. The neural network scheme presented 
has faster learning capabilify and is well suited for on- 
line applications. System identification and control 
of the cutting force in three-dimensional end milling 
operations are currently being pursued. 
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